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Abstract— We consider the worst-case expectation of a per-
mutation invariant ambiguity set of discrete distributions as
a proxy-cost for data-driven expected risk minimization. For
this framework, we coin the term ordered risk minimization to
highlight how results from order statistics inspired the proxy-
cost. Specifically, we show how such costs serve as point-
wise high-confidence upper bounds of the expected risk. The
confidence level can be determined tightly for any sample
size. Conversely we also illustrate how to calibrate the size of
the ambiguity set such that the high-confidence upper bound
has some user specified confidence. This calibration procedure
notably supports ϕ-divergence based ambiguity sets. Numerical
experiments then illustrate how the resulting scheme both
generalizes better and is less sensitive to tuning parameters
compared to the empirical risk minimization approach.

I. INTRODUCTION

The problem of expected risk minimization is ubiquitous
in machine learning and statistics [1], [2]. It is based on the
idea that the quality of a model can be assessed by measuring
its expected error, quantified by some loss function. The
expectation should be evaluated with respect to the data-
generating distribution. However, in practice, only samples
are available. So the expectation needs to be replaced with a
data-driven proxy, which aggregates the data. The common
solution is empirical risk minimization or the sample average
approach (SAA), where one takes an average over the losses
at the sampled data points.

Despite its advantages, the SAA often exhibits excessive
sensitivity to the specific data realizations, particularly in
high-dimensional settings [3, §8.H], leading to diminished
generalization capabilities of the model. To address this,
researchers have turned to Distributionally Robust Optimiza-
tion (DRO), aiming to robustify against disparities between
the empirical and true data-generating distributions.

In DRO, a worst-case expectation with respect to dis-
tributions in an ambiguity set centered on the empirical
distribution serves as a proxy for the true expected risk.
This set can be based on the Wasserstein distance [4], ϕ-
divergences [5], hypothesis tests [6], and others. See [7], [8]
for recent surveys. However, DRO faces challenges when
determining the ambiguity set’s size. Current approaches
rely on concentration inequalities [9] or asymptotic bounds
[5], ensuring that true distribution is contained within the
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ambiguity set with high probability. Unfortunately, this often
results in conservatism, caused by either loose constants in
the concentration inequalities or the shape of the ambiguity
set. As an alternative, bootstrapping or cross validation
techniques are often employed (cf. [4]). These can be compu-
tationally expensive and lack statistical guarantees for finite
samples, similarly to the asymptotic bounds. Such guarantees
are a requirement in safety-critical applications like control
(e.g. constraint tightening in tube-based MPC [10], [11]).

To address conservativeness issues, [12], [13] focus on
bounding the expectation directly as an alternative to creating
a confidence bound for the entire distribution. This mimics
the focus on the expectation in the statistical learning frame-
work of [2, §1]. However, their bounds are asymptotic and
therefore also lack strong statistical guarantees. In this paper,
we take the first steps towards a finite-sample version of their
scheme. To achieve this, we draw inspiration from results in
order statistics [14] and stochastic orders [15] to motivate the
use of permutation invariant ambiguity sets. Notably, the ϕ-
divergences used in [12], [13], [16] produce a specific case.
We coin the term ordered risk minimization to emphasize
our statistical motivations. We demonstrate how to calibrate
the ambiguity set’s size to upper bound the true expectation
with high probability, even when the true distribution does
not fall within the ambiguity set. This probability serves as
an intuitive tuning parameter.

The remainder of the paper continues as follows. We first
present some notation, before moving on the the problem
statement in §II. There the proxy costs we use are presented
as well as the calibration problem. We present the statistical
interpretation of these proxy costs as high confidence upper
bounds in §III and solve the calibration problem in §IV.
Numerical experiments are then presented in §V.

Notation: Let IR denote the reals and IR the extended
reals. For some convex function ϕ : IRn → IR, let ϕ∗ denote
the convex conjugate, ∂ϕ the subgradient and domϕ its
domain. For a set X let ιX (x) = 0 if x ∈ X and +∞
otherwise be the indicator function of X . For integers a, b
let [a, b] = {a, . . . , b} and [b] = {1, . . . , b}. Let [x]+ =
max(0, x). For real vectors x, y ∈ IRn we use ⟨x, y⟩ to
denote the Euclidean inner product and 1n ∈ IRn is the
vector of all ones. For a cone K let K◦ := {y : ⟨x, y⟩ ≤
0,∀x ∈ K} denote its polar cone. Let Πn denote the
permutations of [n] (i.e., all bijections [n] → [n]). We
write πx = (xπ(1), . . . , xπ(n)) for π ∈ Πn, x ∈ IRn

and similarly let Πny = {πy : π ∈ Πn} denote the orbit
of y under Πn. Let IRn

↑ := {x : x1 ≤ x2 ≤ · · · ≤ xn}
denote the monotone cone and Mn its polar (cf. Lem. A.1
and (6)). Let ∆n := {µ :

∑n
i=1 µi = 1, µi ≥ 0, i ∈ [n]}
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denote the probability simplex. For a vector x ∈ IRn let
x(1) ≤ x(2) ≤ · · · ≤ x(n) be the increasing permutation
of the elements of x with x↑ = (x(1), x(2), . . . , x(n)). For
sets A, B let A + B := {a + b : a ∈ A, b ∈ B} denote
the Minkowski sum. For random variables X,Y we write
X ∼= Y to say X is identically distributed to Y . Let
esssup[X] denote the essential supremum. Let X ∼= U[ℓ, u]
imply X is uniformly distributed over [ℓ, u]. For a set A,
X ∼= U[A] is then uniformly distributed over A. Finally let
X ∼= N (µ,Σ) denote X that is normally distributed with
mean µ and covariance Σ.

II. PROBLEM STATEMENT

We consider expected risk minimization

minimize
θ∈Θ

IE[ℓ(θ, ξ)]. (1)

Here Θ ⊆ IRnθ and ξ : Ω → Ξ ⊆ IRnξ is a random vector on
a probability space (Ω,F , IP). As is common [1], [2], we
then assume access to independent and identically distributed
(iid) samples ξ(1), . . . , ξ(n−1). Let ℓi(θ) = ℓ(θ, ξ(i)) for i =
1, . . . , n − 1 and take ℓn(θ) such that it upper bounds the
cost almost surely. That is IP[ℓ(θ, ξ) ≤ ℓn(θ)] = 1. It is
assumed that ℓn(θ) is finite for any θ. We do so for two
reasons: (i) an assumption on the tail of the distribution of
ℓ(θ, ξ) is required to find a confidence interval for the mean
[17]; (ii) the scheme is simplified considerably. An example
of a valid bound is ℓn(θ) = supξ∈Ξ ℓ(θ, ξ).

We will use a data-driven proxy for the expectation by
introducing permutation invariant ambiguity sets. These are
subsets A of the probability simplex ∆n such that, for each
µ ∈ A any permutation of µ is also in A. The ordered risk
minimization problem is then:

minimize
θ∈Θ

sup
µ∈A

n∑
i=1

µiℓi(θ). (2)

This proxy cost interpolates between the robust case for A=
∆n and the sample average (including a term associated with
ℓn(θ)) when A= {1n/n}. The interpolation interpretation
is also common in DRO [5]. To find a good balance, our
goal is to select A such that, for all θ ∈ Θ,

IP

[
sup
µ∈A

n∑
i=1

µiℓi(θ) ≥ IE[ℓ(θ, ξ)]

]
≥ 1− δ, (3)

We refer to this problem as the calibration problem. It
robustifies against disparities between the empirical and true
distributions. The parameter δ then serves as an intuitive,
user-determined parameter that controls the conservativeness
of the method. However, as illustrated by experiments, our
method is relatively insensitive to the value of δ.

To find an ambiguity set A satisfying (3) we need to
somehow parametrize it. A well known class of permu-
tation invariant ambiguity sets uses ϕ-divergences [5]. Let
ϕ : IR+ → IR be lower semicontinuous, convex and ϕ(1) =
0. Also, let1 Iϕ(µ, ν) :=

∑n
i=1 νiϕ(µi/νi) for all µ, ν ∈ ∆n.

1We take the lower semicontinuous envelope of the terms inside the sum
[18, Def. 6] to handle cases where νi equals zero.

A (centered) ϕ-divergence ambiguity set is then

Aα :=

{
µ ∈ ∆n : Iϕ

(
µ,
1n

n

)
=

n∑
i=1

ϕ(nµi)

n
≤ α

}
. (4)

In this work we consider two examples: total variation
(TV) for which ϕ(t) = |t − 1| and Kullback Leibler (KL)
divergence for which ϕ(t) = t log t − t + 1. However, our
method works for any divergence. See [5] for more examples.

To calibrate Aα the radius α ∈ IR should then be the
smallest value such that (3) still holds. We also provide an
alternative parametrization, related to a well known bound
by Anderson [19] and the conditional value-at-risk.

It is important to note that the constraint in (3) is less strin-
gent compared to DRO, which guarantees that the supremum
in (3) acts as a high-confidence upper bound, uniformly over
θ2. After all, we never require that the true distribution is
contained within A (as is the case in [20]). The gap between
the point-wise (3) and the uniform equivalent is examined
for ϕ-divergences in [12], [13] in the asymptotic regime.

We numerically approximate the calibration problem with-
out samples from ξ. So the parameters of the set A only
need to be computed once and can be tabulated afterwards.
This contrasts the complex derivations and the resulting
conservative constants associated with analytical approaches
used to compute the radius of an ambiguity set in DRO [4],
[5], [9]. We show experimentally how our calibration of A

according to (3) greatly improves generalization.

III. STATISTICAL FRAMEWORK

The analysis of this section investigates upper bounds for
the mean of a scalar random variable (rv) Z : Ω → IR,
defined on some probability space (Ω,F , IP). These findings
remain applicable to the previous section, when considering
Z = ℓ(θ, ξ) for fixed θ. Let F (z) = IP[Z ≤ z] denote
the cumulative distribution function (cdf) of Z. We assume
access to iid samples Z1, . . . , Zn−1 and an upper bound
denoted as Zn = esssup[Z] for notational convenience,
which satisfies F (Zn) = 1.

We then introduce the coverages

Wi = F (Z(i))− F (Z(i−1)), ∀i ∈ [n], (5)

where −∞ = Z(0) ≤ Z(1) ≤ Z(2) ≤ · · · ≤ Z(n) denotes
an increasing permutation of Z1, . . . , Zn called the order
statistics of Z and with Z(0) added for convenience.

The coverages will be used to bound the expectation. To
do so, we require the following cone in IRn:

Mn =

{
x :

k∑
i=1

xi ≥ 0,∀k ∈ [n− 1],

n∑
i=1

xi = 0

}
. (6)

In Lem. A.1 we prove that it corresponds to the polar of the
monotone cone IRn

↑ . It has a history in isotonic regression

2The mean bound will be uniform when

IP

[
sup
µ∈A

n∑
i=1

µiℓi(θ) ≥ IE[ℓ(θ, ξ)], ∀θ ∈ Θ

]
≥ 1− δ.



[21], majorization [22] and also describes a stochastic order
between discrete distributions [15, p. 4] as we illustrate later.

The expectation bound is then as follows:

Proposition III.1. Suppose that A ⊆ ∆n is permutation
invariant3. Take W as in (5). Then, for any rv Z : Ω → IR
with iid samples {Zi}n−1

i=1 and Zn = esssup[Z] < +∞,

IP

[
sup
µ∈A

n∑
i=1

µiZi ≥ IE[Z]

]
≥ IP[W ∈ A+Mn].

Proof. We split up the expectation4 as follows:

IE[Z] =

∫ Z(n)

−∞
zdF (z) =

n∑
i=1

∫ Z(i)

Z(i−1)

zdF (z), (7)

with Z(1) ≤ · · · ≤ Z(n−1) the order statistics and Z(n) =
esssup[Z]. The first equality follows from IP[Z ≤ Z(n)] =
1 and the second from [23, Thm. 16.9]. For each term∫ Z(i)

Z(i−1)
zdF (z) ≤ Z(i)

∫ Z(i)

Z(i−1)
dF (z) = Z(i)(F (Z(i)) −

F (Z(i−1))). Hence IE[Z] ≤
∑n

i=1 Z(i)Wi.
Condition on W ∈ A+Mn. Then,

IE[Z] ≤
n∑

i=1

WiZ(i) ≤ sup
µ∈A+Mn

∑n
i=1 µiZ(i).

The expression on the right can be simplified by noting that

supµ∈A+Mn

∑n
i=1µiZ(i) = supµ∈A

∑n
i=1 µiZ(i),

where we use (Z(1), . . . , Z(n)) ∈ IRn
↑ , the definition of the

polar cone and Lem. A.1, which implies
∑n

i=1 siZ(i) ≤ 0
for any s ∈ Mn with equality for s = 0.

Finally, let π ∈ Πn be the permutation such that Zπ(i) =
Z(i) for i ∈ [n] and let π−1 denote its inverse (which exists,
since permutations are bijections). Then

sup
µ∈A

∑n
i=1 µiZi = sup

µ∈A

∑n
i=1 µπ−1(i)Z(i)

= sup
πµ∈A

∑n
i=1 µiZ(i)

(i)
= sup

µ∈A

∑n
i=1 µiZ(i),

where (i) uses permutation invariance. Hence, we showed
IP[supµ∈A

∑n
i=1 µiZ(i) ≥ IE[Z]] ≥ IP[W ∈ A+Mn].

From Prop. III.1, it is clear that the distribution of W is
important. Interestingly, when F is continuous, then W is
always uniformly distributed over ∆n [24, Thm. 8.7.4]. For
general distributions however, we can still establish a type
of stochastic order between the two distributions using Mn:

Lemma III.2. Take W = (W1, . . . ,Wn) ∈ ∆n as in (5).
Then, for any (Lebesgue measurable) A⊆ ∆n,

IP[W ∈ A+Mn] ≥ IP[ν ∈ A+Mn],

with ν ∼= U[∆n] uniformly distributed over ∆n.
For continuous cdf we have IP[W ∈ A] = IP[ν ∈ A].

Proof. For continuous cdf we refer to [24, Thm. 8.7.4]. For
discontinuous cdf we first introduce a construction of the

3Specifically, for any π ∈ Πn and µ ∈ A, πµ = (µπ(1), . . . , µπ(n)) ∈
A. Moreover we assume sets A are Lebesgue measurable.

4For details on the integral notation see [23, Eq. 17.22].

Z(1) Z(2) Z(3)

0.5

1
F

µ1

µ1 + µ2

W1

W1 +W2

Fig. 1: Lower bounds of the cumulative distribution for non-
negative Z with cdf F . The tightest lower bound supported
on the samples is depicted in blue, while a feasible lower
bound is depicted in red. The green area is the expectation.

joint distribution of random vectors W ′ and ν′, such that
W ′ ∼= W and ν′ ∼= ν (i.e., the marginals are as specified
in the lemma). For this construction, we show that ν′ ∈
A+Mn implies W ′ ∈ A+Mn almost surely. So IP[W ′ ∈
A+Mn] ≥ IP[ν′ ∈ A+Mn]. From W ′ ∼= W and ν′ ∼= ν
we then get the required result.

The construction starts by taking Ui
∼= U[0, 1] as uniform

random variables, for i ∈ [n − 1], with U(1) ≤ U(2) ≤
· · · ≤ U(n−1) ≤ U(n) = 1 the uniform order statistics. Let∑k

i=1 ν
′
i = U(k) for k ∈ [n]. Then, by [14, §6.4], ν′ ∼=

U[∆n] or ν′ ∼= ν. Meanwhile, the quantile transform [25,
Lem. 1.2.4(i)] states that Z ′

i = F−1(Ui) has cdf F , where
F−1 is the quantile function of Z. Since F (and therefore
F−1) is nondecreasing, we can apply [25, Lem. 1.2.1] to
claim that F−1(U(i)) is distributed as the i-th order statistic
Z(i). So with Z ′

(i) = F−1(U(i)) we take W ′ analogously to
(5). From Z ′

(i)
∼= Z(i) we then have W ′ ∼= W .

Both marginals are related as, for k ∈ [n],∑k
i=1 W

′
i = F (Z ′

(k))

= F (F−1(U(k))) = F (F−1(
∑k

i=1 ν
′
i)),

(8)

where the first equality follows by summing (5) for i ∈ [k]
with W ′

i , Z ′
(i) in place of Wi, Zi, the second by construction

of Z ′
(k) and the third by construction of ν′. Note that, for

general distributions, we have F (F−1(p)) ≥ p for all p ∈
[0, 1] [26, Ex. 3.2], with strict inequality iff p ∈ (0, 1) is not
in the range of F . Applying this to (8) gives

k∑
i=1

ν′i ≤
k∑

i=1

W ′
i , ∀k ∈ [n− 1] and

n∑
i=1

ν′i =

n∑
i=1

W ′
i . (9)

Observe how (9) corresponds to a conic inequality under
Mn. The inequalities are strict iff

∑k
i=1 ν

′
i is not in the range

of F (i.e., it lies in a discontinuous jump of F ). In that sense,
(9) models the gap between U[∆n] and the coverages W .

To complete the proof, assume that ν′ ∈ A+ Mn. By
definition of the Minkowski sum, this is equivalent to there
being some µ ∈ A such that ν − µ ∈ Mn or,

∑k
i=1 µi ≤∑k

i=1 ν
′
i for k ∈ [n − 1] and

∑n
i=1 µi =

∑n
i=1 ν

′
i (cf. (6)).

Thus, from (9), we have
∑k

i=1 µi ≤
∑k

i=1 W
′
i for k ∈ [n−1]

and
∑n

i=1 µi =
∑n

i=1 W
′
i . By definition of A+Mn and (6)

this shows that W ′ ∈ A+Mn. So, by our arguments at the
start of the proof, we showed the required result.



The result in Lem. III.2 can be interpreted in terms of
lower bounding the cdf of Z. To illustrate this, we introduce
the weighted empirical cdf

Fn
µ (x) =

∑n
i=1 µi1[Z(i),+∞), (10)

where µ ∈ ∆n and 1[Z(i),+∞)(z) = 1 when z ≥ Z(i) and
zero otherwise. Note that W ∈ {µ}+Mn holds iff

Fn
µ (Z(i)) =

∑k
i=1 µi ≤

∑k
i=1 Wi = F (Z(i)), ∀k ∈ [n],

with
∑n

i=1 µi =
∑n

i=1 Wi = 1. This relationship relates to
(9) and (6) and implies that Fn

µ should lower bound the cdf F
everywhere, as depicted in Fig. 1. This inequality between
cdfs is the usual stochastic order [15, §1.A.1]. The event
W ∈ A+ Mn is then equivalent to the existence of a cdf
Fn
µ with weights µ ∈ A that lower bounds the true cdf. In

terms of this interpretation, Prop. III.1 follows from the fact
that a lower bound on the cdf implies an upper bound on the
expectation (cf. [19], [27, Eq. 1.A.5]).

By combining Prop. III.1 and Lem. III.2 we directly prove
the main contribution of this paper:

Theorem III.3. Assuming the setting of Prop. III.1 and
taking ν ∼= U[∆n], then

IP

[
sup
µ∈A

n∑
i=1

µiZi ≥ IE[Z]

]
≥ IP[ν ∈ A+Mn].

Note that, the important requirement of A in Thm. III.3 is
that it is permutation invariant and a subset of the probability
simplex. The resulting support functions are related to law-
invariant, coherent risk measures in literature [28, §6.3.5],
[6], where the law in our case is a permutation of the random
vector. The ϕ-based ambiguity sets considered below are the
most frequently studied case of such risk measures.

IV. CALIBRATION PROBLEM

This section considers calibrating ambiguity sets A such
that (3) holds. To do so, we first consider the ϕ-divergence
parametrization in (4) and try to upper bound the smallest
α such that (3) still holds for A = Aα, which we denote
as α⋆. Later we also provide an alternative parametrization
similar to the conditional value-at-risk (cf. Cor. IV.3 and the
discussion below).

We can use the previous result to simplify (3). Note that,
for a fixed θ, ℓ(θ, ξ) is simply a scalar random variable,
which we will denote as Z. So we consider

inf

{
α : IP

[
sup
µ∈Aα

n∑
i=1

µiZi ≥ IE[Z]

]
≥ 1− δ, ∀Z

}
, (11)

where we inherit the notation from the previous section. It’s
solution will upper bound α⋆. Note that all previous results
were distribution-free. They hold for all (bounded) random
variables Z, invariant of their underlying distribution. As
such, by using Thm. III.3, the constraint in (11) can be
conservatively approximated by

IP [ν ∈ Aα +Mn] ≥ 1− δ, with ν ∼= U[∆n]. (12)

We use this to approximate the calibration problem:

Proposition IV.1. Let Iϕ denote the ϕ-divergence, with Aα

the associated ambiguity set as in (4). Let α⋆ denote the
smallest α such that (3) holds for Aα. Then

α⋆ ≤ inf
{
α ∈ IR: IP

[
I⋄ϕ(ν) ≤ α

]
≥ 1− δ

}
, (13)

with ν ∼= U[∆n] and, for ϕ∗(s) = supt≥0 {ts− ϕ(t)},

I⋄ϕ(ν) := sup
λ∈IRn

↑

{∑n
i=1 νiλi − 1

nϕ
∗(λi)

}
. (14)

Proof. Note that ν ∈ Aα +Mn holds iff there is some µ ∈
Aα such that ν−µ ∈ Mn. Equivalently, there should exist a
µ ∈ ∆n, which satisfies Iϕ(µ,1n/n) ≤ α and ν−µ ∈ Mn.
We already showed that the smallest α satisfying (12) upper
bounds α⋆. The left-hand side of (12) equals

IP

[
inf

µ∈∆n

{∑n
i=1

1
nϕ(nµi) : ν − µ ∈ Mn

}
≤ α

]
.

Since ν ∼= U[∆n], the constraint ν−µ ∈ Mn, together with∑n
i=1 νi = 1 implies (cf. (6))

∑n
i=1 µi = 1. So the infimum

can be taken over IRn
+. We place the constraint inside of the

cost by noting that the indicator function of a polar cone
equals the support function of its dual [20, Ex. 2.26]. So we
can rewrite (12) as follows:

inf
µ∈IRn

+

sup
λ∈IRn

↑

{∑n
i=1

1
nϕ(nµi) + ⟨λ, ν − µ⟩

}
,

≤ sup
λ∈IRn

↑

∑n
i=1 infti≥0 {ϕ(ti)− tiλi} /n+ λiνi,

The inequality follows by weak duality, the substitution ti =
nµi and separability. The infima inside the sum are −ϕ∗(λi),
completing the proof by the argument preceding (12).

Observe that the right-hand side of (13) is essentially
the 1 − δ quantile of the scalar random variable I⋄ϕ(ν).
Unfortunately its distribution is unknown. However, we can
sample from it. To do so note that ν ∼= U[∆n] is Dirichlet
distributed with parameters (1, . . . , 1) ∈ IRn [14, §6.4].
So we can sample it by either sampling from a Dirichlet
distribution, or by sampling n − 1 uniform order statistics
U(1) ≤ U(2) ≤ · · · ≤ U(n−1) and using (U(1), U(2) −
U(1), . . . , 1 − U(n−1)) as a sample from U[∆n] (cf. [14,
§6.4]). We can then evaluate I⋄ϕ(ν) by solving (14), which
is a special case of the optimization problem in [29]. That
paper presents the pool-adjacent violator (PAV) algorithm. It
solves (14) with complexity O(n).

The fact that we can sample I⋄ϕ(ν) efficiently implies that
(11) can be estimated through data-driven means.

Theorem IV.2. Let α1, . . . , αm denote m iid samples from
I⋄ϕ(ν) with ν ∼= U[∆n] and α(1) ≤ · · · ≤ α(m) the associated
order statistics. Then, for any δ ∈ [0, 1] and k ∈ [m],

IP
[
α⋆ ≤ α(k)

]
≥ 1− β (15)

with α⋆ as in Prop. IV.1, and β = I1−δ(k,m − k + 1) the
regularized incomplete beta function (i.e., the cdf of a beta
distribution) at level 1− δ.

Proof. The result follows directly from Prop. IV.1 and a one-
sided data-driven bound of a quantile stated in [30, §G.2.2]



applied to (13). Alternatively (13) can be interpreted as a
scenario program, for which [31, Thm. 3.7] holds.

In practice, the user would select m (the number of
samples from I⋄ϕ(ν) computed using PAV). A larger value
gives a tighter upper bound for α⋆ at the cost of additional
computation time. The confidence level is then determined
by fixing some β ∈ [0, 1] and then finding the smallest k
such that I1−δ(k,m − k + 1) ≤ β. Such a k is determined
with a scalar root finder5.

We can establish a connection with other results in litera-
ture, through the following corollary of Thm. III.3:

Corollary IV.3. Let µ ∈ IRn
↑ ∩∆n. Then, for uniform order

statistics U(1) ≤ U(2) ≤ · · · ≤ U(n−1) ≤ U(n) = 1 and
Z(1) ≤ Z(2) ≤ . . . Z(n−1) and Z(n) = esssup[Z] the order
statistics of rv Z : Ω → IR,

IP

[
n∑

i=1

µiZ(i) ≥ IE[Z]

]
≥ IP

[
k∑

i=1

µi ≤ U(k), ∀k ∈ [n]

]
.

(16)

Proof. Using [6] gives
∑n

i=1 µiZ(i) = supµ∈A

∑n
i=1 µiZi,

with A= coΠnµ the convex hull of all permutations of µ.
Invoking Thm. III.3 then gives IP

[∑n
i=1 µiZ(i) ≥ IE[Z]

]
≥

IP[ν ∈ A+ Mn], with ν distributed according to U[∆n].
Assume that

∑k
i=1 µi ≤ U(k) for all k ∈ [n−1]. Noting that∑k

i=1 νi
∼= U(k) by [14, §6.4] and using (6), this implies

that ν − µ ∈ Mn and, since µ ∈ A, ν ∈ A+ Mn. So
IP[ν ∈ A+Mn] ≥ IP[

∑k
i=1 µi ≤ U(k), ∀k ∈ [n]].

Evaluating the right-hand side of (16) was studied in the
context of lower bounding the cdf of a random variable (cf.
[32] for an efficient and numerically stable algorithm).

The expression
∑n

i=1 µiZ(i) is called a distortion risk [6],
which is a convex function of (Z1, . . . , Zn) iff µ ∈ IRn

↑ .
Since the uniform order statistics form a uniform distribution
over a convex set (i.e., IRn

↑ ∩ [0, 1]n), their density is quasi-
concave [28, Ex. 4.10]. Hence we can leverage [28, Ex. 4.17,
Cor. 4.42] to claim that the calibration problem

inf
µ∈IRn

↑∩∆n

{
φ(µ) : IP

[
k∑

i=1

µi ≤ U(k), ∀k ∈ [n]

]
≥ 1− δ

}
is a convex problem, whenever φ is convex. We will study the
choice of φ, which should measure the size of A, in future
work as well as the tractability of the calibration problem.
For now, we instead consider a specific parametrization:

µ(γ) :=
(
0, . . . , 0, ⌈(n−1)γ⌉

n−1 − γ, 1
n−1 , . . . ,

1
n−1 , γ

)
, (17)

with γ ≥ 1/(n− 1), such that µ ∈ ∆n ∩ IRn
↑ holds. Then

n∑
i=1

µ
(γ)
i Z(i) =

(
d

n−1 − γ
)
Z(d)+

n−1∑
i=d+1

Z(i)

n−1 +γZ(n), (18)

with d = ⌈(n − 1)γ⌉. The final expression is a well-known
bound for the expectation of Z due to Anderson [19]. The

5We use brentq as implemented in scipy 1.10.0

re-interpretation in terms of a distortion risk is novel to the
authors’ knowledge. In §A-B we also show that the final
expression is an affine transformation of the well-known
conditional value-at-risk. Hence we denote it as CV@R in
the experiments. The value of γ in the context of [19] is
usually determined using an asymptotic bound (cf. [24, Thm.
11.6.2]). We find an accurate value by solving:

inf
γ≥1/(n−1)

{
γ : IP

[
k∑

i=1

µ
(γ)
i ≤ U(k), ∀k ∈ [n]

]
≥ 1− δ

}
,

(19)
for a user-specified δ ∈ [0, 1] with a scalar root finder5.
The probability is evaluated numerically using [32]. The
calibration problem (19) in [19] is interpreted as moving
the empirical cdf down as little as possible, while still
guaranteeing that it lower bounds the true cdf with high
probability. It is also comparable to producing the tightest
mean bound as in the calibration problem (11).

V. CASE STUDIES

To illustrate the validity and potential of our method we
provide several simple case studies. These are convex for
maximum interpretability, as in the non-convex case a worse
generalization performance might be caused by local optima.
Nonetheless our method is also applicable in non-convex
settings, where stochastic gradient descent methods can be
used (cf. [33] for simple distortions and [18] for divergences).
In the convex case we use duality to reformulate the proxy
cost in (2). See [6], [34] for details.

We present problems of the form (1) and employ ordered
risk minimization (2) or using (18), which we refer to as
CV@R. For divergences we use either the total variation
(TV) or Kullback-Leibler (KL) and the radius is calibrated
using Thm. IV.2 (with β = 0.005 and m = 10 000). The
value of γ in (18) is calibrated using (19).

A. Newsvendor

We begin with a toy problem, illustrating the behavior
of our method in low-sample settings. Let ξ : Ω → IR be
Beta distributed with α = 0.1, β = 0.2, scaled by a factor
D := 100. Consider a newsvendor problem [28, §1.2.1]:

minimize
θ∈IR

IE [cθ + b[ξ − θ]+ + h[θ − ξ]+
ℓ(θ,ξ)

] ,

with b = 14, h = 2 amd c = 1. For samples {ξi}n−1
i=1 with

n = 20 let ℓi(θ) = ℓ(θ, ξi) for i ∈ [n−1], ℓn(θ) = max{(c−
b)θ + bD, (c + h)θ} a robust upper bound. We replace the
expectation by a data-driven proxy as described at the start
of the section. For the sample average approach (SAA) we
take

∑n−1
i=1 ℓi(θ)/(n− 1).

The calibration problems are solved for δ = 0.2. Their
performance is compared over 200 sampled data sets in
Fig. 2. The left plot shows the actual expected cost for the
minimizers. The blue dashed line is the true optimum of
§V-A. See [28, §1.2.1] for details on how to compute these
values. Note how the SAA performs decently in the median,
but has significantly more variance. The outliers above 240
were omitted, the largest of which was 428.2. Moreover,
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Fig. 2: Box plots showing newsvendor expected cost (left);
and difference between the predicted cost and expected cost
(right). The colored area is the inter-quartile range (IQR),
while the whiskers show the range of samples truncated
to 1.5 times the IQR. Outliers outside of this range are
depicted as diamonds. The red dashed lines depict the robust
performance. The blue dashed line is the optimal cost.
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Fig. 3: Regression using n = 50 samples with d = 20 and
λ = 0.2 for different risk measures.

the right plot depicts the difference between the optimum
value of the proxy cost, and the true cost. The SAA often
underestimates its true cost, while our methods overestimate
it. The dashed red line depicts the behavior when taking
A = ∆n in (2) (cf. [28, Eq. 1.9]). As we almost never
perform worse than this robust method, this shows that our
methods learn from data without over-fitting on the sample.

In large sample cases, we can use the largest sample as an
approximation of ℓn(θ). This heuristic is similar to the one
used in the scenario approach, the consequences of which
have been studied in detail (cf. [35]). In combination with
some regularization, this significantly boosts the performance
of our method, as shown in the next examples.

B. Regression

Let Tk : IR → IR denote the Chebychev polynomials of
the first kind for k ≥ 0 and fd(x) = (Tk(x))

d
k=0 ∈ IRd+1 a

feature vector. Consider a lasso regression problem:

minimize
θ∈IRd+1

IE
[
(⟨fd(X), θ⟩ − Y )2

]
+ λ∥θ∥1. (20)

Assuming access to samples {(Xi, Yi)}ni=1, we replace the
expectation with the proxy costs described above, where
ℓi(θ) = (⟨fd(Xi), θ⟩ − Yi)

2 for i ∈ [n]. So we approximate
the robust term with the largest sample.

For the parameters θ⋆ = (0, 0, 0.2, 0.5, 1.0) the data is
generated as Yi = ⟨f4(Xi), θ⋆⟩ + Ei with Xi

∼= U(−1, 1)
and Ei

∼= U(−0.2, 0.2) for i ∈ [n]. We over-parametrize the
problem, taking d = 20, to illustrate the regularizing effect
of our method. A fit is plotted for λ = 0.2 and n = 50
in Fig. 3. Note how the risk measures all perform similarly,
while SAA has a worse fit.

SAA TV CV@R KL
ε d λ

0.05 10 0.001 0.019 (03) 0.018 (02) 0.018 (02) 0.018 (02)
0.01 0.018 (05) 0.017 (04) 0.017 (04) 0.017 (04)
0.05 0.023 (05) 0.017 (05) 0.017 (05) 0.018 (05)

20 0.001 0.023 (03) 0.023 (04) 0.023 (04) 0.023 (03)
0.01 0.019 (05) 0.019 (04) 0.019 (04) 0.019 (04)
0.05 0.024 (05) 0.018 (05) 0.018 (05) 0.018 (05)

0.2 10 0.001 0.019 (03) 0.019 (02) 0.019 (02) 0.018 (02)
0.01 0.018 (05) 0.017 (04) 0.017 (04) 0.017 (04)
0.05 0.023 (05) 0.018 (05) 0.018 (05) 0.018 (05)

20 0.001 0.023 (03) 0.023 (03) 0.023 (03) 0.023 (03)
0.01 0.019 (05) 0.019 (04) 0.019 (04) 0.019 (04)
0.05 0.024 (05) 0.018 (04) 0.018 (04) 0.018 (04)

TABLE I: Regression generalization performance for various
tuning parameters. Values are reported as mean (standard
deviation · 103) computed over 10 training sets. The same 10
sets were used for every selection of parameters and method.
Note that ε does not affect SAA.

The methods are evaluated quantitatively by sampling
an additional 100 000 data points and computing a sample
approximation of the cost of (20). The resulting performance
is compared for several tunings in Tbl. I, where any pa-
rameters not mentioned are kept as specified above. It is
of note that our methods are significantly less sensitive to
tuning parameters compared to the SAA. In fact, our methods
outperform SAA for all tunings investigated.

C. Support Vector Machines

Consider a classification problem with X ∼= N (0, I2)
normally distributed and Y = 1 if X1X2 ≥ 0 and Y = −1
otherwise. A Support Vector Machine (SVM) solves:

minimize
(f,b)∈H×IR

1

2
∥f∥2H + λIE [1− Y (f(X)− b)]+

with λ > 0 and H some reproducing kernel Hilbert Space
(RKHS) [36, Def. 2.9]. The resulting classifier is then given
by sign(f(X) − b). Henceforth H is the RKHS associated
with the radial basis function kernel [36, §2.3] with some
standard deviation σ. Solving the primal problem is difficult
for two reasons: (i) the true expectation is often unknown;
(ii) optimizing over the infinite dimensional H is intractable
in general. We resolve (i) by replacing the expectation with
a proxy-cost as described above and (ii) through the usual
duality trick [36, §7.4]. Details are deferred to §B.

The proxy cost of three of the risks above – SAA, TV
and CV@R – is a maximum of linear functions and the dual
problem is a QP. The sample average – C-SVC in [36, §7.5]
– is the usual choice. We illustrate the superior performance
our calibrated risks.

In Fig. 4, the three classifiers produced by the three proxy
costs above are depicted. Note how both TV and CV@R
perform similarly and both visibly better than the usual
SAA. Quantitative performance is compared through the
fraction of incorrectly labeled samples in a test set of 105

samples, which we refer to as the misclassification rate. The
performance is compared for several tunings in Tbl. II, where
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n. The center line depicts the mean, while the intervals
depicts the empirical 0.2-confidence interval.

any parameters not mentioned are kept as specified above.
It is of note that our methods are significantly less sensitive
to tuning parameters compared to the SAA. In fact, even for
the tunings where SAA performs best, our methods perform
better for the same tuning, for reasonable choices of δ.

We can also examine the effect of varying the sample
count n. For each such value we train the classifiers, again
using the parameters used to produce Fig. 4, for 30 training
sets. The resulting misclassification rates are depicted in Fig.
5. Again note that CV@R and TV both outperform SAA.
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APPENDIX A
PRELIMINARIES

A. Monotone Cone

Let IRn
↑ := {x ∈ IRn : x1 ≤ x2 ≤ · · · ≤ xn} denote the

monotone cone. This cone and its polar have a history in
isotonic regression [21] and majorization [22].

We show that Mn and IRn
↑ are related.

Lemma A.1. Let IRn
↑ be the monotone cone and Mn as in

(6). Then Mn is the polar of IRn
↑ .

Proof. The monotone cone is polyhedral with IRn
↑ =

{x : Mx ≤ 0} for M ∈ IRn−1×n with Mx = (x1−x2, x2−
x3, . . . , xn−1 − xn). The definition of the polar cone is thus

(IRn
↑ )

◦ = {y ∈ IRn : ⟨x, y⟩ ≤ 0,∀x s.t. Mx ≤ 0} .

By Farkas’ lemma [37, p. 263] we have either Mx ≤ 0 and
⟨x, y⟩ > 0 or M⊤λ = y and λ ≥ 0. So

(IRn
↑ )

◦ = {y ∈ IRn : y = M⊤λ, λ ≥ 0} .

Note that ⟨λ,Mx⟩ =
∑n−1

i=1 λi(xi−xi+1) =
∑n

j=1 xj(λj −
λj−1) = ⟨M⊤λ, x⟩, where λ0 = λn = 0. Thus y ∈ (IRn

↑ )
◦

iff y = M⊤λ for λ ≥ 0. Here y = M⊤λ holds iff

yj = λj − λj−1, ∀j ∈ [n].

⇔
∑k

j=1 yj =
∑k

j=1 λj − λj−1 = λk, ∀k ∈ [n].

Since λ ≥ 0 we have
∑k

j=1 yj = λk ≥ 0 for k ∈ [n−1] and∑n
j=1 yj = λn = 0. These are the constraints in (6).

B. Details on CV@R

We first characterize the conditional value-at-risk in terms
of order statistics as a distortion risk below.

Lemma A.2. Consider CV@Rγ
n : IR

n → IR as

CV@Rγ
n[X] = inf

τ

{
τ +

1

(1− γ)n

n∑
i=1

[Xi − τ ]+

}
, (21)

for γ ∈ [0, 1]. Then

(1− γ)CV@Rγ
n[X] =

(
d

n
− γ

)
X(d) +

n∑
i=d+1

X(i)

n
,

with d := ⌈nγ⌉. So CV@Rγ
n is a distortion risk.

Proof. Consider the minimizers in the definition of CV@R:

argmin
τ

{
τ +

1

(1− γ)n

n∑
i=1

[Xi − τ ]+

}
.

By [38, Thm. 1], this set is a closed bounded interval with
the left endpoint being

V@Rγ
n[X] := inf

x
{x : Fn(x) ≥ γ}

= inf
x

{
x :

n∑
i=1

1(−∞,x](Xi) ≥ γn

}
= X(d),

with Fn the empirical cdf, the definition of which we plugged
in for the second equality. For the third equality note that the
left-hand side counts the number of values Xi smaller than
or equal to x. Assume

X(d−k−1) < X(d−k) = X(d−k+1) = · · · = X(d), (22)

for k ≥ 0. Then clearly there are at least d = ⌈nγ⌉ > nγ
values smaller than or equal to X(d−k). For any z < X(d−k)

there are at most d − k − 1 samples values than or equal.
Hence V@Rγ

n[X] = X(d−k) = X(d).
Plugging into the cost of (21) gives

X(d) +
1

(1− γ)n

n∑
i=1

[Xi −X(d)]+

= X(d) +
1

(1− γ)n

n∑
i=d+1

(X(i) −X(d)), (23)

where we used X(i) ≤ X(d) for i ≤ d. The stated result
follows from some basic algebraic manipulation. Finally note
that d/n− γ = (⌈nγ⌉ − nγ)/n ≤ 1/n. So the monotonicity
constraint on µ in Cor. IV.3 is also satisfied.

We can then rewrite (18) as

CV@R
γ

n[X] := (1− γ)CV@Rγ
n−1[(X(i))

n−1
i=1 ] + γX(n).
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The associated distortion risk has weights µ(γ) as in (17).
So we need γ ≥ 1/(n − 1) for µ ∈ ∆n ∩ IRn

↑ to hold.
The advantage of CV@R as a well-calibrated risk measure
over CV@R is that additional weight is placed on the largest
sample. This often makes the mean bound associated with
CV@R less conservative compared to CV@R for the same
confidence level.

APPENDIX B
SUPPORT VECTOR MACHINES

Let H be some reproducing kernel Hilbert Space (RKHS)
[36, Def. 2.9] with reproducing kernel κ : IRd × IRd → IR
for some d ∈ IN. Here ⟨f, g⟩H denotes the inner product
associated with H and ∥f∥2H = ⟨f, f⟩ for f, g ∈ H. The
primal problem for learning a support vector machine is
usually given in terms of the hinge loss:

minimize
(f,b)∈H×IR

1

2
∥f∥2H + λIE [1− Y (f(X)− b)]+ .

with λ > 0, X : Ω → IRd and Y : Ω → {−1, 1}. Using
the reproducing property of κ (cf. [36, Def. 2.9.1]) we have
f(X) = ⟨κ(X, ·), f⟩. Given a sample {(Xi, Yi)}ni=1, let
Ŷ = diag(Y1, . . . , Yn) ∈ IRn×n and K̂ : H → IRn a linear
operator such that (K̂f)i = ⟨κ(Xi, ·), f⟩. We do not include
a data-point modeling the esssup of the random loss. Instead
the largest sample will act as a replacement.

We then replace the expectation with a proxy cost, as in
(2). The robustified, data-driven problem then becomes

minimize
(f,b)∈H×IR

1

2
∥f∥2H + λρ

[
1n − Ŷ

(
K̂f − b1n

)]
+
, (24)

where ρ(x) = supµ∈A ⟨µ, x⟩ is a support function.

Proposition B.1. The value of (24) equals

maximize
(α,β)∈IRn

+×IRn
+

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjYiYjκ(Xi, Xj)

subj. to

n∑
i=1

αiYi = 0,
α+ β

λ
∈ A.

(25)
Moreover, let α⋆, β⋆ denote the optimizers and J := {j ∈
[n] : αj > 0, βj > 0}. Then

f⋆ =

n∑
i=1

α⋆
i Yiκ(Xi, ·)

b⋆ =

n∑
i=1

α⋆
i Yiκ(Xi, Xj)− Yj , ∀j ∈ J when J ≠ ∅

are the optimizers6 of (24) when J ≠ ∅. When J = ∅, then
b⋆ can be determined by solving (24), keeping f = f⋆ fixed.

Proof. We write (24) with slack variables first

minimize
(f,b,s)∈H×IR×IRn

1

2
∥f∥2H + λρ(s)

subj. to Ŷ (K̂f − 1nb)− 1n + s ≥ 0

s ≥ 0.

6In practice, we pick b⋆ as the average of the values over all j ∈ J .

The next step is to apply Lagrangian duality over Hilbert
spaces as presented in [39, Prop. 19.18]. We first bring the
problem in the standard form:

minimize
x∈G

h(x) + g(Lx),

with G :=H× IR× IRn a Hilbert space, elements of which
we partition as x = (f, b, s). Let L : G → IR2n denote the
linear operator defined as

Lx =
(
Ŷ K̂f − Ŷ 1nb+ s, s

)
. (26)

Its adjoint – defined implicitly as L∗ : IR2n → G such that
⟨Lx, v⟩ = ⟨x, L∗v⟩ – is given as

L∗v = (K̂∗Ŷ α,−1T
n Ŷ α, α+ β),

for v = (α, β) and K̂∗Ŷ α =
∑n

i=1 αiYiκ(Xi, ·). The
functions h : G → IR and g : IRn → IR are given as

h(x) := ∥f∥2H/2 + λρ(s)

g(Lx) := ιIR2n
+
(Lx− δ),

with δ = (1n, 0) ∈ IR2n.
First we prove that strong duality holds, a sufficient condi-

tion for which is int(dom g)∩Ldomh (cf. [39, Thm. 15.23,
Prop. 6.19(vii)]). Note that dom g = IR2n

+ + δ and domh =
H × IR × IRn, keeping in mind that dom ρ = IRn since
ρ is coherent. Note that 0 ∈ H and 0 ∈ IR and that
L(0, 0, s) = (s, s). So D = {(s, s) : s ∈ IRn} ⊂ Ldomh.
Hence int(dom g) ∩ Ldomh ⊃ (int(IR2n

+ ) + δ) ∩ D ̸= ∅.
Consider the convex conjugates h∗ and g∗. Then

h∗(x) = ∥f∥2H/2 + ι{0}(b) + λρ∗(s/λ),

where we used the definition of the convex conjugate,
the partitioning x = (f, b, s) ∈ G, [39, Prop. 13.16,
Prop. 13.20(i)] and seperability of h. Since ρ is a support
function we have ρ∗ = ιA. Also, again letting v = (α, β),

g∗(v) = ιIR2n
−
(v) + 1⊤

nα

by [39, Prop. 13.20(ii)]. The dual problem, the value of
which equals minus the primal by strong duality, is then
given as [39, Prop. 19.18]:

minimize
(α,β)∈IRn×IRn

1

2
∥K̂∗Ŷ α∥2H − 1⊤

nα

subj. to 1⊤
n Ŷ α = 0, (α+ β)/λ ∈ A, (α, β) ≥ 0

where we already integrated the indicator functions in the
constraints. After adding the minus sign, this is equivalent
to the problem in the theorem.

We next compute the subgradients. Note that,

∂h∗(x) = {f} × (IR ∩ {b}⊥)×NA(s/λ)/λ, (27)

with NC denotes the normal cone for set C [39, Def. 6.37]
and C⊥ = {u : ⟨x, u⟩ = 0,∀x ∈ C} denotes the orthogonal
complement of C. The first term follows from differentiabil-
ity. The second term follows from [39, Ex. 16.12, Ex. 6.39]
which states ∂ι{0}(b) = N{0}(b) = IRn ∩ {b}⊥. The



third follows from applying [39, Ex. 16.12, Cor. 16.42] to
ιA ◦ λ−1In. Similarly

∂g∗(v) = IRn
+ ∩ {v}⊥ + δ

= {u+ δ : u ≥ 0, u⊤v = 0}, (28)

where we apply [39, Cor. 16.38], differentiability of the
second term and again [39, Ex. 16.12, Ex. 6.39] to deal with
the indicator.

By [39, Prop. 19.17(v), Prop. 19.18(v)] the optimizers
v⋆ = (α⋆, β⋆) and x⋆ = (f⋆, b⋆, s⋆) must satisfy

L∗α⋆ ∈ ∂h(x⋆) and −α⋆ ∈ ∂g(Lx⋆)

⇔ x⋆ ∈ ∂h∗(L∗α⋆) and Lx⋆ ∈ ∂g∗(−α⋆),

where we used [39, Cor. 16.24] to express the optimality
conditions in terms of the subgradients of the conjugates.
Plugging in the subgradient determined in (27) gives

f∗ = K̂∗Ŷ α⋆ =

n∑
i=1

α⋆
i Yiκ(Xi, ·).

Comparing with [36, Eq. 7.25] shows that this is the usual
SVM solution. For the threshold b⋆ we use (28), giving

Lx⋆ ∈ ∂g∗(−α⋆)

⇔
n∑

i=1

α⋆
i (Yi(f

⋆(Xi)− b⋆)− 1 + s⋆i ) +

n∑
i=1

β⋆
i s

⋆
i = 0,

Yi(f
⋆(Xi)− b⋆)− 1 + si ≥ 0, ∀i ∈ [n],

s⋆ ≥ 0.

Let J = {j ∈ [n] : α⋆
j > 0, β⋆

j > 0}. From the above
conditions we have s⋆j = 0 for all j ∈ J . Similarly we
require

Yj(f
⋆(Xj)− b⋆)− 1 = 0, ∀j ∈ J .

Using Yj ∈ {−1, 1} to mulyiply both sides with Yj and the
characterization of f⋆ above results in

b⋆ =

n∑
i=1

α⋆
i Yiκ(Xi, Xj)− Yj , ∀j ∈ J .

We can again compare with the classical SVM setting (cf.
[36, Eq. 47.32] and the discussion at [36, p. 206]), seeing that
the condition is similar. When J = ∅, we cannot generate
trivial constraints on b⋆. In that case, we note the f⋆ is still a
valid minimizer, thus b⋆ must minimize (24) for f = f⋆.

For CV@R as in (18) we can characterize the ambiguity
set Aefficiently in terms of a polyhedral set as in [6]. So (25)
is a quadratic program. For divergence-based risk measures
the ambiguity set Aα in (4) is convex so we can implement
it directly. It is polyhedral for the total variation.
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