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Abstract— Causal phenomena associated with rare events
occur across a wide range of engineering problems, such as
risk-sensitive safety analysis, accident analysis and prevention,
and extreme value theory. However, current methods for causal
discovery are often unable to uncover causal links, between
random variables in a dynamic setting, that manifest only when
the variables first experience low-probability realizations. To
address this issue, we introduce a novel statistical independence
test on data collected from time-invariant dynamical systems
in which rare but consequential events occur. In particular, we
exploit the time-invariance of the underlying data to construct
a superimposed dataset of the system state before rare events
happen at different timesteps. We then design a conditional
independence test on the reorganized data. We provide sample
complexity bounds for the consistency of our method, and
validate its performance across various simulated and real-
world datasets, including incident data collected from the
Caltrans Performance Measurement System (PeMS).

I. INTRODUCTION

The occurrence of rare yet consequential events during
the evolution of a dynamical system is ubiquitous in many
fields of engineering and science. Examples include natural
disasters, vehicular accidents, and stock market crashes.
When studying such phenomena, it is crucial to understand
the causal links between the disruptive event and the un-
derlying system dynamics. In particular, if certain values of
the system state increase the probability that the disruptive
event occurs, control strategies should be implemented to
steer the state away from such values. This can be accom-
plished, for instance, by incorporating a description of this
causal relationship into the cost function that generates these
control inputs in an optimization-based control framework.
In general, it is important to consider the following question:

Main Question (Q): Given a rare event associated with
the evolution of a dynamical system, does the onset of the
event become more likely when the system state assumes
certain values?

Below, we present a running example, invoked throughout
ensuing sections to provide context.

Running Example: Consider the task of reducing the
number of vehicular accidents on a road by identifying their
causes. In particular, consider the scenario in which the
amount of traffic on a network of roads has a causal effect
on accident occurrence. For example, on busy streets, high
traffic flow may render chain collisions more likely. In this
case, since steady-state flows in a traffic network can be
controlled via tolling, regulators can adjust the toll on each
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network link to redistribute flow and reduce the number of
accidents that transpire [1, 2]. Conversely, on other roads,
low traffic flow may incentivize drivers to exceed the speed
limit and create more opportunities for accidents to occur.
In this case, traffic engineers can enforce speed limits more
stringently at times of low traffic flow.

Although many well-established methods in the causal
discovery literature can efficiently learn causal relationships
from data, most only apply to data generated from proba-
bility distributions associated with static, acyclic Bayesian
networks [3, 4]. Moreover, most causal discovery algorithms
developed for time series data rely on stringent assumptions,
such as linear dynamics and additive Gaussian noise models,
or aggregate data along slices of fixed time indices [3, 5-7].
However, rare events often occur sparsely at any fixed time
and cannot be easily modeled using linear dynamics.

To address these shortcomings, we present a novel ap-
proach for aggregating and analyzing time series data record-
ing sparsely occurring, but consequential events, in which
data is collected in a time-ordered fashion from a dynamical
system. Our method rests on the observation that, whereas
a rare event may be highly unlikely to occur at any fixed
time t, the probability of the event occurring at some time
along the entire horizon of interest is often much higher.
Thus, we aggregate the time series data along the times
of the event’s first occurrence. This renders the dataset
more informative, by better representing the rare events
of interest. Next, we present an algorithm that uses the
curated data to analyze the causal relationships governing the
occurrence of the rare event. We formally pose the question
of whether the system state causally affects the occurrence
of the rare event as a binary hypothesis test, with the null
hypothesis Hy corresponding to the negative answer, and the
alternative hypothesis H; corresponding to the positive one.
We prove that our proposed method is consistent against all
alternatives [8]. In other words, if H, were true, then as
the number of data trajectories N in the dataset approaches
infinity, our approach would reject H; with probability 1. We
validate the performance of our algorithm on simulated and
on publicly available traffic and incident data collected from
the Caltrans Performance Measurement System (PeMS).

II. RELATED WORK

A. Causal Discovery for Static and Time Series Data

Causal discovery algorithms identify causal links among
a collection of random variables from a dataset of their
realizations. Common approaches include constraint-based



methods (which use statistical independence tests), score-
based methods (which pose causal discovery as an optimiza-
tion problem), and hybrid methods [3, 4, 9]. However, most
of these approaches apply only to non-temporal settings. For
time series data, Granger causality uses vector autoregression
to study whether one time series can be used to predict an-
other [6]. Other methods aggregate different data trajectories
by matching time indices [7, 10], or directly solve a time-
varying causal graph [11]. However, these methods do not
address the problem of inferring causal links between rare
events and dynamical systems, across sample trajectories on
which the rare event can often occur at different times.

B. Extreme Value Theory and Analysis of Rare Events

Extreme value theory characterizes dependences between
random variables that exist only when a low-probability event
occurs, e.g., rare meteorological events, or financial crises
[12, 13]. Most closely related to our work are [5], which
studies causal links between heavy-tailed random variables,
and [14], which explores causal relationships between char-
acteristics of London bicycle lanes, e.g., density, length,
and collision rate, and abnormal congestion. However, [5]
imposes restrictive assumptions, such as linear models, while
the discussion in [14] on accidents’ occurrences is restricted
to empirical studies. In contrast, our proposed algorithm
returns a nonparametric conditional independence test statis-
tic that is capable of characterizing relationships between a
general dynamical system, and the onset of a rare event.

C. Traffic Network Analysis

Traffic network theory aims to mathematically describe
and control traffic flow in urban networks of roads, bridges,
and highways [15-17]. Recent literature has proposed the
design of tolling mechanisms that drive a traffic network
to the socially optimal steady state [2, 18]. However, these
methods do not model or predict the occurrence of sudden
yet consequential events, such as extreme weather events,
car accidents, and other causes of unexpected congestion. In
contrast, our paper uses the occurrence of rare but consequen-
tial car accidents in traffic networks as a running example, to
illustrate the applicability of our method on analyzing causal
links between dynamical systems and associated rare events.

ITII. PRELIMINARIES

Consider a stochastic, discrete-time dynamical system with
state variable X, € R", event variable A, € {0,1} with
P(A; = 1) € [p1,p2] for some p1,p2 € (0,1) for all ¢, with
p1 < p2, and dynamics X1 = f(Xy, A¢, W) for each
t > 0, where W; € R" denotes i.i.d. noise, and f : R™ x
{0,1} x R¥ — R™ denotes the nonlinear dynamics of the
system state. Let 7" denote the time at which the rare event
first occurs, and, with a slight abuse of notation, let A;.; =0
denote the event that A, = --- = A; = 0. Moreover, we
assume that the first occurrence of the rare event is governed
by a time-invariant probability distribution, i.e.,:

P(Ay = 11Xy 22,41, =0) (D
:P(At/-H = 1|Xt’ = IaAl:t/ = 0)7 Vtvt/ >0,

where, for each x,y € R", the notation x =< y represents

x; < y; foreachi € [n] := {1, -+ ,n}, and for each x € R",
there exists some constant ratio «(x) > 0 such that:
]P)(thl = $|At =1,A141=0) (2)

=a(zr) P(X;—1 22141 =0).

In words, we assume that the flow distribution is related
to the first occurrence of the rare event in a time-invariant
manner. Given this setup, we restate Q, first defined in the
introduction, as the following hypothesis testing problem:
The binary hypothesis test, with null hypothesis Hy as
below, is a mathematically rigorous characterization of Q.
Definition 1: Let Hy be the null hypothesis given by:

Hy: P(A=1Xs=<2,41,.=0)
=P(A;y1 =1|A1: =0), VaeR,
Hy: P4 =1|X; 22,41, =0)
#P(Ai41 =141, =0), VzeR
In words, Hy holds if and only if the first occurrence of
the rare event transpires independently of the system state at

that time. For convenience, we define the left and right hand
sides of Hj by:

ai(z) :=P(A1 = 1| Xy 22, A1 = 0), 3)
ag = P(At+1 = ]-‘Alzt = 0) (4)

Running Example: Consider a parallel link traffic net-
work of R links that connect a single source and a single
destination. Let X;; € R denote the traffic flow on every
link ¢ € [R] := {1,---,R} at time ¢, and define X; :=
(X¢1,-++,Xp,r) € RE. (In general, one can define X;; €
R? to encapsulate other observed quantities relevant to link
1 at time ¢, e.g., vehicle speed and pavement quality). The
event variable A; = 1 corresponds to the occurrence of an
accident in the network at time ¢.

In this context, Definition 1 corresponds to checking
whether the first occurrence of an accident on the R-link
network at time ¢ is affected by the flow level at time ¢ — 1.
This is of interest to traffic authorities, since costly accidents
become more likely at certain levels of traffic flow X3, then
the flow should be monitored to decrease the chance that
such accidents occur. Flow management can be applied by
dynamically tolling the links, as in [1]. As accidents are
relatively rare in most traffic datasets, it can be difficult
to construct accurate estimates of accident probabilities and
flows before accidents at any given time ¢. Instead, below, we
propose a novel method of data aggregation that allows the
use of information on accident occurrences across all times.

Since X; is a continuous random variable, a direct com-
parison of (3) and (4) would necessitate computing (3)
for uncountably many values of x € R™. Instead, we use
the laws of conditional and total probability to reformulate
the problem. In the spirit of Bayes’ rule, we compare the
state distribution immediately before the rare event occurred,
instead of the rare event probabilities under different state
values. Formally, under either hypothesis, the state distribu-
tion immediately before the first accident can be decomposed



as the following infinite sum; for each x € R™:
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P(A; = 1|1 X1 22, A14-1 =0).

Intuitively, if Hy were true, then the condition X;_; < x in
the term P(A; = 1|X;—1 <z, A1.4—1 = 0) can be dropped.
A rigorous formulation is given in Proposition 1 below.

Proposition 1: The null hypothesis Hy in Definition 1
holds if and only if, for each z € R™:

P(Xp_1 2 2) (&)

:Z (X1 22,4141 =0) - P(A; = 1|A14—1 = 0).
=1
Proof: Please see Appendix A in the ArXiV version of
the paper [19]. [ ]
For convenience, we define, for each t € N and = € R:
bi(z) :=P(Xp_1 <X x),
Bi(x) =P(Xy—1 <z, A14-1 =0),
Tt = ]P(At = 1|A1:t71 = 0)7

)= Bila) -
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Note that by (x),ba(x) € [0, 1] (in particular, that by(z) <1
follows by observing that bo(z) < 70 P(T'=1t) = 1.)

The test statistic that we use to distinguish between the
distributions by (z) and by(x) is the gap:

sup fha(z) — bo(a)

Intuitively, a large gap would indicate a higher likelihood
that a component-wise larger or smaller state would change
the probability of an event occurring. We formalize this
notion in Algorithm 1, and provide finite sample guarantees
for empirical estimates of b;(z) and bo(x) that can be
constructed efficiently from data and used to compute the
test statistic.

Running Example: In the traffic network example, by (x)
corresponds to the probability that X7 _1, the network flows

before the first accident, is component-wise less than or equal
to x. Meanwhile, bo(x) describes the weighted average of
traffic flows at each time ¢, conditioned on the first accident
occurring after ¢ (i.e., no accident occurs before), with the
distribution of the first accident time 7' as weights. Sec-
tion IV describes sample-efficient methods for constructing
empirical estimates of by(x) and by(z) from a dataset of
independent traffic flows.

IV. METHODS
A. Main Algorithm

We present Algorithm 1, which solves the hypothesis test-
ing problem in Definition 1 from a dataset of N independent
trajectories, by constructing and comparing finite-sample
empirical cumulative distribution functions (CDFs) b ()
and b)Y () for the expressions by (x) and by (x), respectively,
and verifying whether or not (5) holds (in accordance with
Proposition 1).

a) Note on the baseline method: The common baseline
method for resolving the problem in Definition 1 is to fix
t > 1, and compare the CDF values P(X;_1 < z|T = t)
and P(X;_1 < z), for each z € R"™ at the fixed ¢. This
is effectively a “static variant” of Algorithm 1 that only
utilizes dynamical state values immediately before accidents
that occur at time t. It is generally difficult to estimate
P(X;—1 = z|T = t) from data, since P(T" = ¢) can be
very small for any given ¢{. Our algorithm (Algorithm 1)
instead aggregates data across times when the rare event has
occurred, allowing the event to be represented with higher
probability.

Algorithm 1: Hypothesis Testing with Reorganized
Dataset.
Data: Dataset of system state and rare event variables:
{(X{,A}) :t>0,i€[N]}
Result: Distribution gap: sup,cp 6N (z) — bY ()]
T + Realization of T for data trajectory ¢, Vi € [N].

1
2 bN( )« & Z%l WXz, S o}

3 5t ( ) % Zi=1 I{XZ <z, Al = O}-
4 ’Yt

szl I{Ai t—1=0; Ai:l} if ZN
LA, =0} i=1

0, else.

5 03 (2) < 2002, B (@) -4

6 return sup, cg |07 (z) — b2 ()]-

I{A’i:t—l = 0} > 07

B. Theoretical Guarantees

Theorem 1 below illustrates that, if H, holds, then as
the number of sample trajectories N approaches infinity,
the empirical distributions of (6) and (7), as constructed
in Algorithm 1, converge at an exponential rate to their
true values. In other words, if Hy holds, then for any fixed
significance level o, Algorithm 1 will require a dataset of size
no greater than O(In(1/«)) to reject H;. This establishes a
finite sample bound that controls the error of the statistical
independence test corresponding to the test statistic presented



in Algorithm 1. The proof follows by carefully applying
concentration bounds for light-tailed random variables, and
invoking the Dvoretsky-Kiefer-Wolfowitz (DKW) inequality
[20], which prescribes explicit convergence rates for empir-
ical CDFs to the true CDF.

Theorem 1: (Exponential Convergence to Consistency
Against all Alternatives) Suppose the null hypothesis Hy
holds, i.e., by () = ba(z).

HDIfn =1, ie, Xy € R for each ¢ > 0, then for

each e > 0, there exist continuous, positive functions
C1(€),Ca(€) > 0 such that:

P (sup {00~ 35 @)} > )

TER™
<4 (6) e~ N-Cale)

2) If n > 1, then there exist continuous, positive functions
Cs5(€),Cy(€) > 0 such that:

P (sup {62 ) -8 ]} > o)

zER™
<[Cs(ON + 1)+ Ca(e)] - eV,

For sufficiently large N, the factor N+1 can be replaced
by the constant 2.
Proof: Please see Appendix B in the ArXiV version of
the paper [19]. [ ]
Remark 1: If Hy does mnot hold, ie., ¢ =
Sup,ern [b1(z) — ba(z)] > 0, then the same logical
arguments used to establish Theorem 1 can be employed to
show that (for the n = 1 case), for each ¢ > 0:

IP’<sup {|5{V(x)flaév(x)|} € (56,5+e))

TER™
SCI(E) . e—N‘CQ(f)’

where C(€), C2(€) > 0 are the same continuous, positive
functions given above. That is, as N — oo, the gap between
bY (z) and by (x) approaches § exponentially. The n > 1
case follows analogously from the multivariate version of
the Dvoretsky-Kiefer-Wolfowitz (DKW) inequality [21].

V. RESULTS

Here, we illustrate the numerical performance of our pro-
posed method on simulated and real-world traffic data, and its
efficacy over baseline aggregation methods of concatenating
data points along a single, fixed time ¢. We note that in
the experiments on the real-world dataset collected from the
Caltrans PeMS system, the data collected is time-ordered.
Code containing the datasets and experiments is publicly
available at the following link: https://github.com/
kkulk/L4DC2023-Causality.

A. Simulated Data

In our first set of experiments, we construct synthetic data
for single- and multi-link traffic networks. For the single-link
network, we use the following dynamics. For each ¢ € [T},]:

wft +1] = (1= p(A[t]) - 2(t) + p(A[t]) - w[t] + wlt],

Alt + 1] ~ P(x(t))

where z(t) € R denotes the traffic flow at time ¢, A[t] €
{0,1} is the Boolean random variable that indicates whether
or not an accident has occurred at time ¢, w(A[t]) > 0
describes the fraction of traffic flow departing the link,
ult] € R denotes the total input traffic flow, w[t] € R is
a zero-mean noise term, and 7T} is the finite time horizon.
Here, we set T, = 500, u(0) = 0.3, p(l) = 0.2,
u(t) = 100 for each ¢ € [I}], and draw w(t) i.i.d.
from the continuous uniform distribution on (—10,10). We
create datasets corresponding to the null and alternative
hypotheses. For the null hypothesis, we fix the distribution
of z(t) to be Bernoulli(0.01), regardless of the value of
z(t). This simulates a scenario where the likelihood of an
accident occurring has no dependence on traffic flow. For the
alternative hypothesis, we set the distribution of x(t) to be
Bernoulli(0.01) when z(t) < 109 and Bernoulli(0.10) when
x(t) > 109. This represents a scenario where higher traffic
loads increase the likelihood that an accident occurs.

To contrast the performance of our algorithm with the
baseline, we compute the following quantities from datasets
of independent trajectories corresponding to Hy and H, in
accordance with Proposition 1 and Theorem 1:

« For our method—We compute the empirical estimates
b (z) and bY (x) of the functions by (z) and by(z) as
functions of = (Figure 1), and the maximum CDF gap
sup,crn |BN () — b ()] as functions of N (Figure 2).

« For the baseline method—We compute the empirical
estimates of the CDFs of X; 1|7 = ¢ and X;_;, with
t fixed at 1, as functions of x (Figure 1), and the
corresponding maximum CDF gap as functions of N
(Figure 2). Note that for N < 500, it is difficult to
obtain the CDF of X; 1|T = t, due to rarity of the
event at any given time.

Figures 1 and 2 show that, compared to the baseline,
our approach distinguishes between the null and alternative
hypotheses from a far smaller dataset. This illustrates that
our method, compared to the baseline, distinguishes the
dependence between the occurrence of a rare event and the
state values immediately preceding the event more efficiently.

Appendix C contains further empirical results on synthetic
datasets for multi-link networks.

B. Caltrans PeMS Dataset

We also demonstrate the efficacy of Algorithm 1 on
real traffic flow and incident data collected from the pub-
licly available Caltrans Performance Measurement System
(PeMS) dataset [22]. PeMS uses loop detectors placed on
freeways to collect flow, speed, and other traffic condition
information, and overlays this with incident reports. We
consider daily traffic flow data (# vehicles / time) collected
from January to August 2022 from 6 A.M. to 2 PM., at 5-
minute intervals, on various bridges in the San Francisco
Bay Area: San Mateo-Hayward, San Francisco—Oakland
Bay, and Richmond-San Rafael. That is, we consider single
link networks connecting a source and destination with the
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Fig. 1: (Top) From left to right, b1 (z) and b2 (z) vs. z plots for (Ho, N = 500), (Ho, N = 2000), (Hi, N = 500), and (H1, N = 2000).
(Bottom) From left to right, empirical CDFs for X;_1|T =t and X;_1 with ¢ = 1, in the same order of hypothesis and N values.
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Fig. 2: CDF gap between vs. N. Red and blue correspond to the
baseline and our method, respectively, while thick and thin lines
correspond to the null and alternative hypotheses, respectively. Our
approach (thin blue curve) correctly identifies the null hypothesis
dataset with a relatively small number of samples, while the baseline
aggregation method fails to do so (thin red curve).

continuous variables X; € R, corresponding to average
flows on the link. Correspondingly, we use incident data
collected on these bridges by PeMS in the same time interval
from the California Highway Patrol (CHP).

a) Data Collection: We treat each day as an indepen-
dent trajectory of the traffic flows on every bridge. The PeMS
dataset contains flows collected from dual loop detectors
placed along the bridges. For each time between 6 A.M.
and 2 PM., we average the flow data recorded by loop
detectors on each bridge to obtain the state variable X; for
time ¢. Mathematically, we define X; := |71| > LI=|1 X? where
I denotes the set of loop detectors on a single link, and X7}
denotes the flow measured by detector ¢ € I at time t. We
exclude from our analysis any trajectory on which there was
no incident for the entire day, since such trajectories do not
contain data relevant to our problem of interest.

b) Results: In Table 1, we enumerate the sample size
N and test statistic sup, cg |0 () —bY (z)| for the six traffic
links (three bridges, each with two directions of traffic flow).

Note the substantial difference in the CDF gap (of nearly
0.178) for the Richmond-San Rafael Bridge, East, compared
to all other links, indicating that the flows on this link
are particularly causally linked to the first time of incident
formation. Further, the San Francisco-Oakland Bay Bridge,
East, also has a higher CDF gap (0.081) relative to the West
direction, and relative to the other bridges. These gaps are
visible in the CDF plots in Figures 3(e) and 3(c), respectively.

Link N | sup [b](z) — b (z)]
zER
San Mateo-Hayward 85 0.053
Bridge, East (SR92-E)
San Mateo-Hayward 116 0.039
Bridge, West (SR92-W)
San Francisco—Oakland 116 0.081
Bay Bridge, East (I80-E)
San Francisco—Oakland 112 0.042
Bay Bridge, West (I80-W)
Richmond-San Rafael 45 0.178
Bridge, East (I580-E)
Richmond-San Rafael 94 0.048
Bridge, West (I580-W)

TABLE I: CDF gap, sup,czn |07 (z) — b3 (z)| for the six links
in the San Francisco Bay Area.

VI. CONCLUSION AND FUTURE WORK

We present a novel method for identifying causal links
between the state evolution of a dynamical system and the
onset of an associated rare event. Crucially, we leverage the
time-invariance to reorganize data in a manner that better
represents occurrences of the rare event. We then formulate
a non-parametric statistical independence test to infer causal
dependencies between the dynamical states and the rare
event. Empirical results on simulated and real-world time-
series data indicate that our method outperforms a baseline
approach that conducts independence tests only on a single
time slice of the original rare events dataset.

As future work, the causal discovery algorithm presented
here may be used to more effectively control the evolution of
a dynamical system associated with a rare but consequential
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Fig. 3: Empirical CDFs b2 () and b (z) for six bridges in the San Francisco Bay Area.




event. By establishing causal links between the dynamical
state and the rare event, control strategies can be redesigned
to maneuver the state away from regions of the state space
where the event occurs more frequently. Important engineer-
ing applications include incentive design and flow control
methods in the network traffic systems literature, such as
dynamic tolling and rerouting. Finally, we will present more
extensive empirical analysis of both the baseline method and
our method across different applications.
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The following supplementary material includes the ap-
pendix, which contains proofs and figures omitted in the
main paper due to space limitations.

A. Preliminaries

Proof: (Proof of Proposition 1) Fix x € R” arbitrarily.
By Bayes’ rule:

P(A; =1| X1 <z,4141=0)
=P(A; =1|A1.4-1 =0)
P(X;—1 2z|Ay=1,A14-1 =0)
P(thl = £U|A1:t71 = 0)
=P(A; = 1|A141 = 0) - (),

where a(x) is as defined in (2). Thus, P(4; = 1|4;—1 = 0)
is time-invariant, i.e., holds the same value for each ¢t € [T].
Next, by invoking Bayes’ rule again, we have:

P(XT,1 j CL‘) (6)

P(X,_y < 2|T =1t)-B(T =t)

M

~
Il
—

M

]P(Xt_l j l‘,T = t)

o~
Il
—

M

P(Xi—1 22, A14—1 =0,4, =1)

~
Il
-

P(A; =1|X; 22, A14-1 =0)

M

~
Il
—

P(X;q 23, Ap-1 = 0)

=a1(z) - ZP(Xt—1 2z, A14-1=0).
t=1

and:

oo

D P(Xiq 2w, A1 =0) (7)
t=1
. P(At - 1|A1;t_1 - O)

=as - ZP(Xt—l =x,A141 =0).
t=1
Thus, the null hypothesis Hy in Definition 1 holds if and
only if (6) and (7) are equal, as claimed. |
B. Methods
Proof: (Proof of Theorem 1) Fix ¢ > 0, and take:

1 ep? >-‘
T, .= In .
Ln(l —p1) (16p2

First, to show that b (x) — by (z) at an exponential rate in
N, we invoke the Dvoretsky-Kiefer-Wolfowitz inequality:

- 1 1
P (sup |b{v(9c) —bi(z)| > e) <2.e3N¢
zeR™ 2

Next, to show that bY () — by(x) at an exponential rate in
N, we have, via the triangle inequality:

b (x) — ba()

sup
rER®

= sup ; {BtN(x)%N - 5t(ﬂ?)%}
T,

=3 | s {187 @) - @ 37

+ sup {5 =l } ()]

zER™

+ sup { > B @A+ wt(xm]}

e€R™ =741
- AN
<> sup {187 (@) - ()1}
t=1 “ER"

T,

+ sup {I%N - “Yt|} -P(A1.4—1 =0)
+—] w€R™
1 N e’} N o]

+NZ o HT'=tt+ Y P(T=t),

1=1t=T.+1 t=T.+1

where the third and fourth term in the final expression follow
by observing that, for any x € R, by definition of the
quantities 5N (z), 4%, B:(z), and ~;:

1B ()4 |
1 Y . .
=5 2 MXi <o 4, =0}
i=1
) Zz]\il A}, ,=0,4; =1}
Zévﬂ I{Allzt—l = 0}

1 N
S N Z I{Ai:tfl = O}
=1

) Zf\; WAL, =0,4; =1}
Z?Ll I{Ail:tq = 0}

N
1 i i
= N Z 1{Aj,,_, =0,4; =1}
i=1

|Be(z)v(1)]
=P(X¢—1 22,4141 =0)-P(A; = 14141 = 0)
<P(A14—1 =0) -P(A; =1|A14—1 =0)
<P(A;=1,41.4-1 =0)
—P(T = 1)

Below, we upper bound each of the four terms in the final
expression above.



« First, by the Dvoretsky-Kiefer-Wolfowitz inequality, we
have, for each ¢t € [T] :={1,--- ,T,}:

T. .
r (Z;Eur; {188 @) - )} 2 86)
T1 )
(L_J {Iseuﬂgl {Wt x) — 5t(x)\} 8TC€}>

ﬁ

Y

(“p {18 @) - i)} = 8;)

2
<2T.exp <— 32€T2 -N) .

e Second, let

N; € [N] denote the number of trajectories

with A;1.;—1 = 0. We first show that, with high proba-
bility, Ny > N - P(A1.;_1 = 0)2. We then show that,
under this condition on NV taking a sufficiently large

value, Y (x
First, the Hoeffding bound for general bounded

) — v:(z) exponentially in N.

random variables ([23] Theorem 2.2.6) gives:

1
Pl =N, <P(A;+ 1 = 0)?
(Nt_ (A1—1 0)>

1

<

< exp (—

—P(A14—1 =0)

P(Api—1 = 0) — P(Aps—1 = 0>2)

2 {P(Al;t_l —0) —P(Ap1 = 0)2} 2N>

Then, if N; > N -P(Ay.4—1 = 0), we can bound the
gap between 4 (z) and 7;(z) as follows:

P (l&iv(ar) —n(@) > g7 P(Ajztfl - 0)>

< exp ( —2-P(A14_1=0)* N

62
6472 -P(Ayy_1 = 0)2

62
S exp <—32712 N) .

« Third, to bound BY = £ S S TP = t},

define:

Br,

c

o0

= > NT=t}=1T>T}

t=T,+1

Thus, Br. is a Bernoulli random variable with param-

eter P(Br,

= 1), and expectation upper bounded by:

E[Br,]=PBr, =1)<(1—-p)"

By definition of T, we have E[Br,] < {-c. Moreover,

since Br,

is a Bernoulli random variable, we have,

by the Hoeffding bound for general bounded random
variables ([23] Theorem 2.2.6):

50

< exp _128N) .

« Finally, note that by definition of 7 :

i P(T =t) = P(T > T,)

t=T.+1
<(1-p)Te
< 1
165

For the multivariate version (i.e., n > 1), the same proof
follows, albeit with the multivariate version of the Dvoretsky-
Kiefer-Wolfowitz inequality [21]. [ ]

C. Experiment Results

1) Multi-link Traffic Networks: For the multi-link traffic
network, we use the dynamics: ([1])

Z‘i[t—F 1] (8)
e—Bzilt]

=(1—u)~mi[t]+u-W-u[t]+w[t], )

YVt e [T),i € [R], (10)

Alt] ~ P(z[t]), (11)

where x;[t] denotes the traffic flow on each link ¢ € [R],
u[t] € R and w[t] € R, and T}, are the input, zero-
mean noise terms, and time horizon, as before. Here, we
set T = 250, u(0) = 0.3, p(1) = 0.2, u(t) = 100R for each
t € [T], and we again draw w[¢] i.i.d. from the continuous
uniform distribution on (—10,10). As with the single-link
case, we created two datasets for the null and alternative
hypotheses. For the null hypothesis, we fix P(z[t]) to be
Bernoulli(0.02); for the alternative hypothesis, we set P(z[t])
to be Bernoulli(0.02) when z[t] < 105, and Bernoulli(0.30)
when z[t] > 105. Again, this setting encodes the situation
where higher traffic loads cause higher accident probabilities.

Similar to the single-link case, we compute the maximum
CDF gap sup,cpn |bN () — b)Y (x)] as functions of N (thin
lines), and the empirical CDFs of X;_;|T = ¢ and X;
(thick lines) for both the null and alternative hypotheses. We
again observe that our method distinguishes between the two
hypotheses at a smaller sample number N compared to the
baseline method.

Analogous results hold for a 3-link system with dynamics
as given by (8) and are presented in Figure 5.
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Fig. 4: CDF Gap between vs. IV, for the 2-link traffic network
example. Here, red and blue correspond to the baseline and our
method, respectively, while thick and thin lines correspond to the
null and alternative hypotheses, respectively. Our approach correctly
identifies the null hypothesis dataset with a relatively small number
of samples, while the naive aggregation method fails to do so (thin
blue curve).
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Fig. 5: CDF Gap between vs. IV, for the 3-link traffic network
example. The color and thickness schemes are identical to those of
the single-link and 2-link plots in Figures 2 and 4.
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