
Safe Control of Partially-Observed Linear Time-Varying
Systems with Minimal Worst-Case Dynamic Regret

Hongyu Zhou and Vasileios Tzoumas?

Abstract— We present safe control of partially-observed lin-
ear time-varying systems in the presence of unknown and
unpredictable process and measurement noise. We introduce
a control algorithm that minimizes dynamic regret, i.e., that
minimizes the suboptimality against an optimal clairvoyant con-
troller that knows the unpredictable future a priori. Specifically,
our algorithm minimizes the worst-case dynamic regret among
all possible noise realizations given a worst-case total noise
magnitude. To this end, the control algorithm accounts for three
key challenges: safety constraints; partially-observed time-
varying systems; and unpredictable process and measurement
noise. We are motivated by the future of autonomy where robots
will autonomously perform complex tasks despite unknown and
unpredictable disturbances leveraging their on-board control
and sensing capabilities. To synthesize our minimal-regret
controller, we formulate a constrained semi-definite program
based on a System Level Synthesis approach for partially-
observed time-varying systems. We validate our algorithm in
simulated scenarios, including trajectory tracking scenarios of
a hovering quadrotor collecting GPS and IMU measurements.
Our algorithm is observed to have better performance than
either or both the H2 and H∞ controllers, demonstrating a
Best of Both Worlds performance.

I. INTRODUCTION

In the future, robots will be leveraging their on-board
control and sensing capabilities to complete tasks such as
package delivery [1], transportation [2], and disaster re-
sponse [3]. To complete such complex tasks, the robots need
to reliably overcome a series of key challenges:
• Challenge I: Safety Constraints. Robots need to ensure

their own safety and the safety of their surroundings. For
example, robots often need to ensure that they follow pre-
scribed collision-free trajectories or that their control effort
is kept under prescribed levels. Such safety requirements
take the form of state and control input constraints and
make planning control inputs computationally hard [4], [5].

• Challenge II: Partially-Observed Time-Varying Sys-
tem. Robots often lack full-state information feedback
for control. Instead, they base their control on sensing
capabilities that are governed and time-varying measure-
ment models. For example, self-driving robots in indoor
environments often base their control on range sensors
which provide relative-distance measurements to known
landmarks [6]. The measurement model is time-varying
since range measurements depend on the relative position
of the robot to the landmarks. Accounting for such models
typically requires linearization [7], which adds to the
hardness of computing safe control inputs.

• Challenge III: Unknown and Unpredictable Process
and Measurement Noise. The robots’ dynamics and
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measurements are often disturbed by unknown and un-
structured noise, which is not necessarily Gaussian. For
example, aerial and marine vehicles often face unpre-
dictable winds and waves [8], [9]. But the current control
algorithms primarily rely on known or Gaussian-structured
noise, compromising thus the robots’ ability to ensure
safety against unknown and unpredictable noise [10], [11].
The above challenges motivate the development of safe

control algorithms for partially-observable linear time-
varying systems, guaranteeing near-optimal control perfor-
mance against unknown and unpredictable noise.

Related Work. The current control algorithms either
consider (i) no safety constraints, or (ii) fully-observed
systems or partially-observed systems but with time-invariant
measurement models, or (iii) known stochastic models about
the process and measurement noise, e.g., Gaussian noise.

We next review the literature by first reviewing online
learning for control algorithms, i.e., algorithms that select
control inputs based on past information only [12]–[16], and
then by reviewing robust control algorithms that select inputs
based on simulating the future system dynamics across a
lookahead horizon [17]–[21]:

a) Online Learning for Control: The algorithms per-
forming online learning for control make no assumptions
about the noise’s stochasticity [22], [23], aiming to address
the Challenge III. They assume the noise can evolve arbi-
trarily, subject to a given upper bound on its magnitude.
The upper bound ensures problem feasibility, and tunes the
algorithms’ response to the nevertheless unknown noise.

The online learning algorithms prescribe control poli-
cies by optimizing feedback control gains based on past
information only, guaranteeing performance by bounding
static or dynamic regret: static regret [22], [23] captures
the algorithms’ suboptimality against optimal static policies
that know the future a priori, i.e., control policies with time-
invariant control gains [12]–[15]; and dynamic regret [24]
captures the algorithm’s suboptimality against optimal dy-
namic policies that know the future a priori, i.e., control
policies with time-varying control gains [16].

The current static-regret algorithms consider no safety
constraints, with the exception of [14], and apply to
fully-observed systems or partially-observed systems with
time-invariant measurement models only; and the current
dynamic-regret algorithms also ignore safety constraints, and
apply to fully-observed systems only. All in all, although
the current online learning algorithms address unpredictable
noise, they assume no safety constraints and cannot apply to
partially-observed time-varying systems.

b) Robust Control: The classical H2 and H∞ control
algorithms [25] assume Gaussian noise and bounded worst-
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case noise, respectively. Particularly, H2 is optimal under
Gaussian noise but it can thus underperform under non-
Gaussian noise. H∞ on the other hand can be conservative.

For this reason, recent robust control algorithms aim to
address the challenge of unpredictable noise by focusing
on convex optimization techniques that guarantee regret
optimality, i.e., minimal worst-case dynamic-regret among
all noise realizations subject to a given total noise magni-
tude. [17], [18] focus on fully-observed systems and [19]
on partially-observed systems. But these algorithms consider
no safety constraints. Instead, [20], [21] provide a regret-
optimal control algorithm that accounts for safety constraints.
However, they focus on fully-observed systems only.

Contributions. In this paper, we provide an algorithm
with dynamic regret guarantees for the safe control of
partially-observed linear time-varying systems. The algo-
rithm prescribes an output-feedback control input, guar-
anteeing minimum worst-case dynamic regret among all
noise realizations. It is a robust control algorithm, selecting
inputs based on simulating the dynamics across a lookahead
horizon. To this end, we formalize the problem of Safe
Control of Partially-Observed Linear Time-Varying Systems
with Minimal Worst-Case Regret (Problem 1).

Our analysis builds on [20], [26], [27]: (i) We prove
that the output-feedback control gains are the solution of
a constrained Semi-Definite Program (SDP); our SDP ap-
proach handles partially-observed systems, generalizing from
the fully-observed case presented in [20]. (ii) We use a
System Level Synthesis (SLS) method that extends the current
SLS methods [26], [27] to partially-observable time-varying
systems, presenting necessary and sufficient conditions for
the existence of a causal safe output-feedback control policy.

Numerical Evaluations. We validate our algorithm in
simulated scenarios of partially-observed linear time-varying
systems, including trajectory tracking scenarios of a hov-
ering quadrotor collecting GPS and Inertial Measurement
Unit (IMU) measurements (Section IV). We compare our
algorithm with the safe H2 and H∞ control algorithms [20]
under diverse process and measurement noises.

Our algorithm demonstrates a Best of Both Worlds per-
formance across all simulations and test types of noise,
performing on average better than at least one of the H2

and H∞ controllers. That is, our algorithm demonstrates
robustness across all tested types of noise, being the best
or the second best among H2 and H∞, an advantageous
performance capacity when the type of noise is unknown
a priori and unpredictable. Instead, H2 is the worst against
worst-case noise and H∞ is the worst against Gaussian.

Organization. Section II formulates the problem of safe
control of partially-observed linear time-varying systems
with minimal worst-case dynamic regret guarantees. Sec-
tion III develops the control algorithm. Section IV presents
the numerical evaluation. Section V concludes the paper. The
Appendix contains all proofs.

II. PROBLEM FORMULATION

We formulate the problem of Safe Control of Partially-
Observed Linear Time-Varying Systems with Minimal Worst-
Case Regret (Problem 1). We use the framework:

Partially-Observed System. We consider partially-obser-
ved Linear Time-Varying (LTV) systems of the form

xt+1 = Atxt +Btut + wt, t ∈ {0, . . . , T − 1},
yt = Ctxt + et,

(1)

where t is the time index, T is a time horizon of interest,
xt ∈ Rdx is the system’s state, ut ∈ Rdu is the control input,
wt ∈ Rdx is the process noise, yt ∈ Rdy is the measurement,
and et ∈ Rdy is the measurement noise.

We henceforth denote:
• x ,

[
x>0 , x

>
1 , . . . , x

>
T−1

]>
, i.e., x is the state trajectory

across the time horizon T ;
• u, y, and e are defined correspondingly to x;
• w ,

[
x>0 , w

>
0 , . . . , w

>
T−2

]>
, i.e., is the process noise tra-

jectory till time T − 2 appended with the initial condition.

Assumption 1 (Known System). The initial condition x0
and the matrices At, Bt, and Ct for all t are known.

Assumption 2 (Bounded Noise). The process and measure-
ment noise wt and et are constrained in known compact
polytopes that contain a neighborhood of the origin: i.e., we
are given W ,

{
w ∈ RdxT : Hww ≤ hw

}
and E , {e ∈

RdyT : Hee ≤ he
}

for given matrices Hw, He, hw and he.

Per Assumption 2, we assume no stochastic model for the
noise. Specifically, the noise may even be adversarial, subject
to the bounds prescribed by W and E.

Safety Constraints. We consider the states and control
inputs must satisfy polytopic constraints of the form

H

[
x
u

]
≤ h, ∀w ∈W, ∀e ∈ E, (2)

for given matrices H and h.
Output-Feedback Control Policy. We consider the fol-

lowing output-feedback control policy:

ut =

t∑
k=0

Kt,kyk, t ∈ {0, . . . , T − 1}, (3)

where Kt,k are control gains to be designed in this paper.
Control Performance Metric. We design the output-feed-

back control gains Kt,k to ensure both safety and a control
performance comparable to an optimal clairvoyant policy that
selects control inputs knowing the future noise realizations w
and e a priori. In this paper, we consider that the clairvoyant
policy minimizes a cost of the form

cost(w, e,u) , x>Qx + u>Ru, (4)

where Q � 0 and R � 0, and x is a function of the control
input sequence u and the noise w and e per eq. (1). Q and
R are assumed symmetric, without loss of generality. Then,
the suboptimality of any (causal) control sequence u that is
unaware of the noise realization w and e is captured by the

regretT (w, e,u) , cost(w, e,u)− min
u′∈RduT

cost (w, e,u′) ,

(5)
where minu′∈RduT cost (w, e,u′) is the cost achieved by the
optimal clairvoyant control policy.



In this paper, we design the output-feedback control gains
Kt,k to minimize the worst-case dynamic regret among all
feasible noise realizations per Assumption 2.

Definition 1 (Worst-Case Dynamic Regret [19]). Denote by
r the minimum radius of a ball in RdxT+duT that encircles
the noise’s domain sets W and E. Then,

worst-case-regretT (u) , max
‖w‖22 + ‖e‖22≤ r2

regretT (w, e,u).

(6)

That is, eq. (6) is the worst-case dynamic regret among all
noise realizations with maximum feasible total magnitude.

Problem Definition. In this paper, we focus on:

Problem 1 (Safe Control of Partially-Observed Linear Time–
Varying Systems with Minimal Worst-Case Regret). Find
control gains Kt, k such that the output-feedback control
policy in eq. (3) guarantees (i) the safety of the partially-
observed LTV system in eq. (1) and (ii) minimal worst-case
dynamic regret. Formally,

min
Kt, k,

∀(t, k) ∈ {0, 1, . . . , T}2

worst-case-regretT (u) (7a)

subject to the system in eq. (1); (7b)
the safety constraints in eq. (2);

(7c)
the control policy in eq. (3). (7d)

III. ALGORITHM FOR PROBLEM 1

We present the algorithm for Problem 1 (Algorithm 1).
The algorithm solves Problem 1 via an equivalent SDP refor-
mulation. We present the SDP reformulation in Section III-
B (Theorem 1). To prove the SDP reformulation, we first
present an SLS approach for partially-observed linear time-
varying systems in Section III-A (Proposition 1).

A. Preliminary: System Level Synthesis for Partially-
Observable LTV Systems

We use the SLS approach to partially-observed LTV
systems. Particularly, given a desired state trajectory x, we
present necessary and sufficient conditions for the existence
of a control policy ut per eq. (3). Equivalently, we show
necessary and sufficient conditions for the existence of
control gains Kt,k such that Kt,k = 0 when k > t. The
conditions take the form of linear constraints and thus enable
the computation of the Kt,k within an SDP reformulation of
Problem 1 (Section III-B).

To the above ends, we use the notation:
• Z denotes the block-matrix downshift operator, i.e.,

Z ,


0 0 . . . 0

I
. . . . . .

...
...

. . . . . . 0
0 . . . I 0

 ; (8)

• A, B, and C are the diagonal block-matrices whose block
diagonal is the (partial) trajectory of the corresponding

system, input, and measurement matrix, i.e.,

A , blkdiag (A0, A1, . . . , AT−2, 0dx×dx) ;

B , blkdiag (B0, B1, . . . , BT−2, 0dx×du) ;

C , blkdiag (C0, C1, . . . , CT−1) ;

• K is the lower triangular block-matrix such that eq. (3)
takes the form u = Ky, i.e.,

K ,


K0,0 0du×dy . . . 0du×dy

K1,0 K1,1
. . .

...
...

...
. . . 0du×dy

KT−1,0 KT−1,1 . . . KT−1,T−1

 . (9)

Equations (1) and (3) now take the form
x = ZAx + ZBu + w; (10a)
y = Cx + e; (10b)
u = Ky, (10c)

which can be equivalently written as[
x
u

]
=

[
Φxw Φxe

Φuw Φue

] [
w
e

]
, (11)

where:
Φxw = (I−ZA−ZBKC)−1 , (12a)
Φxe = ΦxwZBK, (12b)
Φuw = KCΦxw, (12c)
Φue = KCΦxe +K. (12d)

We refer to the matrix

Φ ,

[
Φxw Φxe

Φuw Φue

]
in eq. (11) as the response matrix.

Given the lower triangular block-matrix K, eq. (11) cap-
tures how the noise trajectories (w, e) result to the control in-
put trajectory u and, all in all, to the state trajectory x. Partic-
ularly, Φxw, Φxe, Φuw, and Φue are computable given K.

We next focus on the opposite direction: we present
necessary and sufficient conditions for the existence of a
lower triangular block-matrix K that always satisfies eq. (11),
providing how to compute such a K given Φxw, Φxe, Φuw,
and Φue, instead of the other way around.

Proposition 1 (System Level Synthesis for Partially-Ob-
served LTV Systems). There exists a lower triangular block-
matrix K such that eq. (11) holds true if and only if Φxw,
Φxe, Φuw, and Φue are:
• lower triangular block-matrices; and
• lie in the affine subspace[

I−ZA −ZB
]
Φ =

[
I 0

]
, (13a)

Φ

[
I−ZA
−C

]
=

[
I
0

]
. (13b)

Also, K is computed given Φxw, Φxe, Φuw, and Φue via:

K = Φue −ΦuwΦ−1xwΦxe. (14)

The proof follows similar steps as in [27, Theorem 2.1]. It
differs from [27, Theorem 2.1] in the way that the system is



Algorithm 1: Safe Control of Partially-Observed Linear
Time-Varying Systems with Minimal Worst-Case Regret.

Input: Time horizon T ; system matrices {A,B, C}; cost
matrices Q and R; noise’s domain sets W and E;
upper bound r to the noise’ total magnitude.

Output: Output-feedback control gains K for eq. (3)’s
control policy.

1: {Φxw,Φxe,Φuw,Φue} ← Solve the Semi-Definite
Program in Theorem 1;

2: K ← Φue −ΦuwΦ−1xwΦxe per Proposition 1.

partially observed, i.e., y = Cx+e, and the control input now
depends on the measurement models C and measurement
noise, i.e., u = Ky = KCx +Ke.

By finding a Φ satisfying Proposition 1’s constraints, we
equivalently find a lower triangular block-matrix K, and thus
a control policy per eq. (3), satisfying eq. (11).

B. Algorithm for Problem 1 via SDP Reformulation
We provide an algorithm for Problem 1 (Algorithm 1). To

this end, we reformulate Problem 1 as an SDP (Theorem 1).
We obtain the reformulation via the steps:
• We change the optimization variables in Problem 1 from

the output-feedback control gains in K to the response
matrix Φ. We thus leverage that finding a feasible Φ
requires searching over a convex set, in particular, the
set defined by Proposition 1’s necessary and sufficient
conditions which take the form of linear constraints. Once
a Φ is found, then K is computed via eq. (14).

• We reformulate the safety constraints in eq. (2) as linear
matrix inequalities. To this end, we adopt the dualization
procedure introduced in the proof of [20, Theorem 3];

• We reformulate Problem 1’s objective function, namely,
worst-case-regretT (u), as an equivalent minimization
problem of a scalar subject to linear matrix inequalities.
To this end, we perform the first step of the proof of [19,
Theorem 4] and then apply Schur complement.
We use the following notation and definitions to formally

state Problem 1’s SDP reformulation and Algorithm 1:
• D , blkdiag(Q,R), i.e., D is the diagonal block-matrix

whose elements Q and R define the cost in eq. (4);
• Z are the dual variables introduced to reformulate the

safety constraints in eq. (2) as linear inequalities;
• λ is the scalar that once minimized subject to appropriate

linear matrix inequalities becomes equal to Problem 1’s
objective function, i.e., to worst-case-regretT (u);

• Φc is the response corresponding to the optimal clairvoy-
ant controller in eq. (5) that ignores the safety constraints;
i.e., per [20], [28],1

Φc ∈ argmin
Φ

∥∥∥∥ [ Q 1
2 0

0 R 1
2

]
Φ

∥∥∥∥2
F

subject to eq. (13a), Φxe = 0, Φue = 0.

(15)

1By solving eq. (15), Φc can be clairvoyant since eq. (15) does not
require Φxw , Φxe, Φuw , and Φue to be lower triangular block-matrices;
that is, the necessary and sufficient condition of Proposition 1 are not both
met. Thus, Φc can correspond to a control gain block-matrix K that fails
to be lower triangular and, as a result, the corresponding control policy ut
will depend on future measurements {yk}k∈{t+1,...,T}.

Theorem 1 (SDP Reformulation of Problem 1). Problem 1
is equivalent to the Semi-Definite Program

min
Φ,Z, λ

λ subject to:

Φxw,Φxe,Φuw,Φue being lower block triangular;
(16a)

eq. (13a) and eq. (13b); (16b)

Z>
[

hw
he

]
≤ h, HΦ = Z>

[
Hw 0
0 He

]
, Zij ≥ 0;

(16c)

λ > 0,

[
I D 1

2 Φ

Φ>D 1
2 λI + (Φc)>DΦc

]
� 0. (16d)

Theorem 1 prescribes an SDP in place of Problem 1. Par-
ticularly, eq. (16) relates to Problem 1 as follows: eqs. (16a)
and (16b) result from the change of the optimization vari-
ables in Problem 1 from the output-feedback control gains
in K to the response matrix Φ, per the necessary and
sufficient conditions in Proposition 1; eq. (16c) results from
the reformulation of the safety constraints in eq. (2) as linear
inequalities, per the dualization procedure in [20, Proof of
Theorem 3]; and the new objective of minimizing the scalar
λ subject to eq. (16d) result from the reformulation of Prob-
lem 1’s objective function, that is, of worst-case-regretT (u).

Algorithm 1’s Description. Algorithm 1 solves Problem 1
by (i) solving Problem 1’s equivalent SDP reformulation in
eq. (16) to obtain an optimal response matrix Φ (line 1), and
then by (ii) computing the corresponding output-feedback
control gain block-matrix K per eq. (14).

IV. NUMERICAL EVALUATIONS IN
TRAJECTORY TRACKING SCENARIOS

We evaluate Algorithm 1 in simulated scenarios of safe
control of partially-observed LTV systems for trajectory
tracking. We first consider synthetic partially-observed LTV
systems aiming to stay at zero despite noise disturbances
(Section IV-A). Then, we consider a quadrotor aiming to stay
at a hovering position; to this end, the quadrotor collects
asynchronous GPS and Inertial Measurement Unit (IMU)
measurements (Section IV-B).

Compared Algorithms. We compare Algorithm 1 with
the safe H2 and H∞ controllers [20]. The clairvoyant
controller is obtained by solving eq. (15).

Tested Noise Types. We corrupt the state dynamics and
the sensor measurements with diverse noise: (i) stochastic
noise, drawn for the Gaussian, Uniform, Gamma, Exponen-
tial, Bernoulli, Weibull, or Poisson distribution, and (ii) non-
stochastic noise, in particular, worst-case (adversarial) noise.

Summary of Results. Algorithm 1 demonstrates a Best
of Both Worlds (BoBW) performance: either it is better than
H2 and H∞ across the tested types of noise, or it performs
better than H2 or H∞ across all tested types of noise.

We performed all simulations in MATLAB with YALMIP
toolbox [29] and MOSEK solver [30].

Our code will be open-sourced via a link here.



Gaussian Uniform Gamma Exponential 

Bernoulli Weibull Poisson Worst-case

Fig. 1: Performance Comparison given the LTV System in Section IV-A with ρ = 0.85 (stable system case). The performance is quantified per the
cost in eq. (4). Each figure corresponds to a different process and measurement noise type. The shaded areas represent standard deviation.

Gaussian Uniform Gamma Exponential 

Bernoulli Weibull Poisson Worst-case

Fig. 2: Performance Comparison given the LTV System in Section IV-A with ρ = 1.05 (unstable system case). The performance is quantified per
the cost in eq. (4). Each figure corresponds to a different process and measurement noise type. The shaded areas represent standard deviation.

A. Synthetic Partially-Observed LTV Systems
Simulation Setup. We consider LTV systems such that

At = ρ

 0.7 0.2 0
0.3 0.7 −0.1
0 −0.2 0.8

 , Bt =
 1 0.2

2 0.3
1.5 0.5

 ,

Ct =



[
1 0 0
0 1 0

]
, t = {1, 3, . . .};

[
0 1 0
0 0 1

]
, t = {2, 4, . . .},

where ρ is the spectral radius of the system.
We demonstrate Algorithm 1 first on an open-loop stable

system where ρ = 0.85, and then on an open-loop unstable
system where ρ = 1.05. For the system with ρ = 0.85,

we choose the safety constraints: −5 ≤ xt ≤ 5 and −5 ≤
ut ≤ 5; and we assume noise such that −1 ≤ wt ≤ 1 and
−1 ≤ et ≤ 1. For the system with ρ = 1.05, we choose the
safety constraints: −30 ≤ xt ≤ 30 and −30 ≤ ut ≤ 30; and
we assume noise such that −1 ≤ wt ≤ 1 and −1 ≤ et ≤ 1.

We consider that Q and R are the identity matrix I.

We simulate the setting for all T ∈ {2, 3, . . . , 30}.
Results. The results are summarized in Figure 1 and

Figure 2 for ρ = 0.85 and ρ = 1.05 respectively. Under
Gaussian and worst-case noise, Algorithm 1’s performance
lies between that of the H2 and H∞ controllers. Under all
other noise types: for ρ = 0.85, Algorithm 1 outperforms the
H2 and H∞ controllers; for ρ = 1.05, Algorithm 1 outper-
forms the H∞ controller. In sum, Algorithm 1 demonstrates
a BoBW performance across all scenarios.



Gaussian Uniform Gamma Exponential 

Bernoulli Weibull Poisson Worst-case

Fig. 3: Performance Comparison given the Quadrotor System in Section IV-B. The performance is quantified per the cost in eq. (4). Each figure
corresponds to a different process and measurement noise type. The shaded areas represent standard deviation.

B. Hovering Quadrotor
Simulation Setup. We consider a quadrotor model with

state vector its position and velocity, and control input its
roll, pitch, and total thrust. The quadrotors goal is stay at a
predefined hovering position. To this end, we focus on its
linearized dynamics, taking the form

At=


1 0 0 0.1 0 0
0 1 0 0 0.1 0
0 0 1 0 0 0.1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , Bt=

− 4.91

100 0 0
0 4.91

100 0
0 0 1

200
− 98.1

100 0 0
0 98.1

100 0
0 0 1

10

 .

The quadrotor collects GPS and IMU measurements. The
GPS measurements are available every 3 time steps, and
the IMU measurements are available in all other time steps,
reflecting the real-world scenarios where IMU measurements
are more frequently available [31]. Formally,

Ct =



 1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 , t = {1, 4, . . .},
 0 0 0 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1

 , t = {2, 3, 5, 6 . . .}.
We choose the safety constraints: −5 ≤ xt ≤ 5 and

[−π −π −20]> ≤ ut ≤ [π π 20]>; and we assume noise
such that −0.1 ≤ wt ≤ 0.1 and −0.1 ≤ et ≤ 0.1.

We consider that Q and R are the identity matrix I.
We simulate the setting for all T = {2, 3, . . . , 25}.
Results. The results are summarized in Figure 3. Algo-

rithm 1’s performance lies between that of the H2 and H∞
controllers under Gaussian and worst-case noise. Under all
other noise types, Algorithm 1 always outperforms the H2

controller, and is on par with theH∞ controller up to horizon
around T = 15. All in all, Algorithm 1 demonstrates a
superior or BoBW performance across all scenarios.

V. CONCLUSION

Summary. We provided an algorithm for the safe control
of partial-observed LTV systems against unknown and un-
predictable process and measurement noise (Algorithm 1).
Algorithm 1 prescribes an output-feedback control input,
guaranteeing safety and minimum worst-case dynamic regret
among all noise realizations. To derive Algorithm 1, we
formulated an SDP based on a System Level Synthesis
approach for partially-observed LTV systems. We validated
Algorithm 1 in simulated scenarios; the algorithm was ob-
served to be better or on par with either the H2 or H∞
controller, demonstrating a Best of Both Worlds performance.

Future Work. Algorithm 1 plans control policies given a
lookahead time horizon, relying on an a priori knowledge of
the state, control input, and measurement matrices across the
horizon (Assumption 1). This is infeasible in general: e.g.,
in camera-based navigation, where state estimation relies
on feature detection and tracking over sequential camera
frames, the measurement matrices become known only once
the frames have been captured and the features have been
detected [32]. But which will be the frames and which will
be the detected features is typically unknown a priori. In
our future work, we aim to address the said limitations by
enabling online learning variants of our algorithm that (i) do
not rely on Assumption 1, and that (ii) provably guarantee
a Best of Both Worlds performance. We will also ensure its
efficient implementation to demonstrate application in real-
world systems, in particular, aerial drones that aim to land
on moving platforms or perform acrobatics in the presence
of unpredictable wind disturbances.

APPENDIX

A. Proof of Proposition 1

The proof follows similar steps as in [27, Theorem 2.1],
differing from [27, Theorem 2.1] in that the system is
partially observed, i.e., y = Cx+e, and the control input now



depends on the measurement models C and measurement
noise, i.e., u = KCx +Ke.

We first prove the sufficiency of the conditions in Propo-
sition 1, and then their necessity.

Sufficiency: We show that: 1) Φxw, Φxe, Φuw, and
Φue are lower triangular block-matrices; 2) Φxw, Φxe, Φuw,
and Φue lie in the affine space in eq. (13); 3) controller K
can be recovered from eq. (14). Respectively:

1) The statement holds since A,B, C are block-diagonal, K
is block-lower-triangular, Z is the block-downshift oper-
ator, and the inverse of a block-lower-triangular matrix
remains a block-lower-triangular matrix.

2) From eqs. (10b) and (10c), we have

u = KCx +Ke. (17)

Substituting eq. (17) into (10a) gives:

x = ZAx + ZBKCx + ZBKe + w

⇒ (I−ZA−ZBKC)x = w + ZBKe

⇒ x = Φxww + Φxee.

(18)

Then, substituting eq. (18) into (17) gives:

u = KCΦxww +KCΦxee +Ke

= KCΦxww + (KCΦxe +K) e

= Φuww + Φuee.

(19)

From eq. (18) and eq. (19), we show that eq. (12) holds.
Now using eq. (12), we show eq. (13) holds:

[
I−ZA −ZB

] [ Φxw

Φuw

]
= (I−ZA)Φxw −ZBKCΦxw

= (I−ZA−ZBKC)Φxw = I,[
I−ZA −ZB

] [ Φxe

Φue

]
= (I−ZA)ΦxwZBK − ZBKCΦxwZBK − ZBK
= (I−ZA−ZBKC)ΦxwZBK − ZBK
= ZBK − ZBK = 0,[

Φxw Φxe

] [ I−ZA
−C

]
= Φxw (I−ZA)−ΦxwZBKC
= Φxw (I−ZA−ZBKC) = I,[

Φuw Φue

] [ I−ZA
−C

]
= KCΦxw (I−ZA)−KCΦxwZBKC − KC
= KCΦxw (I−ZA−ZBKC)−KC
= KC − KC = 0.

3) By substituting eqs. (12c) and (12d), we get

Φue −ΦuwΦ−1xwΦxe = KCΦxe +K −KCΦxwΦ−1xwΦxe

= KCΦxe +K −KCΦxe = K.

Necessity: We show that lower triangular block-matri-
ces Φxw, Φxe, Φuw, and Φue that satisfy eq. (13) and
eq. (14) lead to a lower triangular block-matrix K per
eq. (10). To this end, eq. (13) can be written as

(I−ZA)Φxw −ZBΦuw = I; (21a)
(I−ZA)Φxe −ZBΦue = 0; (21b)

Φxw (I−ZA)−ΦxeC = I; (21c)
Φuw (I−ZA)−ΦueC = 0. (21d)

We can obtain Φxw = (I−ZA)−1 (I + ZBΦuw), from
eq. (21a). Since the matrix Φuw is block-lower-triangular,
(I + ZBΦuw) is invertible. Hence, the inverse of Φxw exists.

Given that Φ−1xw exists, we define K = Φue −
ΦuwΦ−1xwΦxe. This ensures K is block-lower-triangular.

Now we show that eq. (12) holds. Firstly, substituting
eqs. (21c) and (21d) into the definition of K gives

KC = ΦueC −ΦuwΦ−1xwΦxeC
= Φuw (I−ZA)−ΦuwΦ−1xw (Φxw (I−ZA)− I)

= ΦuwΦ−1xw ⇒ Φuw = KCΦxw.
(22)

Combining eqs. (21a) and (22), we obtain

(I−ZA)Φxw −ZBKCΦxw = I

⇒ Φxw = (I−ZA−ZBKC)−1 .
(23)

To find Φue in terms of Φxe, substituting eq. (22) into the
definition of K gives,

Φue = ΦuwΦ−1xwΦxe +K = KCΦxe +K, (24)

which also impies ZBΦue = ZBKCΦxe+ZBK. Combining
it with eq. (21b), we obtain Φxe:

(I−ZA)Φxe = ZBKCΦxe + ZBK
⇒ (I−ZA−ZBKC)Φxe = ZBK ⇒ Φxe = ΦxwZBK.

(25)
To show eq. (10), we substitute eq. (12) into eq. (11).

B. Proof of Theorem 1

We follow the sketch of proof presented in Section III-
B. Since the LTV output-feedback control law u can be
obtained from {Φxw,Φxe,Φuw,Φue} per Proposition 1, the
optimization problem (7) can be formulated to optimize over
the generalized response. Formally,

min
Φ,Z, λ

worst-case-regretT (u) subject to:

Φxw,Φxe,Φuw,Φue being lower block triangular;
(26a)

eq. (13a) and eq. (13b); (26b)

HΦ

[
w
e

]
≤ h, ∀w, e :

[
Hw 0
0 He

] [
w
e

]
≤
[

hw
he

]
(26c)

where by substituting eq. (11) into eq. (6) we can rewrite
worst-case-regretT (u) as

max
‖w‖22 + ‖e‖22≤ r2

[
w
e

]> (
Φ>DΦ− (Φc)>DΦc

) [ w
e

]
.



In light of the first step of the proof of [19, Theorem 4],
we can equivalently write worst-case-regretT (u) as

min
λ> 0

λ subject to λI−
(
Φ>DΦ− (Φc)>DΦc

)
� 0.

(27)
Using Schur complement [33], we rewrite the constraint in
eq. (27) in the form of eq. (16d).

The proof is now completed by following the steps of the
proof of [20, Theorem 3] to reformulate the safety constraints
as a linear matrix inequalities via dualization.
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