
Communication-efficient distributed optimization with
adaptability to system heterogeneity

Ziyi Yu and Nikolaos M. Freris

Abstract— We consider the setting of agents coop-
eratively minimizing the sum of local objectives plus a
regularizer on a graph. This paper proposes a primal-
dual method in consideration of three distinctive
attributes of real-life multi-agent systems, namely:
(i) expensive communication, (ii) lack of synchroniza-
tion, and (iii) system heterogeneity. In specific, we
propose a distributed asynchronous algorithm with
minimal communication cost, in which users commit
variable amounts of local work on their respective sub-
problems. We illustrate this both theoretically and
experimentally in the machine learning setting, where
the agents hold private data and use a stochastic
Newton method as the local solver. Under standard
assumptions on Lipschitz continuous gradients and
strong convexity, our analysis establishes linear con-
vergence in expectation and characterizes the depen-
dency of the rate on the number of local iterations.
We proceed a step further to propose a simple means
for tuning agents’ hyperparameters locally, so as to
adjust to heterogeneity and accelerate the overall
convergence. Last, we validate our proposed method
on a benchmark machine learning dataset to illustrate
the merits in terms of computation, communication,
and run-time saving as well as adaptability to hetero-
geneity.

I. INTRODUCTION
The resurgence of distributed optimization [1] is un-

derscored by the vast numbers of smart devices (phones,
sensors, etc.) that collect massive volumes of data in a
distributed fashion. It has concise advantages compared
to its centralized counterpart in terms of balancing com-
putation and communication costs as well as minimizing
delays, and has thus found applications in a broad range
of fields, such as in machine learning and data mining
[2], [3], signal processing [4], [5], wireless sensor networks
[6], and control [7].

The archetypal problem that we consider is to:

minimize
x̂ ∈ Rd

1
n

n∑
i=1

fi(x̂) + r(x̂), (1)

where n is the number of agents in the network, fi(·) :
Rd → R is a strongly convex and smooth cost function
pertaining to agent i ∈ [n] ([n] := {1, . . . , n}), and r(·) is
a convex but possibly non-smooth function that serves
to impose regularity on the solution. We further pose
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additional structure on the cost function as motivated
by the machine learning framework. In specific, the i-th
agent possesses a batch of data samples

{
sj

i

}Di

j=1 with
volume Di, whence:

fi(x̂) := 1
Di

Di∑
j=1

l(sj
i ; x̂), (2)

where l(·; x̂) is the loss function associated with one data
sample for a model parameter x̂.

There has been extensive work on the consensus frame-
work, especially first-order methods [8]–[13], which are
prone to slow convergence in ill-conditioned problems.
Second-order information can be used to remedy this
[14]–[16], nonetheless, this comes with caveats in terms of
extensive message-passing and stringent synchronization
requirements.

Our proposed solution falls under the taxonomy of
primal-dual methods, in particular, the celebrated Al-
ternating Direction Method of Multipliers (ADMM) [17]
which has given rise to a multitude of distributed meth-
ods [18]–[22] that feature fast convergence and robustness
to hyperparameter selection. The computationally chal-
lenging component of ADMM lies in solving optimiza-
tion sub-problems associated with the local objectives.
To this end, there has been extensive work on inexact
methods, that typically involves a gradient step for the
local problems [20], [21]. In contrast, the use of second-
order information for obtaining inexact solutions has
been unattractive as it requires inner communication
loops to approximate the Hessian [23], [24]. This issue
was resolved by the DRUID framework [25], which re-
formulated the problem by introducing intermediate vari-
ables, thus allowing for a decomposition that supports
(quasi-)Newton local solvers without an increase in com-
munication costs. Nevertheless, the methods in [25] only
considered a single local iteration and deterministic local
solvers, while the analysis heavily relies on this setting;
they are thus unsuitable to capture computational het-
erogeneity in a real system.

The proposed solution in this paper is motivated by
three main features/requirements in large-scale smart
systems, namely:

1) communication is costly (in view of battery
drainage, limited bandwidths, and stringent delay
considerations),

2) synchronous methods are unattractive (due to agent
unavailability caused by varying operating condi-
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tions as well as the difficulty of the synchronization
problem [26]), and

3) heterogeneity in computing capabilities (this allows
for variable work loads to be committed based on
the device hardware and battery levels).

We propose a distributed asynchronous communication-
efficient protocol tailored for variability to system het-
erogeneity. The contributions are summarized as follows.
Contributions:

1) The proposed method, DRUID-VL, allows an arbi-
trary subset of agents to participate in each round
and features minimal communication costs (a single
broadcasting step of the local variable to neighbor-
ing agents).

2) It specifically addresses heterogeneity in terms of
local work. We illustrate this in the machine learning
setting by applying an agent-dependent number of
stochastic Newton steps for the local sub-problem.

3) We establish linear convergence in expectation (for
arbitrary levels of heterogeneity) and characterize
the convergence rate (Theorem 1). In particular, our
analysis captures the effect of local work on the
convergence of the algorithm and allows for a simple
method to tune hyperparameters locally to further
accelerate the convergence.

4) We experimentally demonstrate on a real-life
dataset the communication and computation bene-
fits of our method vis-à-vis prior art, and also study
the algorithm’s gains by adapting to heterogeneity.

II. PRELIMINARIES

A. Problem Formulation

The network topology is captured by an undirected
graph G = (V, E), where V = {1, . . . , n} is the vertex
set and E ⊆ V × V is the edge set, i.e. (i, j) ∈ E if
agent i can exchange packets with agent j (Ni := {j :
(i, j) ∈ E} denotes the neighborhood of i). Provided that
G is connected, (1) can be directly recast in the following
consensus setting:

minimize
xi, θ, zij

1
n

n∑
i=1

fi(xi) + r(θ),

subject to xi = zij = xj , ∀(i, j) ∈ E ,

xq = θ, for one arbitrary q ∈ [n],
(3)

where we introduce θ to separate the smooth and non-
smooth functions in (1), and select (arbitrarily) the q-th
agent to enforce the equality constraint as xq = θ. By
defining the source and destination matrices Âs, Âd ∈
R|E|×n: [Âs]ki = [Âd]kj = 1 if (i, j) is the k-th element in
E and all other entries are zero, stacking xi, zij ∈ Rd into
column vectors x ∈ Rnd, z ∈ R|E|d, respectively, denoting
f(x) = 1

n

∑n
i=1 fi(xi), and defining S := eq⊗Id ∈ Rnd×d

(eq ∈ Rn has one at the q-th entry and zero elsewhere),

we obtain a compact representation as:
minimize

x, z, θ
f(x) + r(θ),

subject to Ax =
[
Âs ⊗ Id

Âd ⊗ Id

]
x =

[
I|E|d
I|E|d

]
z = Bz,

S⊤x = θ.

(4)

We further make the definitions Êu = Âs + Âd, Ês =
Âs − Âd ∈ R|E|×n (unsigned and signed graph incidence
matrix), L̂u = Ê⊤

u Êu, L̂s = Ê⊤
s Ês ∈ Rn×n (unsigned

and signed graph Laplacian matrix), and D̂ = 1
2 (L̂u +

L̂s) ∈ Rn×n (graph degree matrix with entries Dii =
|Ni|). Their block extensions are given by Eu = Êu⊗ Id,
Es = Ês ⊗ Id, Lu = L̂u ⊗ Id, Ls = L̂s ⊗ Id, and D =
D̂ ⊗ Id (where ⊗ denotes the Kronecker product and Id

the identity matrix).
Remark 1: It is worth noting that the use of the

intermediate variables {zij} is essential for each agent
to estimate curvature without information exchange in
the neighborhood, leading to a communication-efficient
protocol. For more details, we refer the reader to [25,
Remark 2].

B. ADMM Formulation
The augmented Lagrangian (AL) for (4) is

L(x, θ, z; y, λ) := f(x) + r(θ) + y⊤(Ax−Bz) (5)

+ λ⊤(S⊤x− θ) + µz

2 ∥Ax−Bz∥2 + µθ

2 ∥S
⊤x− θ∥2.

We apply (3-step) ADMM to (5):

xt+1 = argmin
x
LΓ(x, θt, zt; yt, λt), (6a)

θt+1 = argmin
θ
L(xt+1, θ, zt; yt, λt), (6b)

zt+1 = argmin
z
L(xt+1, θt+1, z; yt, λt), (6c)

yt+1 = yt + µz(Axt+1 −Bzt+1), (6d)
λt+1 = λt + µθ(S⊤xt+1 − θt+1). (6e)

Note that minimization in (6a) is carried over the per-
turbed AL:

LΓ(x, θt, zt; yt, λt) := L(x, θt, zt; yt, λt) + 1
2∥x− xt∥2

Γ,

(7)
where we define the coefficient matrix Γ :=
diag (ϵ1, . . . , ϵn) ⊗ Id ∈ Rnd×nd, and ϵi > 0,∀i ∈ [n].
This serves to add robustness by means of personalized
hyperparameters (ϵi for each agent i). The main
computational burden resides in the sub-optimization
problem (6a), for which obtaining an exact solution
would be time-consuming [19]; to remedy this issue,
vanilla DRUID [25] adopts a single step of the same
deterministic algorithm (GD, Newton, or BFGS) across
all agents to solve (6a) inexactly.

Our work serves to bridge the gap between distributed
inexact [25] and exact ADMM [19] by deviating from
single-step updates and permitting a variable, agent-
dependent number of updates (Ei for agent i). This is



necessary in order to further exploit local computation
resources to attain a better trade-off between compu-
tation (more work) and communication (fewer global
rounds). For the local solver, we opt for a stochastic
Newton method [27] that employs sub-sampled Hessian
inverse and stochastic gradient. This is in view of the
special structure as in (2), for which stochastic methods
have proliferated in problems with Big Data (these meth-
ods operate by sampling mini-batches of data, and use
tools such as gradient tracking and variance reduction to
recover linear convergence [27]–[29]).

The following extends [25, Lemma 1] to the case of
personalized hyperparameters and variable local itera-
tions of stochastic Newton, and is key for an efficient
implementation of (6) under agent-specific stochastic
Newton steps for sub-problem (6a). Note that below we
use a generic local iteration number E for notational
simplification but would like to emphasize that the im-
plementation of the algorithm supports freely choosing
the local work as Ei.

Lemma 1: Consider (6) with (6a) replaced by E steps
of stochastic Newton (∇̂, ∇̂2 denote stochastic gradi-
ent/Hessian). Let yt = [αt; βt], αt, βt ∈ R|E|d. If y0 and
z0 are initialized so that α0 + β0 = 0 and z0 = 1

2 Eux0,
then αt +βt = 0 and zt = 1

2 Euxt for all t ≥ 0. Moreover,
defining ϕt := E⊤

s αt, xt,0 := xt and xt,E := xt+1, the
updates can be written as:

xt,e = xt,e−1 −
(
∇̂2f(xt,e−1) + µzD + µθSS⊤ + Γ

)−1

[
∇̂f(xt,e−1) + ϕt + Sλt + 1

2µzLsxt + Γ(xt,e−1 − xt)

+ µθS(S⊤xt − θt)
]
, e = 1, . . . , E, (8a)

θt+1 = proxr/µθ
(S⊤xt+1 + 1

µθ
λt), (8b)

ϕt+1 = ϕt + 1
2µzLsxt+1, (8c)

λt+1 = λt + µθ(S⊤xt+1 − θt+1), (8d)

where prox denotes the proximal mapping [30].
Proof: See Appendix.

III. ALGORITHM
The updates in (8) can be directly written as a dis-

tributed protocol (9), that is amenable to implemen-
tation with solely agent-based variables. thIn specific,
agent i holds (xi, ϕi) (the q-th agent associated with
the regularizer r(·) additionally holds (θ, λ)) which are
updated as:

xt,e
i = xt,e−1

i − dt,e−1
i , e = 1, . . . , Ei, (9a)

θt+1 = proxr/µθ
(xt+1

q + 1
µθ

λt), (9b)

ϕt+1
i = ϕt

i + µz

2
∑

j∈Ni

(xt+1
i − xt+1

j ), (9c)

λt+1 = λt + µθ(xt+1
q − θt+1). (9d)

Algorithm 1 DRUID-VL
Input: global rounds T, work loads Ei

1: for global round t = 1, . . . , T do
2: for each active agent i in parallel do

Primal update:
3: xt,0

i ← xt
i

4: for e = 1, . . . , Ei do
5: sample batches bg and bH

6: compute gt,e−1
i,bg

, Ht,e−1
i,bH

as in (10)
7: solve Ht,e−1

i,bH
dt,e−1

i = gt,e−1
i,bg

8: xt,e
i ← xt,e−1

i − dt,e−1
i

9: end for
10: xt+1

i ← xt,Ei

i

Communication:
11: broadcast xt+1

i to neighbors
Dual update:

12: ϕt+1
i ← ϕt

i + µz

2
∑

j∈Ni
(xt+1

i − xt+1
j )

Updates pertaining to the regularizer:
13: if i = q then
14: θt+1 ← proxr/µθ

(xt+1
q + 1

µθ
λt)

15: λt+1 ← λt + µθ(xt+1
q − θt+1)

16: end if
17: end for
18: end for

Agent i conducts Ei local iterations as in (9a), where
dt,e−1

i is an approximated Newton step that is obtained
as follows. In local iteration e, we sample mini-batches bg

and bH from the local dataset of the i-th agent
{

sj
i

}Di

j=1.
We then compute stochastic gradient gt,e−1

i,bg
and sub-

sampled Hessian Ht,e−1
i,bH

for the local sub-problem with
respect to xt,e−1

i as follows:

gt,e−1
i,bg

:= 1
|bg|

∑
j∈bg

∇l(sj
i ; xt,e−1

i ) + δiqµθ

(
xt

i − θt + µ−1
θ λt

)
+ϕt

i + µz

2
∑

j∈Ni

(
xt

i − xt
j

)
+ ϵi

(
xt,e−1

i − xt
i

)
,

(10)

Ht,e−1
i,bH

:= 1
|bH |

∑
j∈bH

∇2l(sj
i ; xt,e−1

i ) + (µz|Ni|+ δiqµθ + ϵi)Id,

where δiq = 1 if i = q and 0 otherwise. By solving
the linear system Ht,e−1

i,bH
dt,e−1

i = gt,e−1
i,bg

, we obtain the
desired stochastic Newton step dt,e−1

i .
The details of our proposed method, DRUID-VL (VL:

variable loads), are given in Algorithm 1. It admits
asynchronous implementation by allowing variable num-
ber of participating agents in each global round (step
2). Each active agent executes four stages sequentially:
(i) Primal update (steps 3-10, using Ei iterations of
stochastic Newton), (ii) Communication (broadcasting of
the local variable xi as in step 11), (iii) Dual update (step
12) and (iv) Updates pertaining to the regularizer (steps
13-16, only for the q−th agent).



IV. CONVERGENCE ANALYSIS
We proceed to establish our main convergence theorem

(Theorem 1) under the following assumptions. The proofs
of all theoretical results are deferred to the appendix.

Assumption 1: The graph G is connected.
Assumption 2: The mini-batches 1

|b|
∑

j∈b l(sj
i ; ·)

and the regularizer function r(·) satisfy the following
conditions:

(i) For each agent i ∈ [n], 1
|b|

∑
j∈b l(sj

i ; ·) are twice
continuously differentiable, mf -strongly convex with Mf -
Lipschitz continuous gradient, i.e., ∀i ∈ [n], xi ∈ Rd,

mf Id ⪯
1
|b|

∑
j∈b

∇2l(sj
i ; xi) ⪯Mf Id, (11)

where 0 < mf ≤Mf <∞.
(ii) The Hessians of 1

|b|
∑

j∈b l(sj
i ; ·) are Lipschitz con-

tinuous with constant L, i.e., ∀i ∈ [n], xi, yi ∈ Rd,∥∥∥∥ 1
|b|

∑
j∈b

∇2l(sj
i ; xi)−

1
|b|

∑
j∈b

∇2l(sj
i ; yi)

∥∥∥∥ ≤ L∥xi − yi∥.

(12)
(iii) r(·) : Rd → R is proper, closed, and convex, i.e.,

∀x, y ∈ Rd,

(x− y)⊤(∂r(x)− ∂r(y)) ≥ 0, (13)

where the inequality is meant for arbitrary elements in
the subdifferential.

Assumption 3: The agent participation over rounds
is independent with probability pi for agent i and pmin :=
mini∈[n] pi > 0.

In the following (Lemmas 2, 4, and Theorem 1), ex-
pectation E denotes conditional expectation upon past
mini-batch selections and agent activations (assuming
independence of the two processes). It is taken over the
mini-batch selection at the current step (Lemmas 2, 4)
and the user activation (Theorem 1).

The following lemma is a direct consequence of the
analysis of stochastic Newton method [27, Theorem 11]
applied to our setting (9a).

Lemma 2: Let xt,⋆ be solution to (6a). For sufficiently
large batch sizes |bg| and |bH |, there exists ci ∈ (0, 1) for
i ∈ [n]. For C := diag

(
cE1

1 , . . . , cEn
n

)
⊗ Ind ∈ Rnd×nd, it

holds that

E
[
∥xt,E − xt,⋆∥2

]
≤ ∥xt,0 − xt,⋆∥2

C . (14)
The next lemma characterizes the residual error of primal
sub-problem (6a) induced by inexact updates as in (9a).
Recall that yt = [αt;−αt] and ϕt := E⊤

s αt.
Lemma 3: The residual error is given by:

et := ∇LΓ(xt+1, θt, zt; yt, λt) (15)
= ∇f(xt+1) + E⊤

s αt+1 + µzE⊤
u (zt+1 − zt)

+ S(λt+1 + µθ(θt+1 − θt)) + Γ(xt+1 − xt). (16)
Note that from Assumption 2 it follows that
LΓ(x, θt, zt; yt, λt) in (7) has Lipschitz continuous

gradient with parameter

M := Mf + µz max
i∈[n]
|Ni|+ µθ + max

i∈[n]
ϵi. (17)

The following lemma provides an upper bound for the
residual error given in Lemma 3 in relation to the
difference of two consecutive primal iterates xt+1 − xt.

Lemma 4: Recall C := diag
(

cE1
1 , . . . , cEn

n

)
⊗Ind. For

any i ∈ [n], under sufficiently large batch sizes there
exists ci ∈ (0, 1) so that for any ξi ∈

(
0, c−1

i − 1
)

it holds
that:

E
[
∥et∥2]

≤ E
[
∥xt+1 − xt∥2

T (E)

]
, (18)

where T (E) := diag (τ1(E1), . . . , τn(En))⊗Ind ∈ Rnd×nd

with
τi(Ei) :=

(
1 + ξ−1

i

)
M2cEi

i

1− (1 + ξi)cEi
i

, i ∈ [n]. (19)

In what follows, we present the main convergence theo-
rem that establishes linear convergence in expectation of
DRUID-VL.

Theorem 1: Define P := diag(pi) and

H := diag
(
Γ, 2µzI|E|d, 2µ−1

z I|E|d, µθId, µ−1
θ Id

)
, (20)

v := [x; z; α; θ; λ] ∈ R(n+2|E|+2)d. (21)

Let

η = min
{

min
i∈[n]

µθσ+
min(ϵi − ζτi(Ei))
5(τi(Ei) + ϵ2

i ) ,(
2mf Mf

mf + Mf
− 1

ζ

)
1

maxi∈[n] ϵi + µθ(σLumax + 2)
,

2
5

µθσ+
min

mf + Mf
,

σ+
min

5 max
{

1, σLumax

} ,
1
2

}
,

(22)
where σ+

min denotes the smallest positive eigenvalue
of

[
Es

S⊤

] [
Es S⊤]

, σLu
max denotes the maximum eigen-

value of Lu, ζ ∈
(

mf +Mf

2mf Mf
, mini∈[n]

ϵi

τi(Ei)

)
, and ϵi >

τi(Ei)(mf +Mf )
2mf Mf

, i ∈ [n], then it holds that:

E
[
∥vt+1 − v⋆∥2

HP −1

]
≤

(
1− ηpmin

1 + η

)
∥vt − v⋆∥2

HP −1 .

(23)
Remark 2: ADMM is a first-order method and thus

converges linearly (the best possible rate [19]). Our goal
is to accelerate convergence inside the ADMM frame-
work by performing variable work loads on agents and
therefore the result in Theorem 1 falls into the taxonomy
of linear convergence. On the other hand, superlinear
convergence to the global optimum in distributed net-
works requires heavy communication costs among agents
(usually multiple message exchanges in one round [14]–
[16], and does not admit asynchronous implementation).
In contrast, our proposed method requires a single com-
munication step of size d and is asynchronous, suitable
for real-life multi-agent networks where communication
is the main bottleneck.



(a) Relative error versus global rounds. (b) Relative error versus time.

Fig. 1: Comparisons of DRUID-VL (synchronous setting and common E for all agents) with baseline algorithms in
terms of relative error ∥xt−x⋆∥2

∥x0−x⋆∥2 ; convergence versus (a) global rounds and (b) run-time.

In the following corollary, we show that the personal-
ized coefficient ϵi (the diagonal entries of Γ in (7)) can
be further optimized to adjust to the heterogeneity of
variable work loads, so as to achieve faster convergence
(i.e., increase η in (22)).

Corollary 1: By selecting

ϵi = ζτi(Ei) +
√

ζ2τ2
i (Ei) + τi(Ei), (24)

for ζ >
mf +Mf

2mf Mf
, (23) holds with

η = min
{

µθσ+
min

10ζ min
i∈[n]

(√
τ2

i (Ei) + ζ−2τi(Ei) + τi(Ei)
)−1

,(
2mf Mf

mf + Mf
− 1

ζ

)
1

maxi∈[n] ϵi + µθ(σLumax + 2)
,

2
5

µθσ+
min

mf + Mf
,

σ+
min

5 max
{

1, σLumax

} ,
1
2

}
.

(25)

V. EXPERIMENTS
We consider distributed sparse logistic regression, i.e,

l(s; x̂) := log
(

1 + ex̂⊤w
)

+ (1− y)x̂⊤w,

for s = (w, y) ∈ Rd × {0, 1} and r(x̂) = γ∥x̂∥1, with
γ = 2 × 10−6. We take 4, 000 samples of dimension
d = 22 from ijcnn1 1 and evenly distribute them to
10 agents, whose network topology is generated by the
Erdős-Rényi model with p = 0.2 (each edge is generated
independently with probability 0.2). We first evaluate our
proposed method, DRUID-VL (with the same work load
E = 10 and 20 across all agents), against five baselines,
namely PGE [9], P2D2 [13], DRUID-GD/-Newton [25],
and Exact-ADMM (i.e., solving (6a) ‘exactly’, which
means assuring a primal-dual gap of 10−5, in Primal
update of Algorithm 1, while other stages are unchanged),

1Available at https://www.csie.ntu.edu.tw/˜cjlin/libsvm/.

considering only synchronous updates as all but DRUID
do not support asynchronous implementation. We set ϵ =
µθ = 2µz = 10−4 (the selection follows from our analysis
in (36)), and sampling batch size |bg| = |bH | = 100 for
DRUID-VL.

The convergence of each algorithm is plotted in Fig. 1a
and 1b, in terms of global rounds and time, respec-
tively. Fig. 1a demonstrates that for a fixed target
error, DRUID-VL with E = 10/20 requires 41%/59%
less global rounds compared to DRUID-Newton, while
the benefits are much higher for the other (gradient-
based) baselines. Fig. 1b illustrates the progress of each
algorithm per actual run-time (this is done since the cost
of one round using a second-order local solver is higher
than for gradient-based methods). We deduce that for
a given time, DRUID-VL with E = 10/20 decreases
the relative error by 1.96 × /4.76× of DRUID-Newton,
and 12.5× /33.3× of PGE, DRUID-GD, and P2D2. We
also emphasize that although Exact-ADMM attains the
fastest convergence in terms of global rounds (Fig. 1a),
solving the sub-problem exactly brings about heavy com-
putational overhead. As a result, Exact-ADMM has the
slowest convergence speed among all DRUID variants in
real-time scale (Fig. 1b). These findings corroborate that
our proposed method better exploits local computation
resources to reduce communication costs and run-time.

We further study the impact of heterogeneity and par-
ticipation rate in Fig. 2, in terms of the communication
cost to reach a given accuracy (10−2 in all cases). The
former is achieved by three alternatives for work load
selection (for fair comparison we set the average load
fixed): Equal - Ei = 10 for all i; Uniform - {Ei}n

i=1 are
sampled at uniformly random from ∼ U{1, 19}; Extreme
- half of agents are assigned Ei = 1 while the others have
Ei = 19. We use the same parameter setting as in Fig. 1
and fix ϵi = 10−4 for all agents. Fig. 2 shows that the par-
ticipation rate pmin does not have a significant impact on
the communication burden per agent, in full accord with



(23). More interestingly, heterogeneity is shown to play a
major role in exacerbating communication costs: higher
variance of work load {Ei}n

i=1 (e.g., in our case, Extreme
selection) yields significant rise in communication cost.

Fig. 2: Average communication cost per agent to reach
an error of 10−2 under variable heterogeneity and par-
ticipation rate.

Based on the analysis in Corollary 1, we further tune
the local hyperparameters ϵi so as to adjust to hetero-
geneity. Given that the expression in (24) cannot be
analytically evaluated in a real scenario (where constants
Mf , mf , ci are unknown), we choose a surrogate rule
based on (19) and (24) as:

ϵi = ϵ̄cEi−Ē [1− (1 + ζ)cĒ ]/[1− (1 + ζ)cEi ],

where we select ϵ̄ = 10−4, Ē = 10, c = 0.98, ζ = 5×10−3.
The results are plotted in Fig. 3, for the Uniform het-
erogeneity setting (as in Fig. 2). We observe a noticeable
reduction of the number of global rounds needed to
reach a common accuracy (10−2). Maximum gain from
hyperparameter tuning is achieved at pmin = 0.4 (28.2%
less rounds). Last but not least, the gain increases when
the participation rate pmin decreases, indicating that our
proposed method is well-suited to adapt to heterogeneity
in the most challenging (albeit common in real-systems)
scenario of ‘high’ asynchrony.

Fig. 3: Global rounds required to reach an error of 10−2

with tuned and un-tuned ϵi under Uniform selection of
{Ei}n

i=1.

VI. CONCLUSION

We proposed a distributed asynchronous primal-dual
method tailored for heterogeneous multi-agent systems
(in terms of variability of local work). The algorithm
allows for a variable number of participating agents and
requires a single broadcast of the local vector. Linear
convergence was established for arbitrary degree of het-
erogeneity (Theorem 1). Additionally, a simple method of
personalizing hyperparameters locally (Corollary 1) was
shown to accelerate the algorithm both theoretically and
experimentally.
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Appendix
Proof of Lemma 1: The decomposition of yt =
[αt;−αt] and the property that zt = 1

2 Euxt follow the
same lines as in the proof of [25, Lemma 1]. (8a) is
obtained by using multiple stochastic Newton steps for
(6a) and invoking zt = 1

2 Euxt (which eliminates (6c))
and the property that yt = [αt;−αt]; by completion of
squares, (6b) can be converted to (8b) under Assumption
2. (8c) is equivalent to (6d), achieved by inspecting the
symmetric structure in y and the proper initialization
α0 + β0 = 0; finally, (8d) is equivalent to (6e). ■
Proof of Lemma 2: It follows from the analysis of
stochastic Newton method [27, Theorem 11] that for
sufficiently large batch sizes |bg| and |bH |, there exist
ci ∈ (0, 1) such that for i ∈ [n]:

E
[
∥xt,Ei

i − xt,⋆
i ∥

2
]
≤ cEi

i ∥x
t,0
i − xt,⋆

i ∥
2,

whence (14) follows from the definition of C. ■
Proof of Lemma 3: The gradient of the perturbed AL
in (7) at global round t is given by:

∇LΓ(x, θt, zt; yt, λt) := ∇f(x) + A⊤yt + Sλt (26)
+ µzA⊤ (

Ax−Bzt
)

+ µθS(S⊤x− θt) + Γ(x− xt).

Following from Lemma 1, we obtain:

Sλt + µθS(S⊤xt+1 − θt) = Sλt+1 + µθS(θt+1 − θt),

A⊤yt + µzA⊤ (
Axt+1 −Bzt

)
= ϕt + µz

2
(
2Dxt+1 − Luxt

)
,

ϕt + µz

2
(
2Dxt+1 − Luxt

)
= ϕt+1 + µz

2 Lu

(
xt+1 − xt

)
,

µz

2 Lu

(
xt+1 − xt

)
= µzE⊤

u (zt+1 − zt),

in specific, the first equality follows from (8d) and
S⊤xt+1 = θt+1; the second from (6d), (8c), and ϕt =
E⊤

s αt; the third from D = 1
2 (Lu + Ls); finally, the

last from zt = 1
2 Euxt. Substituting them into (26) with

x = xt+1, we obtain (15). ■
Proof of Lemma 4: The Lipschitz continuity of
∇LΓ(x, θt, zt; yt, λt) with parameter M as in (17) is a
direct consequence of Assumption 2 and the definition in
(7). It then follows from Lemma 3 that

∥et∥2 = ∥∇LΓ(xt+1, θt, zt; yt, λt)∥2

≤M2∥xt+1 − xt,⋆∥2,
(27)

From the inequality ∥a+b∥2 ≤ (1+ξ−1)∥a∥2+(1+ξ)∥b∥2

for any ξ > 0, we obtain for any i ∈ [n]

∥xt
i − xt,⋆

i ∥
2 ≤ (1 + ξ−1

i )∥xt
i − xt+1

i ∥2

+ (1 + ξi)∥xt+1
i − xt,⋆

i ∥
2.

(28)

Taking expectation on both sides of (28) and invoking
Lemma 2 (recall xt+1

i := xt,Ei

i ), we obtain

E
[
∥xt+1

i − xt,⋆
i ∥

2]
≤ cEi

i E
[
∥xt

i − xt,⋆
i ∥

2]
≤ (1 + ξ−1

i )cEi
i E

[
∥xt+1

i − xt
i∥2]

+ (1 + ξi)cEi
i E

[
∥xt+1

i − xt,⋆
i ∥

2]
.

(29)

Rearranging the terms in (29), using (27), and combining
the inequalities for each i ∈ [n] into a single quadratic
form gives the desired. ■
Proof of Theorem 1: We first analyze the synchronous
method, i.e., pmin = 1. Combining (16) and KKT condi-
tion ∇f(x⋆) + E⊤

s α⋆ + Sλ⋆ = 0 gives:

∇f(xt+1)−∇f(x⋆) = −
(
E⊤

s (αt+1 −α⋆) + Γ(xt+1 − xt)
+S(λt+1 − λ⋆ + µθ(θt+1 − θt))− et + µzE⊤

u (zt+1 − zt)).
(30)

Under Assumption 2, the following inequality holds [31,
Theorem 2.1.12]:

mf Mf

mf +Mf
∥xt+1 − x⋆∥2 + 1

mf +Mf
∥∇f(xt+1)−∇f(x⋆)∥2

≤ (xt+1 − x⋆)⊤(∇f(xt+1)−∇f(x⋆))
= (xt+1 − x⋆)⊤et − (xt+1 − x⋆)⊤Γ(xt+1 − xt)
− (xt+1 − x⋆)⊤E⊤

s (αt+1 −α⋆)

− (xt+1 − x⋆)⊤S
(

λt+1 − λ⋆ + µθ(θt+1 − θt)
)

− µz(xt+1 − x⋆)⊤E⊤
u (zt+1 − zt).

(31)
The following equalities follow from Lemma 1. In specific,
the first is from (8c) and KKT condition Esx⋆ = 0; the
second is from (8b) and KKT condition S⊤x⋆ = θ⋆; the
third follows from zt = 1

2 Euxt. The following holds

(xt+1 − x⋆)⊤E⊤
s = 2

µz
(αt+1 −αt),

(xt+1 − x⋆)⊤S = (θt+1 − θ⋆)⊤ + 1
µθ

(λt+1 − λt)⊤,

(xt+1 − x⋆)⊤E⊤
u = 2(zt+1 − z⋆)⊤.

Using the identity −2(a− b)⊤K(a− c) = ∥b− c∥2
K−∥a−

b∥2
K − ∥a − c∥2

K for K ≻ 0 to (31) (for K = Γ or I), we
obtain

2mf Mf

mf +Mf
∥xt+1 − x⋆∥2 + 2

mf +Mf
∥∇f(xt+1)−∇f(x⋆)∥2

≤
(
∥xt − x⋆∥2

Γ − ∥xt+1 − x⋆∥2
Γ − ∥xt+1 − xt∥2

Γ
)

+ 2µz

(
∥zt − z⋆∥2 − ∥zt+1 − z⋆∥2 − ∥zt+1 − zt∥2)

+ 1
µθ

(
∥λt − λ⋆∥2 − ∥λt+1 − λ⋆∥2 − ∥λt+1 − λt∥2)

+ µθ

(
∥θt − θ⋆∥2 − ∥θt+1 − θ⋆∥2 − ∥θt+1 − θt∥2)

(32)

+ 2
µz

(
∥αt −α⋆∥2 − ∥αt+1 −α⋆∥2 − ∥αt+1 −αt∥2)

+ 2(xt+1 − x⋆)⊤et

= ∥vt − v⋆∥2
H − ∥vt+1 − v⋆∥2

H − ∥vt+1 − vt∥2
H

+ 2(xt+1 − x⋆)⊤et.

Establishing linear convergence boils down to showing
that

η∥vt+1 − v⋆∥2
H ≤ ∥vt − v⋆∥2

H − ∥vt+1 − v⋆∥2
H (33)

holds for some η > 0. From the definitions of H and v



in (20) and (21), the LHS of (33) can be expanded to

η∥vt+1 − v⋆∥2
H = η

(
∥xt+1 − x⋆∥2

Γ + 2µz∥zt+1 − z⋆∥2

+ µθ∥θt+1 − θ⋆∥2 + 2
µz
∥αt+1 −α⋆∥2 + 1

µθ
∥λt+1 − λ⋆∥2

)
.

(34)
In the following, we will give an upper bound for (34).
First, we show an intermediate inequality:

∥αt+1 −α⋆∥2 + ∥λt+1 − λ⋆∥2

≤ 1
σ+

min
∥E⊤

s (αt+1 −α⋆) + S(λt+1 − λ⋆)∥2

≤ 5
σ+

min

(
∥∇f(xt+1)−∇f(x⋆)∥2 + ∥xt+1 − xt∥2

Γ2

+ µ2
θ∥θ

t+1 − θt∥2 + ∥et∥2 + σLu
maxµ2

z∥zt+1 − zt∥2
)

,

(35)
where the first inequality follows from [25, Lemma 5]
and the second follows from (30) as well as (

∑n
i=1 ai)2 ≤∑n

i=1 na2
i . By selecting µz = 2µθ, we obtain from (35)

that
2

µz
∥αt+1 −α⋆∥2 + 1

µθ
∥λt+1 − λ⋆∥2

= 1
µθ

(
∥αt+1 −α⋆∥2 + ∥λt+1 − λ⋆∥2)

≤ 5
µθσ+

min

(
∥∇f(xt+1)−∇f(x⋆)∥2 + ∥xt+1 − xt∥2

Γ2

+ µ2
θ∥θ

t+1 − θt∥2 + ∥et∥2 + σLu
maxµ2

z∥zt+1 − zt∥2
)

,

(36)
which provides the upper bound for the last two terms
on the RHS of (34). From Lemma 1, the remaining terms
in (34) can be upper bounded as:

2µz∥zt+1 − z⋆∥2 + µθ∥θt+1 − θ⋆∥2 ≤
µzσLu

max
2 ∥xt+1 − x⋆∥2 + 2µθ∥xt+1 − x⋆∥2 + 2

µθ
∥λt+1 − λt∥2,

(37)
where the first term on the RHS follows from zt =
1
2 Euxt, and the second and third term are derived from
(8b). By adding (36) and (37) and using the definition of
H, we obtain an upper bound for η∥vt+1−v⋆∥2

H (the LHS
of (33)). The lower bound for ∥vt−v⋆∥2

H−∥vt+1−v⋆∥2
H

(the RHS of (33)) can be derived from (32) as:

∥vt − v⋆∥2
H − ∥vt+1 − v⋆∥2

H ≥
2mf Mf

mf +Mf
∥xt+1 − x⋆∥2 + 2

mf +Mf
∥∇f(xt+1)−∇f(x⋆)∥2

− 2(xt+1 − x⋆)⊤et + ∥vt+1 − vt∥2
H. (38)

By applying−2(xt+1−x⋆)⊤et ≥ −ζ∥et∥2− 1
ζ ∥x

t+1−x⋆∥2

(for any ζ > 0) to (38), and putting the upper bound
(sum of (36) and (37)) and the lower bound (38) of (33)
together, it suffices to show that the following holds to
establish (33):

η
{

5
µθσ+

min

(
E

[
∥∇f(xt+1)−∇f(x⋆)∥2]

+ E
[
∥xt+1 − xt∥2

Γ2

]
+ µ2

θE
[
∥θt+1 − θt∥2]

+ σLu
maxµ2

zE
[
∥zt+1 − zt∥2] )

+ 2
µθ

E
[
∥λt+1 − λt∥2]

+
(

5
µθσ+

min
+ ζ

η

)
E

[
∥et∥2]

+
(

2µθ + µzσLu
max

2

)
E

[
∥xt+1 − x⋆∥2]

+ E
[
∥xt+1 − x⋆∥2

Γ
]}

≤ 2
mf +Mf

E
[
∥∇f(xt+1)−∇f(x⋆)∥2]

+ E
[
∥xt+1 − xt∥2

Γ
]

+ µθE
[
∥θt+1 − θt∥2]

+ 2µzE
[
∥zt+1 − zt∥2]

+ 1
µθ

E
[
∥λt+1 − λt∥2]

+ 2
µz

E
[
∥αt+1 −αt∥2]

+
(

2mf Mf

mf +Mf
− 1

ζ

)
E

[
∥xt+1 − x⋆∥2]

, (39)

where we have applied E on both sides to account for the
stochasticity of mini-batch selection. An upper bound of
E[∥et∥2] is obtained from (18). We conclude by matching
corresponding norm terms on both sides, we can see that
the selection of η in (22) guarantees that (39) is satisfied.
The proof of the asynchronous case follows the same line
of analysis as in [25, Theorem 3], and is omitted due to
length limitations. ■
Proof of Corollary 1: Observe that the dependency on
Ei in (22) is solely captured in the first term inside the
min, namely

min
i∈[n]

µθσ+
min(ϵi − ζτi(Ei))
5(τi(Ei) + ϵ2

i ) . (40)

Since the rate is decreasing with η, we choose ϵi to
maximize each term in (40) (this can be done for each
agent locally), which admits an explicit solution as in
(24). Substituting in (22) gives (25). ■


