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A Bilevel Optimization Scheme for Persistent Monitoring
Jonas Hall1, Logan E. Beaver1, Christos G. Cassandras1,2, Sean B. Andersson1,3

Abstract— In this paper we study an infinite-
horizon persistent monitoring problem in a two-
dimensional mission space containing a finite num-
ber of statically placed targets, at each of which we
assume a constant rate of uncertainty accumulation.
Equipped with a sensor of finite range, the agent is
capable of reducing the uncertainty of nearby targets.
We derive a steady-state minimum time periodic tra-
jectory over which each of the target uncertainties is
driven down to zero during each visit. A hierarchical
decomposition leads to purely local optimal control
problems, coupled via boundary conditions. We opti-
mize both the local trajectory segments as well as the
boundary conditions in an on-line bilevel optimization
scheme.

I. Introduction
Monitoring a dynamically changing environment in an

efficient and cost-feasible manner has long since attracted
attention due to its broad applicability to areas such as
ocean monitoring [1], [2], forest monitoring [3], wildfire
surveillance [4], data harvesting [5], [6], or particle track-
ing [7]. A common approach is to place static sensors in
order to maximize the monitored area or to maximize
event detection probability, which in the literature is
known as the coverage control problem [8]. However,
employing a large number of static sensors can be expen-
sive and inflexible. Hardware and software advances have
enabled the replacement of static sensors by equipping
the sensors to autonomous agents. The coverage control
problem was thus extended to the Persistent Monitoring
(PM) problem [9].

Over the last decade this problem has accumulated a
rich set of formulations and variations. For some formu-
lations the dynamic environment consists of a connected
and typically compact subset of Rn. In this setting the
agents are often tasked to detect rogue elements appear-
ing at unknown locations [10], or to minimize the cu-
mulative average value of a dynamically changing scalar
field [11]. Other formulations, as is the case in this paper,
focus on a finite set of targets within the environment.
Typical tasks then consist of detecting stochastic events
at known locations [12], or minimizing the maximum
revisit time along a periodic trajectory [13]. Usually the
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targets are spatially static, however, some formulations
consider mobile targets as well [14], [15], [16].

A common subproblem of PM tasks consists of de-
termining a periodic visiting sequence of all the targets,
which in and of itself is NP-hard since it is more general
than the Traveling Salesperson Problem (TSP), due to
the dynamic nature of the problem. Even if a good
visiting sequence is determined, computing optimal agent
trajectories (with respect to a given metric such as
minimum time or minimum energy) remains challenging.
In order to monitor a given target we require the agent to
be close to it. However, the more time the agent spends
monitoring one target, the more cost is accumulated
at all other targets. On the other hand, if the agent
moves too quickly past a target, then the local cost,
and thus also the global cost is insufficiently reduced.
A challenge in designing trajectories is to manage this
trade-off. Due to the difficulties of solving PM problems,
they are often decomposed and many contributions fo-
cus on specific subproblems. One such decomposition
is the path-velocity decomposition [17]. However, this
decomposition is always suboptimal unless the agent’s
local sensing capability is independent of the target-agent
distance. Examples for velocity controllers along a given
path can be found in [18], [19]. The vast majority of
methods for trajectory optimization work off-line [11],
[20], however the authors of [21] introduced an on-line
trajectory optimization approach. Inherently different to
the approach of decomposition is that of abstraction.
Such methods formulate the mission space using a graph
topology, where each target is described as a node and
edges between two targets reflect the travel cost between
those targets [22], [23], [13]. Such methods aim at solving
the target visiting sequence, instead of directly control-
ling the agents.

In this paper we consider a PM formulation with
a single agent and M targets, each of which is asso-
ciated with an internal state that models uncertainty.
The goal is to minimize the infinite-horizon average
uncertainty. We introduce a method that optimizes the
agent’s trajectory on-line. Similar to [20], we decompose
the problem into purely local Optimal Control Problems
(OCP), the solutions of which provide decoupled trajec-
tory segments. We then solve these OCPs using a direct
multiple shooting approach [24]. While modern solvers
are able to treat optimal control problems with hybrid
dynamics directly [25], [26], we utilize this decomposition
for the simple reason that the dimension of the local
problems become independent of the number of targets.
The contributions of this paper are
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(i) Thm. 2, which shows the existence of an exact
relaxation for the local OCP (11) with hybrid
dynamics, and

(ii) a bilevel optimization scheme that optimizes the
agent’s trajectory on-line.

The remainder of this paper is organized as follows.
Sec. II introduces the considered PM problem. In Sec. III
we introduce the decomposition into two layers: a se-
quence planner on the higher level; and a low-level layer
generating the individual trajectory segments. In Sec. IV
we analyze the low-level problems in detail, the main
result being Thm. 2, which shows the existence of an
exact relaxation. We then utilize a gradient descent
method in Sec. V in order to optimize the boundary
conditions that are imposed on the lower levels. Sec. VI
discusses results in a comparison to a greedy solution.

II. Problem Formulation
We are interested in a PM problem with a single

agent and M targets indexed by T = {1, 2, . . . ,M}.
We consider first-order agent dynamics ṡ(t) = u(t) with
bounded control input ‖u(t)‖ ≤ 1, where ‖·‖ denotes the
Euclidean norm. The fixed positions of the targets are
denoted by x1, x2, . . . , xM ∈ R2. We assume that each
target is associated with an internal state that models
a measure of uncertainty Ri, which evolves according to
the dynamics Ṙi = fRi given by

fRi(Ri, s) =
{

0, Ri = 0, Ai −Bipi(s) < 0,
Ai −Bipi(s) otherwise,

where Bi > Ai, and

pi(s(t)) = max
{

0, 1− ‖s(t)− xi‖
2

r2
i

}
is the monitoring model with sensing range ri. It is fairly
straightforward to consider more complicated sensing
functions so long as they remain monotonic in the agent-
target distance.

We are interested in minimizing the average uncer-
tainty over an infinite-horizon. Solving this problem is
very challenging. Previous results [27], [28], [15] indicate
that optimal trajectories typically drive the uncertainty
of each target to zero before visiting another target.
Under the assumption that this holds for each target
visit, minimizing the average uncertainty is achieved
by minimizing the period of a steady-state trajectory.
Motivated by this behavior we formulate the following
persistent monitoring problem.

Problem Find a steady-state minimum time periodic
trajectory over which each target uncertainty is drained,
i.e., driven down to zero, during each visit.

Assumptions Throughout this paper we assume that: 1)
the initial uncertainties Ri(0) are known for all targets
i ∈ T ; 2) the sensing areas around the targets do not
intersect; and 3) there exists a steady-state solution.

·

·

·

·

·

(a)

·

··

··

(b)

·

··

··

(c)

Fig. 1: Illustrating the three optimization problems of the
decomposition: sequence planning; entrance and depar-
ture point optimization; and local trajectory optimiza-
tion.

These assumptions are typical in the given PM set-
ting [18], [28], [15]. Note that assumption 2) is funda-
mental for the decomposition, whereas assumption 3)
is fundamental for convergence. We remark that the
existence of steady-state trajectories strongly depends
on the topology of the mission space as well as the
parameters A,B, and r. While the existence of steady-
state solutions can be proven when the uncertainty model
is replaced by a Kalman filter model [29], [20], this
remains an open problem in the given setting.

III. Hierarchical Decomposition
With the problem set up, it is a natural task to

identify characterizing properties of an optimal periodic
trajectory. It is immediately evident that the agent is
required to visit each of the targets in order to drive
their uncertainties down to zero. This understanding
directly induces a two-level hierarchy: a higher level with
the objective of finding a target visiting sequence; and
a lower level of steering the agent so as to 1) satisfy
the target visiting sequence and 2) drain each of the
target uncertainties, i.e., drive them down to zero. We
will formulate the low-level problems as OCPs and we
refer to those problems as the local OCPs, since solving
them only requires knowledge of local information of the
visited target. In order to connect the two levels, we
introduce a coordinator,1 which takes a visiting sequence
and then coordinates the local trajectories by providing
the boundary conditions of the local OCPs. Additionally,
it is the coordinator’s task to optimize those boundary
conditions on-line.

The optimization problems within the individual levels
are depicted in Fig. 1: 1a illustrates the problem of find-
ing a target visiting sequence; 1b illustrates the problem
of optimizing the entrance (yellow square) and departure
(green circle) points when visiting a target; and 1c
depicts a local OCP, which determines the trajectory
that drives the target uncertainty to zero during the visit.
Note that the red circle in 1b and 1c depicts the sensing
radius around the considered target.

In this paper we focus on the optimization of the
entrance and departure points together with the low-level

1The coordinator is not to be confused with coordinators in
multi-agent systems, which coordinate information between agents.
Here it coordinates information between trajectory segments.
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Fig. 2: Illustrating the workflow of the coordinator, which
is part of the agent’s control system.

trajectories. However, we remark that visiting sequences
can be computed using a graph-based abstraction, e.g.,
via TSP or other methods specifically designed for PM
problems [23], [13]. We further discuss this along with
additional extensions in Sec. VII.

Coordinating the local trajectories. From here
on we assume that a periodic target visiting sequence
i1, i2, . . . iK , i1 is provided. The coordinator is tasked to
realize the visiting sequence and coordinate the require-
ment of driving the target uncertainties down to zero.
To do this, we note that during the kth target visit, the
agent begins sensing the target ik at a specific point in
space, which we denote by sϕk and refer to as the entrance
point (yellow square in 1b). Similarly, there exists a
departure point sψk (green circle in 1b), i.e., a point at
which the agent last sensed the target. The coordinator
passes the entrance and departure points down to the
local OCP solver generating the local trajectory segments
as discussed at the end of this section. In return, the
local OCPs provide dual variables specifying the cost
associated with the entrance and departure constraints.
The coordinator then utilizes these dual variables to
optimize the entrance and departure points with the goal
of minimizing the total cycle time (see Sec. V).

Fig. 2 depicts the proposed workflow of the coordinator
(dashed box). It receives an initial guess of the en-
trance and departure points generated from the visiting
sequence (the generation is discussed in Sec. V). The
coordinator then calls the local OCP solver in an event-
based fashion, i.e., whenever the agent starts or stops
sensing a target. On completion of a cycle, the coor-
dinator updates the entrance/departure points as well
as the target uncertainties at cycle start, or terminates
the algorithm if the cost gradients with respect to the
entrance and departure points are sufficiently small and
steady-state is reached.

Formulating the local OCPs. There are two types
of local OCPs to be solved: that of driving a target’s
uncertainty to zero (the draining problem) and that of
moving from the departure point sψk of one target to
the entrance point of the next target sϕk+1 (the switching
problem).

Given an unconstrained environment and first-order
dynamics, the switching problem becomes trivial as it
is given by a maximal and constant control input that
moves the agent from one point to another along a
straight line. However, the current formulation is capable

of adapting to other scenarios. For example, if obstacles
are present in the environment then the problem becomes
more complicated but can often still be achieved using
optimal control techniques [30]. We solely require the
local switching problem to provide cost sensitivities with
respect to the constraints that fix the boundary condi-
tions sψk and sϕk+1.

Let us now focus on the draining problem, which
consists of finding a time optimal trajectory that drives
the target uncertainty down to zero while satisfying the
constraints imposed by the coordinator. Specifically, this
is given by the OCP

min
u(·), Tk

∫ Tk

0
dt (1a)

s.t. ṡ(t) = u(t), (1b)
Ṙik(t) = fRik (Rik(t), s(t)), (1c)
‖u(t)‖2 ≤ 1, (1d)

min
τ∈[0,Tk]

Rik(τ) = 0, (1e)

s(0) = sϕk , (1f)
s(Tk) = sψk , (1g)
Rik(0) = Řk, (1h)

where sϕk and sψk denote the respective entrance and
departure points, and Řk denotes the uncertainty at
arrival time, all of which are passed down from the
coordinator. At first glance, this problem seems chal-
lenging to solve due to the non-smoothness of fRik and
the unconventional constraint (1e), which enforces the
uncertainty to be drained. In the next section we discuss
how the problem can be solved efficiently.

IV. Solving the Draining OCP
In this section we devote our attention to the local

draining OCP (1). We introduce the following results as
building blocks to Thm. 2, which reformulates (1) into a
smooth OCP.

Lemma 1 Consider any optimal trajectory of OCP (1)
with optimal cost T ∗k . Further, let t0 ∈ (0, T ∗k ) be any time
such that R∗ik(t0) = 0. Then

u∗(t) =
sψk − s∗(t0)
‖sψk − s∗(t0)‖

(2)

for all t ∈ (t0, T ∗k ).

Proof: Let (s∗, R∗ik) be any optimal trajectory of (1)
with optimal control u∗, and let t0 be a time with R∗ik(t0).
If u∗(t) differs from (2) over a nonempty open interval
I ⊂ [t0, T ∗k ], then ‖sψk − s∗(t0)‖ < T ∗k − t0. Further, the
control law

ũ(t) =

 u∗(t), if t ≤ t0,
sψ
k
−s∗(t0)

‖sψ
k
−s∗(t0)‖

, otherwise,

is feasible and leads to a strictly lower cost, which
contradicts the optimality assumption of s∗.
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Although Lemma 1 characterizes the final piece of an
optimal trajectory, it does not help identifying an ade-
quate time t0 or position s∗(t0). Thm. 1 will characterize
the point s∗(t0). However, we require a few more lemmas,
including the next technical statement, which captures
the fact that any homotopy of feasible control laws is a
feasible control law itself.

Lemma 2 Let u1 : [0, T1]→ R2 and u2 : [0, T2]→ R2 be
two feasible control laws for OCP (1), and define Tσ =
(1 − σ)T1 + σT2 for any homotopy parameter σ ∈ [0, 1].
Then, the control law uσ : [0, Tσ]→ R2 defined by

uσ(t) = (1− σ)u1

(
t

Tσ
T1

)
+ σu2

(
t

Tσ
T2

)
satisfies ‖uσ(t)‖ ≤ 1 and generates a trajectory with
sσ(0) = sϕk and sσ(Tσ) = sψk .

Proof: The former statement follows using the tri-
angle inequality and the latter statement by integrating
uσ(t) over t from 0 to Tσ.

Lemma 3 Let u∗ be an optimal control of (1) and as-
sume that there exists a nonempty open interval I =
(t1, t2) such that R∗ik(t) = 0 on I. Then

u∗(t) =
s∗(t2)− sϕk

t2
(3)

on [0, t2].

Proof: Assume that u∗, R∗ik and I are as above and
let T ∗k be the associated optimal cost. Further, assume
that u∗ differs from (3) over a nonempty open interval.
Define T̃ = t2 + ‖sψk − s∗(t2)‖ and consider the control
policy

ũ(t) =


s∗(t2)−sϕ

k

t2
, if 0 ≤ t < t2,

sψ
k
−s∗(t2)
T̃−t2

, if t2 ≤ t ≤ T̃k,

which satisfies the boundary conditions but may not
drain the uncertainty. Now let σ ∈ (0, 1) be a homotopy
parameter. Then

uσ(t) = (1− σ)u∗(t) + σũ(t) (4)

satisfies the boundary conditions of (1) due to Lemma 2.
Furthermore, uσ satisfies

lim
σ→0

uσ(t) = u∗(t),

showing that uσ converges to a feasible control law.
Now let Rσik denote the uncertainty trajectory under the
control uσ. Then

lim
σ→0

Rσik(t) = R∗ik(t). (5)

Due to continuity of R∗ik together with the fact that
R∗ik(t) = 0 on I imply that there exists an ε > 0 such that
Rεik(t) = 0 for some t ∈ [0, Tε], where Tε = (1−ε)T ∗k +εT̃ .
But Tε < T ∗k with uε feasible contradict the optimality
assumption of u∗.

Fig. 3: Illustrating a solution of the draining OCP (1) of
target xik with entrance point sϕk , outer departure point
sψk and inner departure point s0

k (cf. (11)). The function
fRik takes positive values when the agent-target distance
exceeds δik , whereas it is negative in the interior of the
inner circle (dashed).

Corollary 1 Let u∗ be an optimal control of (1) and
assume that there exists a nonempty open interval I =
(t1, t2) such that R∗ik(t) = 0 on I. Then T ∗k = ‖sψk − s

ϕ
k ‖

and
u∗(t) =

sψk − s
ϕ
k

T ∗k
(6)

for all t ∈ [0, T ∗k ].

Proof: Lemma 3 shows that u∗(t) is constant on
[0, t2] while Lemma 1 shows that u∗(t) is constant on
[t1, T ∗k ]. Note that t1 < t2 which implies that the two
controls must be identical. The claim follows.

We now utilize Lemma 1 in order to characterize a
point on the agent’s trajectory which allows the verifica-
tion of the draining condition (1e). Uniqueness will follow
from Corollary 1.

Theorem 1 For any optimal trajectory of (1) there ex-
ists a unique time t0k such that ‖s∗(t0k) − xik‖ = δik and
R∗ik(t0k) = 0. Further, it holds

u∗(t) =
sψk − s∗(t0k)
‖sψk − s∗(t0k)‖

(7)

for every t ∈ [t0k, T ∗k ].

Proof: Consider Fig. 3 and note that in order to
drive the target’s uncertainty to zero, i.e., satisfy (1e),
it is necessary for the agent to enter the inner circle
of radius δik =

√
r2
ik

(Bik −Aik)/Bik and remain in its
interior until the uncertainty is drained at some time t0.
Applying Lemma 1 implies (7). The resulting trajectory
from s∗(t0) to s∗(Tk) forms a straight line, and thus
intersects the zero level set of the uncertainty dynamics
at a time t0k ∈ [t0, Tk). Note that R∗ik(t0k) = 0 by
construction.

Now assume the point were not unique. Then, neces-
sarily t0 < t0k and ‖s∗(t0)− xik‖ = δik . The straight line
trajectory from s∗(t0) to s∗(t0k) would lie in the interior
of the inner circle and consequently Rik(t) = 0 for all
t ∈ (t0, t0k). Applying Corollary 1 would imply that the
entire trajectory forms a straight line. This line would
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intersect the inner circle twice. But on the first such
intersection it is impossible for the uncertainty to vanish,
since its dynamics were nonnegative up to that point.
This contradicts Rik(t0) = 0, implying uniqueness.

A special case of the optimal control occurs whenever
the initial uncertainty Řik is large enough such that the
greedy control policy (9) becomes optimal. This result
is provided in Prop. 1. Let us first prove a lemma for
this statement. In the following statements we drop the
indices of ik from the variables A,B, r and δ in order to
increase readability.

Lemma 4 If

Řik ≥ −
(
A− 2

3B
)
r − δ(A−B)− δ3

3r3B (8)

then the optimal cost T ∗k of (1) is bounded below by 2r.

Proof: We prove this statement via contraposition.
Assume there exists an optimal trajectory s∗ with cost
T ∗k < 2r. Let t0k be the unique inner exit time as
to Prop. 1. It immediately follows that t0k < 2r−(r−δ) =
r + δ. Now introduce the greedy control law

ũ(t) =


xik−s

ϕ
k

r , if 0 ≤ t < r,

0, if r ≤ t < T ∗k − r,
sψ
k
−xik
r , if T ∗k − r ≤ t ≤ T ∗k .

(9)

This control law leads to an infeasible trajectory s̃(t) if
T ∗k < 2r, as it does not reach the departure point sψk .
However, s̃(t) satisfies ‖s̃(t)−xik‖ ≤ ‖s∗(t)−xik‖ for all
t ∈ [0, T ∗k ] and thus provides

R∗ik(t0k) = Řik +
∫ t0k

0
Ṙ∗ik(t)dt ≥ Řik +

∫ t0k

0

˙̃Rik(t)dt

> Řik +
∫ r+δ

0

˙̃Rik(t)dt

= Řik +
(
A− 2

3B
)
r + (A−B)δ + δ3

3r3B.

Knowing R∗ik(t0k) = 0 concludes the proof.

Proposition 1 If

Řik ≥ −
(
A− 2

3B
)
r − δ(A−B)− δ3

3r3B (10)

then the greedy control policy (9) is an optimal control
of (1), with optimal cost

T ∗k =
−Řik −

(
A− 2

3B
)
r − δ(A−B)− δ3

3r3B

A−B
+ 2r.

Proof: Lemma 4 shows that the optimal cost T ∗k of
the local OCP (1) is bounded below by 2r, which shows
that the greedy policy achieves s∗(T ∗k ) = sψk , in other
words becomes feasible. Any other control policy con-
necting sϕk with sψk in T ∗k units of time satisfies ‖s∗(t)−
xik‖ ≤ ‖s(t)−xik‖ for all t, which implies R∗ik(t) ≤ Rik(t)
for all t ∈ [0, T ∗k ]. Further, a straightforward computation
shows that R∗ik(t0k), where t0k = T ∗k − (r − δ), is given by

Řik +
(
A− 2

3B
)
r+ δ(A−B) + δ3

3r3B+ (T ∗k −2r)(A−B).

Plugging in T ∗k shows R∗ik(t0k) = 0.

Motivated by the above characterization we reformu-
late (1) into the smooth OCP

min
u(·), t0k, s0

k

∫ t0k

0
dt+ ‖sψk − s

0
k‖ (11a)

s.t. ṡ(t) = u(t), (11b)
Ṙik(t) = Aik −Bikpik(s(t)), (11c)
‖u(t)‖2 ≤ 1, (11d)
Rik(t0k) ≤ 0, (11e)

s(0) = sϕk , (11f)
s(t0k) = s0

k, (11g)
‖s0
k − xik‖ = δik , (11h)
Rik(0) = Řk. (11i)

Theorem 2 The relaxation (11) is exact, i.e., any op-
timal trajectory s∗ of OCP (11) is also optimal for (1).
Further, the respective uncertainty trajectory can be re-
covered from the relaxed counterpart.

Proof: The given reformulation adopts a few
changes. First, we replaced the original terminal condi-
tion with an adapted terminal condition plus a terminal
cost. The adapted terminal condition now specifies a
point on the zero level set of the dynamics, making
it easy to check the draining condition. The terminal
cost reflects precisely the amount of time it takes to
travel from the adapted terminal point to the original
terminal point. This part of the reformulation is exact
due to Thm. 1. Additionally, the reformulation replaced
the hybrid dynamics (1c) by the smooth dynamics (11c).
This may cause the uncertainty Rik to become negative.
However, it is easy to see that the uncertainty of the
original problem is 0 if and only if the uncertainty of
the reformulation is non-positive, as long as the agent
trajectory does not leave and reenter the inner circle.
Since this is the case for any optimal trajectory, we find
that the inequality constraint (11e) together with the
relaxation (11c) reflect the original draining condition.

Given a solution for the relaxed problem, we can recon-
struct the true uncertainty trajectory by projecting its
negative segment to zero, until the uncertainty gradient
becomes nonnegative and then shifting the remaining
trajectory piece by -Rik(t0k) (see Fig. 4).

V. Optimizing the Local Boundary Conditions
The goal of this section is to minimize the cycle time

T given a sequence of target visits i1, i2, . . . , iK ∈ T . By
decomposing the cycle into its local segments, we can
express the total cycle time in terms of the entrance and
departure points, i.e., as

T =
K∑
k=1

T ∗k (sϕk , s
ψ
k ) + ∆∗k(sψk , s

ϕ
k+1),

where T ∗k denotes the time of the kth draining trajectory,
and ∆∗k = ‖sψk − s

ϕ
k+1‖ denotes the kth switching time,

i.e., the time taken from the departure point sψk to the
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Fig. 4: Projecting the relaxation (red) to zero during the
yellow interval, and shifting it during the blue interval
by the violation at t0k recovers the true uncertainty
trajectory (black).

next entrance point sϕk+1. Now note that the entrance
and departure points can be expressed as

sϕk = xik+rik
(

cos(ϕk)
sin(ϕk)

)
and sψk = xik+δik

(
cos(ψk)
sin(ψk)

)
,

respectively, where we choose to optimize the inner de-
parture point instead of the outer departure point moti-
vated by Thm. 2. Then the only degrees of freedom are
the angles ϕk and ψk. From here on we denote by ϕ,ψ ∈
RK the vectors that contain all entrance/departure an-
gles. We may then express the total cycle time T (ϕ,ψ)
as a function of these parameters. We are left to solve
the unconstrained bilevel minimization problem

min
ϕ,ψ

K∑
k=1

T ∗k (ϕk, ψk) + ∆∗k(ψk, ϕk+1). (12)

Solving this problem can be done on-line in the following
manner. We first initialize the entrance and departure
points using

ψk = atan2(ϑky , ϑkx),, ϕk+1 = atan2(−ϑky ,−ϑkx) (13)

where ϑk = xk+1 − xk. This natural initialization places
sψk and sϕk+1 on the straight lines between the agents
ik and ik+1. Further, we and set the initial uncertainty
vector to zero, or to an estimate of the steady-state
values. We place the agent at the exit point of target
iK and apply the constant control (sϕ1 − s

ψ
K)/∆K . When

the agent arrives at the first entrance point, we solve
a discretized version of the smooth draining OCP (11)
for the first target (the discretization is discussed in
Sec. VI). This provides an open loop control law during
the draining period, or alternatively we may choose to
apply a closed loop controller to track the computed
trajectory. When reaching the departure point, we repeat
the process for the next target.

On completion of a cycle we compute the gradients
∂T

∂ϕk
= ∂T ∗k
∂ϕk

+
∂∆∗k−1
∂ϕk

,
∂T

∂ψk
= ∂T ∗k
∂ψk

+ ∂∆∗k
∂ψk

, (14)

of the cycle time T (ϕ,ψ). Note that gradients of ∆∗
can be computed analytically, while evaluation of the

gradients of T ∗k can be done by using the dual variables,
or Lagrange multipliers [31], of the respective constraints.
Let us denote by λϕk , λψk ∈ R2 the dual variables of the
entrance (11f) and departure constraints constraint (11g)
of the kth local OCP, respectively. Applying the chain
rule then provides

∂T ∗k
∂ϕk

= λ>ϕkrik

(
− sin(ϕk)
cos(ϕk)

)
,

∂T ∗k
∂ψk

= λ>ψkδik

(
− sin(ψk)
cos(ψk)

)
.

We then update the parameters using a simple gradient
descent law

ϕk ← ϕk − α
∂T

∂ϕk
, ψk ← ψk − α

∂T

∂ψk
, (15)

where α is chosen using a diminishing step-size rule.

VI. Numerical Results
Motivated by the fact that greedy policies are able

to produce optimal solutions under certain scenarios
(see Lemma 4), we compare the proposed method to the
greedy control policy: move towards the target (and po-
tentially dwell there) until uncertainty hits 0, then move
to the next target. We consider homogeneous targets
with Ai = 1, Bi = 20, ri = 3, and Ri(0) = 0.

We discretize the local OCPs via direct multiple shoot-
ing [24] using explicit Euler integration over 20 nodes.
We model this in Matlab via CasADi [32] and then solve
the resulting nonlinear programs using IPOPT [33]. The
underlying hardware consists of an Intel i5 processor
running at 1.60GHz with 16GB of RAM.

Fig. 5 shows that even though the trajectories appear
to be similar, our approach shows a 20% reduction in
total travel time over the greedy policy, as can be seen on
the right plot depicting the respectively obtained steady-
state cycles with periods of 41.8 and 52.3. Furthermore,
the proposed method leads to a smooth control profile,
which is favorable for tracking feasibility. We conjecture
that this smoothness is a fundamental behavior for solu-
tions of (12), with exceptions being settings where the op-
timal entrance and departure points coincide, or settings
where the the initial uncertainty is large enough to sat-
isfy (10). The following intuition justifies this conjecture:
if the entrance (or departure) transition is non-smooth,
then this indicates that the angle between the entrance
and departure points is too large. Reducing the angle
between the entrance and departure point always reduces
the local draining time T ∗k . The only thing that prevents
the entrance and departure points from converging to
each other is the trade-off introduced by the potentially
increased switching times ∆k−1 and ∆k. The equilibrium
of this trade-off, namely the solution of (12), may thus
induce a natural property of smooth transitions. The
only non-smoothness along trajectories could then occur
within the local draining trajectory, which should only
occur in the exceptions discussed above.
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Fig. 5: Comparing the greedy solution (dotted) to the solution obtained via the proposed method (solid).

We now shift our attention to the computational effi-
ciency of the proposed method. The left plot in Fig. 6
shows the CPU timings for this experiment, where we
recall that the draining OCP refers to (11) and the
switching OCP refers to the (trivial) problem of switch-
ing from target’s departure point to the next target’s
entrance point. The relaxation of the hybrid dynamics
as well as the reduction of the state space dimensionality
lead to trajectory segments computed in fractions of a
second, suggesting real-time feasibility for systems with
update rates of 50-80 Hz. The central plot in Fig. 6
shows that the method converges within 25 cycles to
a steady-state and optimal solution. We conduct one
final experiment by randomly initializing the entrance
and departure points with angles drawn from a uniform
distribution in the range of [0, 2π] over 100 experiments.
The resulting transient cycle times all converge to the
same steady-state solution as visualized in Fig. 6. This
figure suggests yet another conjecture: the problem of
optimizing the entrance and departure points is convex.

VII. Conclusion and Future Work
In this paper we considered a two-dimensional infinite-

horizon PM problem, in which we are interested in
finding a minimum time draining cycle. By decomposing
the problem into local OCPs on the lowest level, and co-
ordinating their trajectories via higher level parameters,
we were able to prove the existence of an exact relaxation
for the underlying hybrid dynamics. These two layers are
coupled within a bilevel optimization scheme, with which
the agent’s trajectory is optimized on-line.

In future work we aim at analyzing the two conjectures
made in Sec. VI, as well as extending to scenarios to three
dimensions, or to multi-agent settings. Furthermore, a
particularly interesting extension could arise when the
draining condition was relaxed. This could be done by
introducing new parameters that specify the right hand
side of (1e), which could then be optimized in a similar
way as was done here with the entrance and departure
points. Apart from extending the introduced approach,
we also desire comparing the proposed approach to exist-
ing methods, e.g., by simply utilizing the general optimal
control problem solver [25], or to the method suggested
in [20].
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