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Abstract— Coordination in a large number of networked
robots is a challenging task, especially when robots are con-
stantly moving around the environment and there are malicious
attacks within the network. Various approaches in the literature
exist for detecting malicious robots, such as message sampling
or suspicious behavior analysis. However, these approaches
require every robot to sample every other robot in the net-
work, leading to a slow detection process that degrades team
performance. This paper introduces a method that significantly
decreases the detection time for legitimate robots to identify
malicious robots in a scenario where legitimate robots are
randomly moving around the environment. Our method lever-
ages the concept of “Dynamic Crowd Vetting” by utilizing
observations from random encounters and trusted neighboring
robots’ opinions to quickly improve the accuracy of detecting
malicious robots. The key intuition is that as long as each
legitimate robot accurately estimates the legitimacy of at least
some fixed subset of the team, the second-hand information
they receive from trusted neighbors is enough to correct any
misclassifications and provide accurate trust estimations of the
rest of the team. We show that the size of this fixed subset
can be characterized as a function of fundamental graph and
random walk properties. Furthermore, we formally show that
as the number of robots in the team increases the detection
time remains constant. We develop a closed form expression for
the critical number of time-steps required for our algorithm
to successfully identify the true legitimacy of each robot to
within a specified failure probability. Our theoretical results
are validated through simulations demonstrating significant
reductions in detection time when compared to previous works
that do not leverage trusted neighbor information.

I. INTRODUCTION

Multi-robot teams can cooperate to solve a plethora of
tasks that a singular robot could not achieve alone [1], [2]
such as coverage or persistent surveillance [3], [4], efficient
exploration of a large area [5], and flocking [6], among
others. However, whenever a task requires the coordination
of multiple robots for successful task completion, there exists
potential for malicious, or non-cooperating robots, to hinder
the team’s performance. Recent works have leveraged the
concept of “observing” robots, and gathering information in
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order to identify robots that are potentially untrustworthy [7],
[8], [9], [10], [11], [12]. This information, hereafter referred
to as a trust observation, centers on the principle that
gathering more information, or multiple trust observations,
can improve the accuracy of this inter-robot trust [13], [14].

Previous works have taken a controls perspective to gath-
ering trust observations by developing strategies that favor
frequent encounters between robots. For example, the work
in [15] designs specific routes for the team to follow as
they patrol an environment that strategically increases the
inter-robot interaction opportunities. However, this requires
that robots cooperate and follow their predefined routes. The
papers [16], [17], [18], [19] consider environments that are
discretized into regions, called sites, where robots provide
persistent surveillance by patrolling while maintaining a
desired distribution of robots over sites. In our previous
work [16], we present a strategy that reduces the detection
time by encouraging frequent encounters between robots
using a stochastic site transition rule akin to a random walk.
However, this strategy requires that every robot encounters
every other robot many times in order to develop an accurate
trust estimation, which can be a significantly long process,
especially as the number of robots or sites increases.

A recent algorithm called Crowd Vetting [13] exploits
opinion dynamics [20], [21], where the opinions of trusted
neighbors can be used to fortify a robot’s opinion of another.
In the Crowd Vetting algorithm, legitimate robots share
opinions, which is shown to improve their trust estimation
while requiring fewer observations than if robots rely solely

Fig. 1. Depiction of the Dynamic Crowd Vetting algorithm. In Phase 1
robots transition across sites while collecting trust observations of other
robots they encounter which are stored in a local trust vector. In Phase 2
robots share their trust vector with trusted neighbors in order to improve
their probability of correctly classifying the trustworthiness of others.
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on their own observations. However, the existing Crowd
Vetting algorithm is limited to static networks where each
robot observes the same subset of robots over time. While
dynamic networks increase the diversity of robot’s encoun-
ters, thus alluding to a greater benefit from using the opinions
of trusted neighbors, it becomes increasingly difficult to
regulate the number of trust observations every pair of robots
has of each other. This introduces new challenges, since
every robot can have a different number of observations of
every other, and thus the information shared between robots
comes with different levels of accuracy, making it difficult
to arrive at any analytical performance guarantees regarding
the trust estimation. Furthermore, a naive usage of indirect
information from untrustworthy sources gives the potential
for errors to propagate through the team.

The main contribution of this paper is the development
of an algorithm, called Dynamic Crowd Vetting (DCV), that
significantly reduces the detection time by allowing legiti-
mate robots to leverage second-hand (indirect) opinions of
trusted neighbors in dynamic networks. Our DCV algorithm
computes the trust estimation in two phases. In Phase 1,
robots transition between sites to estimate the trustworthiness
of the team, which they store in a vector called a trust
vector. The goal in Phase 1 is to accurately classify at least
some fixed subset of the team correctly. Then, in Phase 2,
robots continue transitioning between sites, while this time
sharing their opinions, i.e., their trust vector, with other
robots that they trust. Finally, we show that a relatively
simple majority rule algorithm for deciding trust from shared
information is enough to correct misclassifications and stem
the propagation of wide-scale misinformation as long as each
legitimate robot classifies a sufficient proportion of the team
correctly in Phase 1. Furthermore, we show that the sufficient
proportions can be characterized as a function of fundamental
graph and random walk properties. Additionally, we formally
show that as the number of robots in the team increases,
the detection time remains constant. This is in contrast to
the logarithmic growth in the number of time-steps seen
by the Individual Protocol (where robots do not leverage
neighboring opinions).

II. PROBLEM FORMULATION

Consider a team of NR robots, R = {1, 2, . . . , NR}, that
move through a discrete environment composed of regions,
also called sites. The environment is a topological map
modeled as an undirected graph G = (V, E), where the
vertices V = {1, 2, . . . , NV} represent the sites, and the
edges E ⊆ V × V represent paths between sites, where the
operator × represents the Cartesian product of two sets. A
robot can move from site ι to site ω if there is an edge
(ι, ω) ∈ E . Furthermore, robots can always remain at a
current site, i.e., (ι, ι) ∈ E for all ι ∈ V . We assume
the graph G is connected, so that there always exists a
path between any pair of sites. Robots can communicate
or observe each other if they are at the same site. The
neighborhood of a robot i, denoted by Ni(t), consists of
all robots j ∈ R that robot i can observe at time-step t.

For the sake of analysis, we include each robot i in its own
neighborhood Ni(t). A time-step is defined as an opportunity
for a robot to make a transition between adjacent sites and
observe the robots at that site, i.e., any robot can transition
to a new site and gather new observations any time-step.

A. Background

1) Gathering Trust Observations in Dynamic Networks:
In this paper, we are interested in the class of problems
where an unknown subset of the team may be malicious,
denoted by M ⊂ R, and legitimate robots L = R\M,
can validate information and the legitimacy of neighboring
robots by utilizing observations of one another, which we
call trust observations. A trust observation of robot j by
robot i, denoted by αi,j(t), represents a noisy, imperfect
measurement of the legitimacy of robot j. 1 We assume
that trust observations are independent for any pair (i, j) and
at any time t, and that robots can only gather observations
of one another when they are neighbors, i.e., j ∈ Ni(t).
Furthermore, while we do not make any assumptions on the
distributions of the trust observations, we impose particular
assumptions on their expectation for analytical purposes.
Similar to the works in [7], [13], [14], we assume the trust
observations satisfy

E [αi,j(t) | j ∈ L ] ≥ 1/2 + εα, (1)

and

E [αi,j(t) | j ∈M ] ≤ 1/2− εα, (2)

where the value εα ∈ (0, 1/2] represents the quality of the
observation. A low value εα ≈ 0 means the observation is
completely ambiguous, while an observation with εα ≈ 1/2
gives almost certain information about the legitimacy of
the transmitting robot. In [16], each robot keeps a trust
vector, denoted by xi(t). The goal of the trust vector is
to store the correct legitimacy of every other robot in the
team, where a 1 in the jth entry of vector xi(t), denoted
by [xi]j(t), represents that robot i believes robot j to be
trustworthy, and [xi]j(t) = 0 otherwise. Since the trust
observations αi,j(t) are assumed to be noisy, each robot
requires multiple observations of their neighbors in order to
arrive at some confidence in the validity of their trust vector.
In [16] the specific number of observations required by every
robot of every other is denoted by nα, and is assumed to
be an arbitrary, but given quantity. In this paper we will
analytically determine the proper number of observations nα
that yields a desired success probability 1− δ/NR when our
proposed algorithm is used, for some user-defined failure
probability δ. We seek to minimize the number of trust
observations needed, as well as the time window T required
to gather them, using the Crowd Vetting Algorithm.

1One example of such observations comes from the works in [7], [13],
[14]. In these works, the trust observations are stochastic and are determined
from physical properties of wireless transmissions.



2) The Crowd Vetting Algorithm: The Crowd Vetting
algorithm [13] utilizes opinion dynamics and offers a way
for robots to share their trust vectors with their trusted
neighbors in order to not only reach an agreement between all
legitimate neighbors on their trust vectors, but also improve
the probability that the agreed upon trust vector is correct.
However, the Crowd Vetting algorithm in its current form is
limited to the case where all robots communicate with the
same set of neighbors each time-step (static communication
network). The goal is for all legitimate robots to reach an
agreement on a final trust vector, x∗i , such that for every
robot j ∈ R,

[x∗i ]j =

{
1, if j ∈ L,
0, if j ∈M.

(3)

To do so, each robot i ∈ L will gather nα trust observations
of every other robot and form an interim trust vector from
those observations. Then, each robot shares its interim trust
vector with its trusted neighbors, and uses majority rule
between its own and its trusted neighbors’ opinions to deter-
mine whether or not to trust the other robots. In this paper, we
extend the Crowd Vetting algorithm to scenarios where the
robots move, and thus potentially encounter different robots
each time-step.

3) Random Walks on Graphs: In this paper, our results
partially depend on the topology of the site graph, and the
random walk done by the legitimate robots as they transi-
tion between sites. We define a trajectory of a legitimate
robot i by a set of states, denoted χi(1), χi(2), . . . , χi(tf )
corresponding to the site that the robot occupied at each
time-step from some arbitrary starting time t = 1 to some
arbitrary finishing time t = tf . The trajectory of a robot
depends on the random walk that it performs over the site
graph. We assume that the random walks performed by the
robots are irreducible and aperiodic, leading them to have
a unique stationary distribution π. We represent the time
required for robots to gather trust observations of each other
as a function of the meeting time of the graph, denoted
by Tmeet, the hitting time of the graph, denoted by Thit, and
the mixing time of the graph, denoted by Tmix. See [22]
for an intuition about these quantities. The meeting time
is defined as Tmeet = maxι,ω Tmeet(ι, ω), where Tmeet(ι, ω)
is the expected time it takes for random walks starting on
nodes ι and ω to meet. We say two random walks done
by robots i and j meet if χi(κ) = χj(κ) for some time κ.
The hitting time is defined as Thit = maxι,ω Thit(ι, ω), where
Thit(ι, ω) is the expected time it takes for a random walk
starting on node ι to reach node ω. The meeting time and
hitting time are well-studied Markov Chain quantities and
the interested reader can find bounds for common graphs in
[23, page 169]. Additionally we compute the hitting time and
meeting time for the graphs used in our simulations using
[24, Theorem 3.1] and [25, Theorem 1], respectively. Finally,
the mixing time Tmix is the time required for the distribution
of the sites each robot occupies over time to approximately
converge to the stationary distribution π.

B. Problem Statement

In this paper we extend the Crowd Vetting algorithm to
support dynamic scenarios such as the case of mobile robots
where their set of neighbors may change with time. When
the graph modeling the site transitions, G, is connected, it
was shown in [26] that all robots i ∈ L will eventually
visit every site in the graph G. This implies that any robot
will encounter all the other robots given a long enough time
window, t = {t0, t0 + T}, characterized by the length of
time T from some arbitrary initial time t0, since each of
them will visit every site.

Problem 1. Given a desired failure probability δ and
trust observations αi,j(t) satisfying (1) and (2), design an
algorithm that reduces the length T of the time window
t ∈ {t0, t0 + T} required for all robots i ∈ L to return
the correct final trust vector x∗i with probability at least
1− δ/NR.

III. ALGORITHMS

In order to extend the Crowd Vetting algorithm to support
dynamic scenarios we first introduce the concept of time-
window neighborhoods that capture the history of encounters
between robots over a time window T .

Definition 1 (Time-window neighborhood). A time-window
neighborhood of a robot i is defined as the union
of its set of neighbors over a time-window, T , i.e.,
N T
i (t) =

⋃t
κ=t−T Ni(κ), for any t > T .

In a time-window neighborhood, since the neighbors of
each robot may change each time-step, it is difficult to
ensure that a robot gathers trust observations of all others a
sufficient number of times. Next, we describe the process for
estimating trust vectors solely using each robot’s individual
(direct) observations of other robots, which we call the
Individual Protocol.

A. Individual Protocol

In our previous work [16], when the robots need to
estimate the legitimacy of their neighbors, they gather trust
observations by transitioning frequently between sites, which
is called the fast transition state. In this work, we focus our
analysis on this fast transition state, and denote the transition
matrix used in the fast transition state by a robot i, by Pi.
We define the fast transition state as a lazy random walk

[Pi]ι,ω :=


1
2 , ι = ω,

1
2·
∑

{ω|(ι,ω)∈E} 1 , (ι, ω) ∈ E ,
0, otherwise,

(4)

where [Pi]ι,ω represents the (ι, ω) entry of matrix Pi. We
note that the fast transition matrix Pi is the same for all
robots i ∈ L since they are all performing random walks on
the same site graph, but we include the index i to clarify
that it is the transition matrix used by robot i since our later
analysis is often done from the perspective of a particular
robot i ∈ L. Furthermore, any robot j ∈ M does not
necessarily use the fast transition matrix designed in (4).



As the robots move throughout the environment, they
gather trust observations of their neighbors. Let the vec-
tor oi,j be a ηi,j × 1 vector that consists of every trust
observation gathered by robot i of robot j over the time
window T , where ηi,j ≤ T represents the total number of
observations gathered for the pair. Then, robot i determines
a value βi,j(t), known as the trust function, from the vec-
tor oi,j as follows:

βi,j [t] =

ηi,j∑
κ=1

(
[oi,j ]κ −

1

2

)
, (5)

where [oi,j ]κ is the κth entry in vector oi,j . From (1) and (2),
we know that αi,j(t) < 1

2 in expectation if j ∈ M, and
so over the summation in (5) we have by the linearity of
expectation [14], that βi,j(t) < 0 in expectation. Similarly,
βi,j(t) > 0 in expectation if j ∈ L. Therefore, each robot
i ∈ L develops their interim trust vector, xi(t), using the
trust function βi,j(t) where

[xi]j(t) =

{
1, if βi,j(t) ≥ 0,

0, if βi,j(t) < 0.
(6)

The full process for estimating the legitimacy of each
robot using individual trust observations is described in
Algorithm 1. The algorithm requires robots to transition
between sites for τind =

4 log(2N3
R/δ)

ε2α
Tmeet time-steps, using

the transition matrix Pi in (4), with the goal of gathering at
least nα trust observations for every other robot. Robots that
do not gather at least nα trust observations of each other
choose to not trust each other by default. We derive this
time duration τind and the number of observations nα, and
show that it leads to a success probability of 1 − δ/NR in
Section IV.

Algorithm 1 Individual Protocol for a robot i (Individual)
Input: time window τind (Theorem 1), transition matrix Pi
in (4), number of observations nα (Theorem 1)
Output: trust vector xi(t)

1: Using the fast transition matrix Pi in (4), gather trust
observations of neighboring robots for τind time-steps.
Keep track of the number of total observations ηi,j ,
gathered for each robot j ∈ R over that time.

2: Compute the trust vector xi(t) ∈ {0, 1}NR : For every
j ∈ R compute the entry [xi]j(t) using (6) if the
number of observations gathered of robot j is at least nα,
otherwise [xi]j(t) = 0. Set [xi]i(t) = 1.

B. Dynamic Crowd Vetting Algorithm
The DCV algorithm seeks to utilize trusted neighboring

opinions in order to reduce the time τind required to achieve
a success probability of at least 1 − δ/NR by requiring
the robots to only transition long enough to gather nα
observations of a subset of the network, rather than the entire
network. Define the trusted neighborhood of a robot i at
time t as

ΘT
i (t) := {j ∈ N T

i (t) | [xi]j(t) = 1}. (7)

The process for running the DCV algorithm is described in
Algorithm 2. Similarly to the Individual Protocol, the algo-
rithm requires that every legitimate robot use transition ma-
trix Pi in (4). This time, the robots transition between sites
for τ = min

{
f(NR, |L|, δ)Thit,

4 log(4N3
R/δ)

ε2α
Tmeet

}
time-

steps in two phases, with the goal of gathering at least nα
trust observations of a large subset of the overall team, where
f(NR, |L|, δ) = 26

(1−1/e)2nα, nα = 8
0.1ε2α

log
(
e2eNR
0.1δ|L|

)
, and

e is the Euler constant. We derive the time duration τ and
number of observations needed nα, and show that it leads to
a success probability of 1− δ/NR in Section IV.

Algorithm 2 DCV Algorithm for a robot i
Input: time window τ (Proposition 1), transition matrix Pi
in (4), number of observations nα (Proposition 1)
Output: final trust vector x∗i

Phase 1:
1: Compute the interim trust vector xi(t) ∈ {0, 1}NR using

Individual(τ , Pi, nα)

Phase 2:
2: Transition for another τ time-steps while gathering the

interim trust vector xj(t) from all trusted neighbors
j ∈ {Ni(t)|[xi]j(t) = 1}.

3: Compute the final trust vector x∗i ∈ {0, 1}NR : Assign
each entry [x∗i ]k by majority rule, i.e., [x∗i ]k = 1 if(∑

j∈Θτi (t)[xj ]k(t)
)
≥ |Θτi (t)|

2 , and [x∗i ]k = 0 other-
wise.

Algorithm 2 has the robots arrive at the final trust vector
faster by running the Individual Protocol for a shorter length
of time in Phase 1, and then utilizing trusted neighboring
opinions to fortify their own in Phase 2. In this way, robots do
not need to sufficiently observe the trustworthiness of every
other robot since they can rely on trusted neighbors to give
them information about robots they have not encountered
enough.

IV. ANALYSIS

We organize this section similarly to Section III. First,
we provide our theoretical analysis regarding the time re-
quired for robots to estimate the true legitimacy of all other
robots using the Individual Protocol (Algorithm 1). Then, we
provide analysis regarding the time required for robots to
estimate the true legitimacy of all others using our proposed
DCV algorithm (Algorithm 2) and show the reduction in the
time required compared to the Individual Protocol (based on
previous work [16]).

A. Individual Protocol

We start by deriving the time required for the Individual
Protocol to return the correct final trust vector xi(t) for all
i ∈ L.

Theorem 1. Given a user-specified failure probability δ > 0,
site topology G with meeting time Tmeet, and trust observa-
tions αi,j(t) satisfying (1) and (2). If all legitimate robots



i ∈ L use the Individual Protocol (Algorithm 1) with the
transition matrix Pi in (4), τind =

4 log(2N3
R/δ)

ε2α
Tmeet time-

steps, and nα = log(2N3
R/δ)/(2ε

2
α) observations of every

other robot, then the final trust vector xi(t) will be correct
for all i ∈ L with probability at least 1− δ

NR
.

Proof. Consider any legitimate robot i ∈ L. By Lemma 2
in Appendix A, robot i will correctly classify another
robot j with probability at least 1− δ/(2N3

R) if it gathers
nα = log(2N3

R/δ)/(2ε
2
α) trust observations of robot j.

If j ∈ M, then there are two cases: 1) if robot i meets
robot j at least nα times, then again the probability of
correctly classifying robot j is at least 1− δ/(2N3

R). 2) if
robot i meets robot j fewer times, then by default, robot i
will correctly decide to not trust robot j. Taking the Union
bound [27] over all pairs of robots in L × (L ∪M) gives a
probability of failure of at most |L × (L ∪M)| · δ

2N3
R

. Here
the operator × represents the Cartesian product of two sets.

It remains to argue that robot i will meet any robot j ∈ L
at least nα times in 4 log(2N3

R/δ)
ε2α

Tmeet time-steps. The proba-
bility of robot i and robot j meeting after 2Tmeet time-steps
is at least 1/2 by Markov’s inequality [28, Chapter 3.1],
regardless of the sites that they start on. The expected
number of meetings µ after 4 log(2N3

R/δ)
ε2α

Tmeet = 8nαTmeet

time-steps is at least µ ≥ 2nα. Thus, by the Chernoff bound
(Proposition 2 in Appendix A) setting γ = 1/2, we get that
for the number of meetings, X ,

P [X ≤ (1− γ)µ ] = P [X ≤ nα ] ≤ e−γ
2µ/2

≤ e−nα/4 ≤ δ

2N3
R
.

(8)

Taking the Union bound over all pairs of legitimate robots
gives a failure probability of at most |L × L| · δ

2N3
R

.
Summing the failure probabilities corresponding

to misclassifying a robot and gathering an
insufficient number of trust observations gives
|L × (L ∪M)| · δ

2N3
R

+ |L × L| · δ
2N3

R
≤ δ

NR
.

We note that the bound of Theorem 1 is tight in the
following sense: there exists an infinite class of graphs
such that the required time for all pairs of robots to meet
Ω(logNR) times is at least Ω(Tmeet logNR). An example of
this is the line graph over different numbers of sites.

B. Dynamic Crowd Vetting algorithm

Next we present the main result of this paper, which is the
time required for the DCV algorithm to return the correct
final trust vector x∗i for all i ∈ L. First, let

q =
δρ1

e2e

|L|
NR

, (9)

nα =
8

ρ1ε2
α

log

(
1

q

)
, (10)

f(NR, |L|, δ) =
26

(1− 1/e)2
nα. (11)

Theorem 2. Given a user-specified failure probability δ > 0,
site topology G with hitting time Thit and meeting time Tmeet,

and trust observations αi,j(t) satisfying (1) and (2). If all
legitimate robots i ∈ L use DCV (Algorithm 2) with the
transition matrix Pi in (4) and nα observations given in
(10), then the final trust vector x∗i will be correct for all
i ∈ L in time O(min{Thit log(NR

δ|L| ), Tmeet log(NR
δ )}) with

probability at least 1− δ
NR

.

To prove Theorem 2, we start by defining an event E
which, when it holds, implies that all final trust vectors are
correct deterministically. The event E consists of four con-
ditions where a certain proportion, denoted by ρ1, ρ2, ρ3, ρ4,
of the legitimate robots satisfies the condition.

Let E be the event that for every legitimate robot i ∈ L,
all of the following properties hold:

1) Robot i meets at least (1 − ρ1)|L| legitimate robots at
least nα times in Phase 1.

2) Robot i misclassifies at most ρ2|L| legitimate robots in
Phase 1.

3) Robot i misclassifies at most ρ3|L| malicious robots in
Phase 1.

4) Robot i meets at least (1 − ρ4)|L| legitimate robots at
least once in Phase 2.

The four properties of event E are visually depicted in Fig. 2.

We prove Theorem 2 by proving that when event E
holds, all final trust vectors are correct, which we prove in
Lemma 1, and the probability that event E holds is at least
1− δ/NR, which we prove in Proposition 1.

Lemma 1. Assume that event E holds and
that 1 > 3ρ2 + ρ3 + ρ4, where ρ2, ρ3, ρ4 ≥ 0.
If the DCV algorithm is used with parameter
τ = min

{
f(NR, |L|, δ)Thit,

4 log(4N3
R/δ)

ε2α
Tmeet

}
where

f(NR, |L|, δ) is given in (11), then any legitimate robot i

Fig. 2. Depiction of the regions specified by event E. Of all legitimate and
malicious robots, the proportion that robot i meets at least nα times during
Phase 1 are represented by Property 1 in purple. Robot i will misclassify
some of the legitimate robots after Phase 1, represented by Property 2 in
green. This can happen if robot i misclassifies another robot having met it
at least nα times, or by classifying it as malicious by default having not
met it at least nα times. Additionally, robot i will misclassify some of the
malicious robots after Phase 1, represented by Property 3 in orange. This can
only happen if robot i meets a malicious robot at least nα times. Property
4 corresponds to the robots that robot i meets in Phase 2, which is similar
to the region represented by Property 1 in purple, with the distinction that
robots only need to meet once in Phase 2 to be included in that region.



Fig. 3. The robots k share information with robot i about their opinion
of robot j to help robot i determine the trustworthiness of robot j. Among
the robots k, some number of them (FL+

i ) will be legitimate and give
robot i the correct information, some number (FL−i ) will be legitimate
but misclassify robot j, and therefore give the wrong information, and
some number (FM−i ) will be malicious and purposely share the wrong
information. Classification is done correctly if FL+

i > FL−i + FM−i .

classifies any other robot j correctly.

Proof. We analyze the process that robot i ∈ L uses to
determine the trustworthiness of another robot j by taking
information from each trusted neighbor k ∈ Θτ

i (t)\{j}. We
distinguish between two cases for any robot j.

For the first case, assume robot j is legitimate. Let FL+
i

be the number of legitimate robots that robot i ∈ L trusts,
that also trust robot j, and that robot i met in Phase 2.
This represents the number of legitimate robots that advocate
for robot i’s correct classification of robot j after Phase 2.
For a legitimate robot k not to be counted in FL+

i , one of
three things must have happened: 1) robot i misclassified
robot k, 2) robot k misclassified robot j, or 3) robot k did
not meet robot i in Phase 2. We have, by Union bound,
FL+
i ≥ |L| − 2ρ2|L| − ρ4|L| = (1− 2ρ2 − ρ4)|L|.
Let FL−i be the number of legitimate robots that robot i

trusts, that do not trust robot j, and that robot i met in
Phase 2. This represents the number of legitimate robots that
advocate for robot i’s incorrect classification of robot j after
Phase 2. We have, by Union bound, FL−i ≤ ρ2|L|.

Finally, let FM−i be the number of malicious robots that
robot i trusts that claim that robot j is malicious. This
represents the number of malicious robots that advocate for
robot i’s incorrect classification of robot j after Phase 2.
We can assume that no malicious robot communicates that
it trusts robot j. We have FM−i ≤ ρ3|L|.

The sufficient condition for robot i to classify robot j
correctly would be for the number of robots giving
robot i the correct information to be greater than the
number of robots giving robot i the wrong informa-
tion, i.e., FL+

i > FL−i + FM−i . It follows that we have
FL+
i > FL−i + FM−i as long as 1 > 3ρ2 + ρ3 + ρ4. Hence,

robot i classifies robot j correctly for any valid choice of
ρ2, ρ3, and ρ4. The process of trusted robots k ∈ Θτ

i (t)\{j}
sharing information with robot i to help robot i make a
decision about robot j is depicted in Fig. 3.

For the second case, assume that robot j is ma-
licious. Let FL+

i be the number of legitimate robots
that robot i trusts, that classify robot j as mali-
cious, and that robot i met in Phase 2. We have,
FL+
i ≥ |L| − 2ρ2|L| − ρ4|L| = (1− 2ρ2 − ρ4)|L|.
Let FL−i be the number of legitimate robots that robot i

trusts, that classify robot j as legitimate, and that robot i met
in Phase 2. We have, FL−i ≤ ρ2|L|.

Finally, let FM−i be the number of malicious robots that
robot i trusts that claim that robot j is legitimate. We have
FM−i ≤ ρ3|L|.

Clearly, we have FL+
i > FL−i + FM−i as long as

1 > 3ρ2 + ρ3 + ρ4. Hence, robot i classifies robot j correctly
for any valid choice of ρ2, ρ3, and ρ4.

Either way, robot i classifies robot j correctly.

Proposition 1. Let |L| ≥ 1, ρ1 = 0.1, ρ2 = ρ3 = 0.2.
Given trust observations αi,j(t) satisfying (1) and (2),
if all legitimate robots i ∈ L use the transition ma-
trix Pi in (4), then, running DCV (Algorithm 2) with
parameters τ = min

{
f(NR, |L|, δ)Thit,

4 log(4N3
R/δ)

ε2α
Tmeet

}
,

and nα, where f(NR, |L|, δ) is given in (11) and nα is given
in (10), ensures that event E holds with probability at least
1− δ

NR
.

Remark: Before we prove the proposition, note that if
|M| = O(|L|), then the first term of τ is O(Thit) since
NR/|L| ≈ 2, whereas the second term, regardless of the
fraction of legitimate robots, is O(Tmeet log(NR)).

Proof. Without loss of generality, we will assume that the
first term of τ (the one that is a function of the hitting time)
is the minimum. Otherwise, the proof trivially follows from
Theorem 1 with success probability 1− δ/(2NR).

Consider the trajectory of any legitimate robot i given
by χi(1), χi(2), . . . , χi(tf ) from some arbitrary starting
time t = 1 to some arbitrary finishing time t = tf . We show
that each property of event E holds with probability at least
1− δ/(4NR). By doing so, a Union bound over all 4 prop-
erties yields a total success probability of at least 1− δ/NR.
We start with Property 1.

a) Property 1: We start by claiming that any other
legitimate robot j meets robot i after 4Tmix +Thit time-steps
with probability at least (1 − 1/e)2, where e is the Euler
constant. To show this, note that, by [29, Lemma A.5] after
4Tmix time-steps, the random walk done by robot j follows
the stationary distribution π with probability at least 1−1/e.
Then, by Lemma 3 after Thit time-steps robot j does not
meet robot i with probability at most (1− 1/Thit)

Thit ≤ 1/e,
where we used that (1 + x/n)n ≤ ex for n ≥ 1, |x| ≤ n.
This proves the claim.

Now, we can divide time into periods of length
4Tmix + Thit and repeat this trial noting that for each trial
we have independence. By, Eq. (10.35) in [30], we have
4Tmix + Thit ≤ 13Thit.

Let X be the number of meetings between two legit-
imate robots. After f(NR, |L|, δ)Thit time-steps, the ex-
pected number of meetings between two legitimate robots



is µ ≥ (1− 1/e)2f(NR, |L|, δ)/13 = 2nα. By the Chernoff
bound (Proposition 2 in Appendix A) setting γ = 1/2, we
get that the probability that there are fewer than nα meetings
between legitimate robots is at most

P [X ≤ nα ] ≤ P
[
X ≤ µ

2

]
≤ e−γ

2µ/2

≤ exp

(
−2nα

8

)
≤ q2/ρ1 .

(12)

Let Yj be the indicator variable that is 1 if legitimate
robot j meets legitimate robot i less than nα times. It is
important to realize that for any j, k 6= i and j 6= k that Yj
and Yk are independent since we have fixed the trajectory
of robot i ahead of time. Using this crucial independence,
we can bound Y =

∑
j∈L\{i} Yj , i.e., the number of

legitimate robots that meet robot i fewer than nα times.
To do so, we apply Proposition 3 (c.f. Appendix A) with
p = q2/ρ1 . Note that we can apply Proposition 3 since
p ≤ ρ2

1/ exp(2e(1− ρ1)). We have

P [Y ≥ ρ1|L| ] ≤ pρ1|L|/2 = q|L| ≤ δ

4|L| ·NR
, (13)

by Lemma 4 (c.f. Appendix A). Taking the Union bound over
all legitimate robots |L| proves that Property 1 of event E
holds with probability at least 1− δ/(4NR).

b) Property 2: Let L1 be the set of legitimate robots
that met robot i at least nα times. By Lemma 2, since
each robot j ∈ L1 met robot i at least nα times, each robot
j ∈ L1 will classify robot i correctly with probability at least
1− q24/ρ1 . Now let p = q24/ρ1 . In order for ρ2|L| legitimate
robots to be misclassified it must hold that at least ρ1|L|
robots among the |L1| are misclassified.

The probability that more than ρ1|L| are misclassified, by
Proposition 3 applied with ρ = ρ1|L|

|L1| and n = |L1|, with
p ≤ ρ2

1/ exp(2e(1− ρ1)), is at most

pρ1|L|/2 = q12|L| ≤ δ

4|L| ·NR
, (14)

by Lemma 4.
Therefore, of all the successful meetings of Property 1:

only ρ1|L| of them are misclassified with probability at least
1− δ/(4|L| ·NR). Thus, the total number of robots that
misclassified robot i are the ones that met robot i fewer than
nα times, and the ones that met robot i at least nα times but
misclassified it. This gives us ρ1|L|+ ρ1|L| = ρ2|L|. Taking
the Union bound over all |L| robots yields Property 2 with
probability at least 1− δ/(4NR).

c) Property 3: To maximize the number of malicious
robots that are classified as legitimate, we can assume with-
out loss of generality that each robot j ∈ M meets robot i
at least nα times. By Lemma 2, robot i will misclassify each
malicious robot j ∈M with probability at most p = q24/ρ1 .
Without loss of generality, assume |M| ≥ 1. We can ap-
ply Proposition 3 with ρ = ρ3|L|/|M| and n = |M|, with
p ≤ ρ2

1/ exp(2e(1− ρ1)). Therefore, we get that the proba-
bility that more than ρ3|L| = ρ3

|L|
|M| |M| malicious robots are

misclassified is at most pρ3|L|/2 = q24|L| ≤ δ/(4|L| ·NR),

by Lemma 4. Taking the Union bound over all |L| legitimate
robots completes the proof of Property 3.

d) Property 4: The proof of Property 4 is the same as
Property 1 since nα ≥ 1.

Taking a Union bound over all 4 properties yields a total
success probability of at least 1− δ/NR.

From Lemma 1, we have that event E leads to all
legitimate robots returning the final trust vector correctly.
Furthermore, from Proposition 1, we have that event E holds
with probability at least 1− δ/NR, thus proving Theorem 2.

Note that the bound of Theorem 2 is tight in the following
sense: there exists an infinite class of graphs for which the
required time matches the required time of Theorem 2 up to
constants. In some graphs, e.g., a star of sufficient size NV ,
it requires Ω(Tmeet logNV) = Ω(logNV) rounds to meet. On
the other side, on an NV ×NV grid for example, it requires
Ω(Thit) = Ω(N2

V) rounds.
It is also worth noting that after O(Thit) time steps, the

probability of failure is exponentially small in |L|. Since we
take the minimum of the hitting time and the meeting time
multiplied with logNR, we cannot hope to always get an
exponentially small failure probability.

V. SIMULATIONS

To evaluate our proposed algorithm, we include a simula-
tion study that investigates the time saved for determining the
correct trust vectors by utilizing trusted neighboring opinions
in our proposed method compared to the Individual Protocol.
In Fig. 4, we varied the number of robots from 4 to 128
and checked the average number of time-steps required for
legitimate robots using the Individual Protocol (grey) and our
proposed DCV protocol (blue) to determine the correct trust
vectors. We set |L| = |M| = NR/2 for each simulation, and
ran the simulation 100 times for each value of NR. We also
tested with different topologies, shown in the top left of each
plot in Fig. 4 using 9 sites for each topology. The top left
plot used a grid site topology, and the top right used a line
topology. The bottom left plot considered a random graph
generated using the Barabási-Albert model where k < NV
sites begin connected in a line, and the remaining sites are
added one at a time with edges connecting them to up to k
of the previous sites, chosen at random with k = 3. The
bottom right plot considered a random graph generated using
the Erdös-Rényi model where an edge is assigned between
each pair of sites with probability 0.2.

Regardless of the site topology, our proposed DCV algo-
rithm takes significantly fewer time-steps to achieve success
compared to the Individual Protocol. It can also be seen that
the difference between the number of time-steps required for
each protocol increases as the number of robots increases,
showing that the DCV algorithm performs better compared to
the Individual Protocol as the team size is scaled up. We note
that in the left-most plots (for the grid and Barabási-Albert
topologies) the number of time-steps required in simulation
using the DCV algorithm actually decreases slightly as the
number of robots increases. This is due to the fact that we



Fig. 4. Number of time-steps required for robots to find the correct
final trust vectors using our proposed DCV protocol in simulation (blue)
compared to the Individual Protocol (grey) and what we predict by theory
for the DCV algorithm (purple). The number of robots is varied along
4 different site topologies each consisting of 9 sites: grid (top left), line
(top right), Barabási-Albert (bottom left), and Erdös-Rényi (bottom right).
As the number of robots increases, the ratio of legitimate to malicious
robots remains constant. The gap in performance between the two methods
increases as the team size increases regardless of the site topology.

terminate simulations when the correct final trust vector is
found. In Theorem 2 we show that it takes constant time to
find the correct trust vectors using DCV as the number of
robots increases, but that the probability of finding the correct
trust vectors increases as the number of robots increases.
This phenomenon can cause the decreases evident in the two
left-most plots in Fig. 4. Additionally, we include lines that
show the time-steps required that is predicted by our theory
(purple), i.e., from Theorem 2. The hitting time for different
site topologies was computed using [24, Theorem 3.1], and
the meeting time was computed using [25, Theorem 1]. The
hitting and meeting times for each of the 100 topologies gen-
erated using the random graph generation models (Barabási-
Albert model and Erdös-Rényi model) were averaged in
order to compute the time required predicted by our theory
for those cases. From Fig. 4 it can be seen that the time-steps
required that is predicted by theory closely matches (up to
constants) the actual number found in simulation.

In Fig. 5, we varied the number of sites in a grid topol-
ogy (left), and the number of legitimate versus malicious
robots (right). The left plot used NR = 32 robots, with
|L| = |M| = NR/2. The right plot used a grid site topology
with NV = 9 sites, and a constant NR = 32 robots, but
varied the number of legitimate robots from |L| = 2 to
|L| = 30 with |M| = NR − |L|. Both plots show that the
benefits of the DCV algorithm over the Individual Protocol
increase as the number of sites increases (left) and the ratio
of legitimate to malicious robots increases (right).

VI. CONCLUSION

In this paper, we presented an algorithm for utilizing
the opinions of trusted neighbors to quickly and effectively

Fig. 5. Number of time-steps required for robots to find the correct
final trust vectors using our proposed DCV protocol in simulation (blue)
compared to the Individual Protocol (grey) and what we predict by theory
for the DCV algorithm (purple). The number of sites is varied along a grid
site topology (left), and the number of legitimate and malicious robots is
varied using a fixed grid with NV = 9 (right).

determine the true trust of neighboring robots using trust
observations even in the case where robots are moving and
their set of neighbors change with time. We show that not
only does our algorithm help legitimate robots reach an
agreement on their trust vectors, but it also reduces the
time required to determine the trust vectors correctly by
reducing the total number of time-steps that each robot has
to individually gather observations for.
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APPENDIX

A. Auxiliary Claims

Lemma 2 (Upper bound [13]). If a robot i ∈ L receives
nα = log(1/δ)

2ε2α
trust observations from another robot j, it

will know with probability at least (1 − δ) whether robot j
is legitimate or malicious by simply relying on the majority
of the observations:

P

[
nα∑
κ=1

(
[oi,j ]κ −

1

2

)
> 0

∣∣∣∣ j ∈ L
]
≥ 1− δ,

and

P

[
nα∑
κ=1

(
[oi,j ]κ −

1

2

)
< 0

∣∣∣∣ j ∈M
]
≥ 1− δ.

(15)

Proposition 2 ([28]). Let X1, . . . , Xn be independent
Bernoulli random variables with X =

∑n
i Xi and

µ = E [X ]. Then, for any 0 < γ < 1,

P [X ≤ (1− γ)µ ] ≤ e−γ
2µ/2. (16)

Lemma 3 ([31, Theorem 1.3]). For any t ∈ N\{0} and any
sequence χi(1), χi(2), . . . , χi(t) ∈ V we have that for any
lazy random walk Pj(κ) done by a robot j for κ ∈ {1, . . . , t}
starting from the stationary distribution π, that

P [∀κ, χj(κ) 6= χi(κ) ] ≤ (1− 1/Thit)
κ
.

The following is consequence of [13, Theorem 4] / Equa-
tion 10 of [32].

Proposition 3. Let Y =
∑n
i=1 Yi be the sum of n

independent and identically distributed random variables
with P [Yi = 1 ] = p and P [Yi = 0 ] = 1 − p with
p ≤ ρ2/ exp(2e(1− ρ). We have for any ρ ∈ (0, 0.8] that

P [Y ≥ ρn ] ≤ pρn/2.

Lemma 4. Consider the notation of Lemma 1 and Proposi-
tion 1. We have, q|L| ≤ δ

4NR|L| .

Proof. Let φ = |L|
20NR

. Since |L| ≥ 1, and by definition of
q, it suffices to show that

φ|L| ≤ 1

4NR|L|
. (17)

since then q|L| ≤ δφ|L| ≤ δ
4NR|L| .

Note that Eq. (17) is equivalent to proving the following
equation

1

φ|L|
=

(
20NR
|L|

)|L|
≥ 4|L|NR. (18)

We now prove Eq. (18) by distinguishing between the
following cases.
• |L| = 1: holds trivially.
• |L| ∈ {2, 3}:(

20NR
|L|

)|L|
> (5NR)|L| ≥ 25N2

R ≥ 4|L|NR.

• |L| ∈ {4, 5, . . . ,
√
NR}:(

20NR
|L|

)|L|
≥ (20

√
NR)|L| ≥ 204N2

R ≥ 4|L|NR.

• |L| ∈ {
√
NR + 1, . . . , NR}:(

20NR
|L|

)|L|
≥ (20)|L| ≥ 20

√
NR ≥ 4N2

R ≥ 4|L|NR,

where the penultimate inequality can be veri-
fied by taking logarithms on both sides; yielding√
NR log(20) ≥ 2 log(2NR) for NR ≥ 1.
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