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Abstract—Adaptive control has focused on online control of
dynamic systems in the presence of parametric uncertainties,
with solutions guaranteeing stability and control performance.
Safety, a related property to stability, is becoming increasingly
important as the footprint of autonomous systems grows in
society. One of the popular ways for ensuring safety is through
the notion of a control barrier function (CBF). In this paper, we
combine adaptation and CBFs to develop a real-time controller
that guarantees stability and remains safe in the presence of
parametric uncertainties. The class of dynamic systems that
we focus on is linear time-invariant systems whose states are
accessible and where the inputs are subject to a magnitude limit.
Conditions of stability, state convergence to a desired value, and
parameter learning are all elucidated. One of the elements of the
proposed adaptive controller that ensures stability and safety is
the use of a CBF-based safety filter that suitably generates safe
reference commands, employs error-based relaxation (EBR) of
Nagumo’s theorem, and leads to guarantees of set invariance. To
demonstrate the effectiveness of our approach, we present two
numerical examples, an obstacle avoidance case and a missile
flight control case.

I. INTRODUCTION

The field of adaptive control has focused on providing real-
time inputs for dynamic systems through parameter learning
and control design using a stability framework [1]–[6]. A
different direction of research has been growing in the area
of safety-critical systems [7]–[9] motivated by the need to
provide verifiable guarantees of safe behavior in systems
with mixed autonomy. This paper takes a step in combining
adaptive control methods with safety-critical methods for a
specific class of dynamic systems. In addition to ensuring
safety and stability, the proposed adaptive control design also
seeks to accommodate magnitude constraints on the control
input.

The tools utilized in establishing stability in adaptive control
include Lyapunov stability, analytical continuity, and a refer-
ence model that establishes a target for the adaptive control
system to track. In the case of safety, control barrier functions
(CBFs) and the notion of positive invariance are utilized in
order to design the exogenous input into the system. The
approach we have used in this paper is a careful combination
of both sets of tools; a CBF-based filter design is used in order
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to design the reference input into the reference model. This in
turn is followed by the use of a reference model that utilizes a
closed-loop structure [10] and a calibration that acknowledges
the possibility of input saturation. With the resulting calibrated
closed-loop reference model (CCRM), global boundedness and
tracking in the absence of input saturation and a domain
of attraction result in the presence of input constraints are
established. In all cases, safety of the system is guaranteed
due to the combined use of Calibrated CBF and CCRM.

Several approaches have been reported in the literature
where CBFs are are used to ensure safety for a plant with
parametric uncertainties [11]–[16]. Approaches in [12], [13]
use a robust but conservative approach in the choice of how
the system is rendered safe. A less restrictive approach is used
in [14] where a CBF filter minimizes the risks of controlling
an unknown model and a controller learns how to operate
the system via a data-driven approach. A drawback of that
approach is that during the learning phase, no guarantees of
set invariance or bounds can be provided. In [15], the notion
of a CBF is expanded as an adaptive CBF which requires
the barrier function to exist for all unknown parameters and
all adaptive gains in a set. A similar approach is proposed
in [16] where L1-adaptive methods are used to update the
parameters and the corresponding Control Lyapunov Function
(CLF) is assumed to exist for all parameter estimates. While
magnitude limits are imposed on the control input in [16],
those constraints are imposed in the development of the CLFs,
which may not be guaranteed to lead to a feasible solution.

Safety has also been addressed using non-CBF approaches
[17]–[19] in the form of state-constraints. In [17], [18], the
authors introduced modulation functions that are able to lower
the control input such that it never directs the system out of
a chosen set of states. In [19] a bounding function on the
reference input is imposed to lower the control input and
therefore ensure state-constraints. The trade offs between the
use of such a bounding function and command following
are however only empirically addressed in these papers. In
contrast, a CBF-based approach, which is used in this paper,
allows a streamlined use of a computational solution within a
constrained optimization framework, with a quadratic cost.

In this paper, we propose an adaptive controller that guar-
antees stability of the closed-loop system in the presence of
parametric uncertainties, and safety, both with and without
input-saturation. Unlike [15], the computational burden on
CBF is significantly reduced by removing the requirements
to be satisfied for all unknown parameters. Instead, the CBF
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is designed using a reference model and suitably calibrated to
accommodate the presence of adaptation.

Preliminaries and problem statement are presented in Sec-
tion II. The main contributions, the development of an adaptive
controller with stability and safety properties, are presented in
Sections III and IV. Section III does not include any magnitude
limits on the control input, while Section IV includes these
limits. Section V includes numerical simulations.

II. PRELIMINARIES & PROBLEM FORMULATION

A. Preliminaries

We define a nonlinear continuous system

ẋ(t) = f(x(t)) (1)

where x(t) ∈ Rn. In order to define safety, we consider
a continuously differentiable function h : χ → R where
χ ⊂ Rn, and a set S defined as the zero-superlevel set of
h, yielding:

S ≜
{
x(t) ∈ χ|h(x(t)) = 0

}
(2)

∂S ≜
{
x(t) ∈ χ|h(x(t)) ≥ 0

}
(3)

int(S) ≜
{
x(t) ∈ χ|h(x(t)) > 0

}
(4)

The following definitions are introduced [20], [21]:

Definition 1. The set S is positively invariant for the system
(1), if for every x0 ∈ S, it follows x(t) ∈ S for x(0) = x0

and all t ∈ I(x0) = [0, τmax = ∞).

Definition 2. The set S is weakly positively invariant for the
system (1), if among all the solutions of (1) originating in
x0 ∈ S, there exists at least one globally defined solution x(t)
which remains inside S for all t ∈ I(x0) = [0, τmax = ∞).

Next, we define the distance from a point to a set:

Definition 3. Given a set S ⊂ Rn and a point y ⊂ Rn, the
distance from the point to the set is defined as

dist(y, S) = inf
w∈S

∥y − w∥∗ (5)

where ∥ · ∥∗ is any relevant norm.

Based on Definition 3, we can formulate the definition of a
tangent cone for a closed set.

Definition 4. Given a closed set S, the tangent cone to S at
x is defined as:

TS(x) =
{
z : lim inf

τ→0

dist(x+τz,S)
τ = 0

}
(6)

If S is convex TS(x) is convex, and “lim inf” can be
replaced by “lim”. Furthermore if x ∈ int(S), then TS(x) =
Rn, whereas if x /∈ S, then TS(x) = ∅, since S is defined
as a closed set. Therefore TS(x) is only non-trivial on the
boundary of S.

We use Definition 4 to introduce Nagumo’s theorem [20]:

Theorem 1. Consider the system defined in (1). Let S ⊂ Rn

be a closed set. Then, S is weakly positively invariant for the
system if and only if (1) satisfies the following condition:

f(x(t)) ∈ TS(x(t)), for ∀x ∈ S (7)

The theorem states that if the direction of the dynamics
defined in (1) for any x(t) at the boundary of the safe set
∂S points tangentially or inside to the safe set S, then the
trajectory x(t) stays in S.

Definition 5. A continuous function α : (−b, a) → R, with
a, b > 0, is an extended class K function (α ∈ K), if α(0) =
0 and α is strictly monotonically increasing. If a, b = ∞,
limr→∞α(r) = ∞, limr→−∞α(r) = −∞ then α is said to
be a class K∞ function (α ∈ K∞).

Definition 6. For the system considered in (1), a continuously
differentiable and convex function h : Rn → R is a zeroing
barrier function (ZBF) for the set S defined by (3) and (4), if
there exist an extended class K function α(h(x(t))) and a set
S ∈ Rn such that ∀x ∈ S,

ḣ(x(t)) ≥ −α(h(x(t))) (8)

The above definitions lead to a less restrictive version of (7)
as it weakens the requirement to that in (8).

We now expand the scope of the problem statement from
(1) to those with an affine control input, of the form:

ẋ = f(x(t)) + g(x(t))u(t) (9)

where g is Lipschitz and u(t) ∈ Rm. We introduce the notion
of a Control Barrier Function (CBF) such that its existence
allows the system to be rendered safe w.r.t. S [22], [23] and
allows a weaker requirement for system safety with a control
input u(t), similar to (8).

Definition 7. Let S ⊂ χ be the zero-superlevel set of a
continuously differentiable function h : χ → R. The function
h is a zeroing control barrier function (ZCBF) for S, if there
exists a class K∞ function α(h(x(t))) such that for the system
defined in (9) we obtain:

sup
u∈Rm

∂h

∂x

[
f(x(t)) + g(x)u(t)

]
≥ −α(h(x(t))) (10)

for all x ∈ S.

Using the Lie derivative notation, we obtain the following
formulation for a ZCBF considering the system defined in (9):

ḣ(x(t)) = Lfh(x(t)) + Lgh(x(t))u(t) (11)

B. Problem Formulation

We consider a linear plant with parametric uncertainties of
the form:

ẋp(t) = Apxp(t) +BpΛ(Ru0
(u(t)) (12)

where xp(t) ∈ Rn is a measurable state vector and u(t) ∈ Rm

is a control input vector. The matrices Ap ∈ Rn×n and Λ ∈



Rm×m are unkown and Λ has only diagonal positive entries.
The input matrix Bp ∈ Rn×m is known. The control input is
assumed to be magnitude limited by u0, which is represented
using the function Ru0

(·) as

Ru0(u(t)) =

{
u(t) if ∥u(t)∥ ≤ u0

u0
u(t)

∥u(t)∥ if ∥u(t)∥ > u0

(13)

The objectives are to determine a u(t) for (12) such that the
plant state xp(t) tracks a desired reference xd(t) and that for
any initial condition x0 := x(t0) ∈ S, it is ensured that the
plant state vector xp(t) stays within the safe set S ∈ Rn. This
is equivalent to having the control input ensures that there is
a CBF with h(x(t)) ≥ 0 for ∀t ≥ 0.

III. SAFE ADAPTIVE CONTROL DESIGN WITH OPEN-LOOP
REFERENCE MODEL

In this section, we consider a simpler version of the problem
statement, where the control input magnitude limit is removed.
The main challenge in ensuring positive invariance for the
plant in (12), which has uncertainties in Ap and Λ, is the
design of a suitable ZCBF, which requires the model to be
known, as is evident from (10). We therefore first choose a
target system, i.e. a reference model, that the adaptive system
can be made to contract towards. This reference model is
chosen so that its state approaches the desired reference xd(t)
and simultaneously allows the generation of a suitable ZCBF
that ensures safety. We choose an open-loop reference model
(ORM) of the form:

ẋm(t) = Amxm(t) +Bmr(t) (14)

where xm(t) ∈ Rn is the reference model state vector and
r(t) ∈ R ⊂ Rm the reference input vector. The matrix Am ∈
Rn×n is a Hurwitz matrix, and Bm ∈ Rn×m has full column
rank. It is easy to see that if

r(t) = B+
m(ẋd(t)−Amxd(t)) (15)

then xm(t) approaches xd(t), where B+
m denotes the Moore-

Penrose inverse of Bm.
In order to ensure that xm(t) stays inside a safe set S, rather

than choose r as in (15), we use a QP-ZCBF safety filter for
the plant in (12) as follows [11]:

min
r(t)∈R

∥r − r∗∥2 (16)

s.t.
∂h

∂x

[
Amxm +Bmr

]
≥ −α(h(xm)) + ∆,

where r∗ = B+
m(ẋd−Amxd) and ∆ > 0 is a positive constant

that introduces a safety buffer. The optimal solution of (16)
can be easily determined by using KKT conditions given by:

r − r∗ − LBmh(xm)Tλ = 0 (17a)
λ(−LAmxmh(xm)− LBmh(xm)r − α(h(xm)) + ∆) = 0

(17b)
− LAmxm

h(xm)− LBm
h(xm)r − α(h(xm)) + ∆ ≤ 0

(17c)

with a suitable choice of λ ≥ 0.
In what follows, for ease of exposition, we choose the class

K-function α(h(x)) = γh(x), where γ is a positive scalar
constant [22], [24].

A. Adaptive control design

Our reference system is now determined using (14) and (16)
as

ẋm(t) = Amxm(t) +Bmrs(t) (18)

The following assumptions are made regarding the unknown
parameters in (12):

Assumption 1. Constant matrices θ∗x and θ∗r exist that solve
the following:

Am = Ap +BpΛθ
∗
x (19)

Bm = BpΛθ
∗
r (20)

Assumption 2. The uncertainty Λ is a diagonal positive
definite matrix.

We now propose the adaptive controller for the plant in (12):

u(t) = θ̂x(t)xp(t) + θ̂r(t)rs(t) (21)

The time-varying parameters in (21) are adjusted using the
following adaptive laws:

˙̂
θx(t) = −Γxxp(t)ex(t)

TPBp , Γx > 0 (22)

˙̂
θr(t) = −Γrr(t)ex(t)

TPBp , Γr > 0 (23)

where ex(t) = xp(t) − xm(t) and P is the solution of the
Lyapunov equation AT

mP +PAm = −Q, where Q > 0. Both
Γx and Γr are positive definite matrices defined as the adaptive
update gains. We further introduce a corresponding output
error eu(t) = u(t) − u∗(t), which will be useful to quantify
the safety of the adaptive controller, where u∗(t) represents
the ideal control input and is defined as:

u∗(t) = θ∗xxp(t) + θ∗rrs(t) (24)

In what follows, it will be assumed that the reference input
rs(t) has a bounded derivative.

Theorem 2. The overall closed-loop adaptive system defined
by the plant in (12), the control input in (21) and the adaptation
laws in (22), (23) has globally bounded solutions for any initial
conditions xp(t0), θ̂x(t0), and θ̂r(t0) and both the errors ex(t)
and eu(t) converge to zero as t → ∞.

The proof of the theorem follows from standard adaptive
control arguments, since the error dynamics is of the form

ėx(t) = Amex(t) +BpΛ(θ̃x(t)xp(t) + θ̃r(t)rs(t)) (25)

where θ̃x(t) = θ̂x(t) − θ∗x, θ̃r(t) = θ̂r(t) − θ∗r and together
they admit a Lyapunov function

V (ex(t), θ̃x(t), θ̃r(t)) =
1

2
eTx (t)Pex(t)

+
1

2
Tr[θ̃x(t)Γ

−1
x θ̃Tx (t)Λ] +

1

2
Tr[θ̃r(t)Γ

−1
r θ̃Tr (t)Λ]

(26)



It is easy to see that V̇ ≤ 0, and ex ∈ L2. As ex(t) is
bounded and has a bounded derivative, an application of the
Barbalat’s Lemma leads to limt→∞ ex(t) = 0 [1]. From (25),
it follows that eu(t) is an input into an LTI system, with a
bounded derivative, whose state is ex(t); therefore it follows
that limt→∞ eu(t) = 0 [25].

B. Safety in the presence of uncertainties

With stability guaranteed from the discussions above, we
now derive conditions for the safety of the proposed adaptive
controller. The core ideais to render the known reference
model to be safe i.e. h(xm) ≥ 0 for ∀t ≥ 0, and to use
the adaptive system to make the closed-loop contract towards
the reference model, which ensures that h(xp) ≥ 0 for ∀t ≥ 0.
The goal is to derive conditions under which

ḣp ≥ −γh(xp(t)) + ∆ (27)

We note that the QP-CBF filter ensures that

ḣm =
∂h

∂x
|xm︸ ︷︷ ︸

a0

[Amxm(t) +Bmrs(t)︸ ︷︷ ︸
a1

] ≥ − γh(xm(t))︸ ︷︷ ︸
a2

+∆

(28)
where ḣp = ∂h

∂x |xp and ḣm = ∂h
∂x |xm . To ensure that a ZCBF

exists for the adaptive system specified by (12),(21)-(23), we
consider

ḣp =
∂h

∂x
|xp [Apxp(t) +BpΛ(θ̂x(t)xp(t) + θ̂r(t)rs(t))] (29)

From (12), (19)-(21), (24), (28), and the definition of the errors
ex and eu, we obtain that

ḣp =
∂h

∂x
|xp︸ ︷︷ ︸

b0

[Amxm(t) +Bmrs(t)︸ ︷︷ ︸
a1

+Amex(t) +BpΛeu(t)︸ ︷︷ ︸
ē

]

(30)

Algebraic manipulations allow us to rewrite (30) using (28) as

ḣp = b0[a1 + ē]

≥ −a2 +∆+ a0ē+ (b0 − a0)ē+ (b0 − a0)a1︸ ︷︷ ︸
z(t)

(31)

Since the goal is to establish safety of the closed-loop adaptive
system, we utilize the following two inequalities:

|g(xp(t))− g(xm(t))| ≤ κ1|ex(t)| (32)

|h(xp(t))− h(xm(t))| ≤ κ2|ex(t)| (33)

where g(x(t)) = ∂h
∂x , κ1 and κ2 are Lipschitz constants

associated with g(xp(t)) and h(xp(t)), respectively. We note
additionally from Theorem 2 that ∥xp(t)∥, ∥h(xp(t))∥ and ∥ē∥
are bounded. Therefore, |z(t)| ≤ z0, where z0 is defined as

z0 = |a0||ē|+ κ1|ex(t)|
(
|ē|+ |a1|

)
(34)

Using the lower bound −z0 for z(t), we rewrite (31) as

ḣp ≥ −γh(xp(t)) + ∆− F̄ (|ē|, |ex(t)|) (35)

where

F̄ (|ē|, |ex(t)|) = γκ2|ex(t)|+ |a0||ē|+ κ1|ex(t)|
(
|ē|+ |a1|

)
(36)

The inequality in (35) implies that safety of the closed-loop
adaptive system will be guaranteed after t ≥ t0 + T , where
T is a finite interval, as F̄ (t) → 0 as t → ∞, and therefore
|F̄ (t)| ≤ ∆ ∀t ≥ t0 + T . This in turn implies that the closed-
loop adaptive system will remain safe for all t ≥ t0 if

h(xp(t)) ≥ h0 ∀t ≥ [t0, t0 + T ] (37)

where γh0 ≥ Fmax where

Fmax = max
t∈[t0,t0+T ]

F̄ (t) (38)

As F (t) is bounded, it is clear that such an Fmax exists.
Condition (37) is satisfied if there is a separation between
the period of adaptation and the time at which the system
approaches its limit of safety. This property is summarized in
the following theorem, where eh(t) := h(xp(t))− h(xm(t)).

Theorem 3. A ZCBF h(x) exists for all S in Rn for the over-
all closed-loop adaptive system defined by the plant in (12)
and the adaptation laws in (22) and (23), if (37) is satisfied,
with γh0 ≥ Fmax where Fmax is defined as in (38). Further,
the inequality (37) also implies that limt→∞ eh(t) = 0.

The following choice of γ as a function of the safety error
may allow the condition (37) to be satisfied for a larger class
of ZCBFs:

γ(eh(t)) = γ0e
−(ϵeh(t))

2

(39)

with γ0 ≥ 0 and ϵ ≥ 0 are positive constants. Such a choice
allows γ to take on a value that is close to γ0 as long eh
is small, and γ(eh(t)) allows it to become small as |eh(t)|
increases. The rationale for such a choice is that near t0, when
the transients of the adaptive system are yet to settle down, eh
may be large and therefore a conservative choice of γ near zero
is prudent; as time proceeds, the adaptive system ensures that
xp approaches xm, and therefore eh approaches zero. As this
occurs, γ can be relaxed to take on larger values. We denote
such a choice of Eq. (39) as an error-based relaxation (EBR). It
should be noted that the proposed adaptive controller ensures
learning in the form of minimization of all performance errors
ex(t), eu(t), and eh(t) to zero.

IV. SAFE ADAPTIVE CONTROL DESIGN WITH
CALIBRATED CLOSED-LOOP REFERENCE MODEL

We now consider the adaptive control of (12) subject to
the magnitude limit as in (13). In order to accommodate these
limits and to improve on the transient performance we propose
a calibrated closed-loop reference model (CCRM) of the form

ẋm = Amxm(t) +Bmrs(t) + Lex(t) +BpΛ̂∆u(t) (40)

where L is a matrix such that (Am−L) is Hurwitz, ∆u(t) =
Ru0(u(t)) − u(t) and represents a disturbance due to satura-
tion, and Λ̂ is an estiamtion of the unknown matrix Λ. The



input rs(t) is the solution of a modified QP-ZCBF filter, which
is defined by the following constrained optimization:

min
r∈R

(r − r∗)2 (41)

s.t.
∂h

∂x
[Amxm +Bmr +LRe0(ex) +BpΛ̂R∆u0(∆u)

]
≥

−α(h(xm)) + ∆, (42)

where R∆u0
(∆u(t)) and Re0(ex(t)) represent magnitude lim-

ited signals of ∆u(t) and ex(t), with suitable limits ∆u0 and
e0, respectively. The KKT condition for the QP-ZCBF safety
filter is defined as:

r − r∗ − LBm
h(xm)Tλ = 0 (43a)

λ(−LAmxm
h(xm)− LBm

h(xm)r − LLh(xm)Re0(ex)

− LBpΛ̂
h(xm)R∆u0

(∆u)− α(h(xm)) + ∆) = 0 (43b)

− LAmxm
h(xm)− LBm

h(xm)r − LLh(xm)Re0(ex)

− LBpΛ̂
h(xm)R∆u0

(∆u)− α(h(xm)) + ∆ ≤ 0 (43c)

where λ ≥ 0 is chosen so as to ensure feasibility, and
α(h(x(t))) = γ(eh)h(x(t)), with γ(eh(t)) defined as in (39).
It should be noted that (43b)-(43c) are well defined for any
choice of ex(t) and ∆u(t), which are yet to be shown to be
bounded.

A. Adaptive control in the presence of magnitude limits

The same adaptive controller as presented in (21)-(23) is uti-
lized here as well with a few modifications. The corresponding
error dynamics between the CCRM in (40) and the plant in
(12) can be derived to be [26], [27]:

ėx(t) = (Am − L)ex(t) +BpΛ(θ̃x(t)xp(t)

+θ̃r(t)rs(t)) +BpΛ̃(t)∆u(t)
(44)

where Λ̃(t) = Λ− Λ̂(t) is the corresponding estimation error
for Λ, and (Am −L) is Hurwitz. In addition to (22)-(23), we
adjust the parameter Λ̂ as:

˙̂
Λ(t) = ΓΛ∆u(t)eTx (t)PBp (45)

where ΓΛ is positive definite. Based on (44) the following
Lyapunov function candidate V is proposed:

V =
1

2
ex(t)

TPex(t) +
1

2
Tr[θ̃x(t)Γ

−1
1 θ̃Tx (t)Λ]

+
1

2
Tr[θ̃r(t)Γ

−1
2 θ̃Tr (t)Λ] +

1

2
Tr[Λ̃(t)Γ−1

Λ Λ̃T (t)]

From the error equation in (44) and the adaptive laws in (22),
(23), (45) and the fact that (Am−L)TP+P (Am−L) = −Q0,
we can show that V̇ = − 1

2e
T
xQ0ex ≤ 0 and hence ex(t) is

bounded.
Unlike the previous case, we cannot immediately conclude

that xp(t) is bounded, as both xp(t) and x(t)m are affected
by ∆u(t). As a result, additional arguments are needed to
establish boundedness. Unlike the previous case, when control
inputs are limited in magnitude, one cannot guarantee global
boundedness but a domain of attraction result (see [27]–[29]),

which is briefly stated below.

We introduce the following definitions:

Kmax = max(sup ∥θ̃x∥, sup ∥θ̃r∥), sup ∥Λ̃∥)

β =
PBKmax

∥θ∗x∥+Kmax

a0 =
uminKmax

∥θ∗x∥+Kmax

xmin =
3PBKmax(rmax + 1) + 3PB∥θ∗r∥rmax

qmin − 3PBKmax
+

2PBumax

qmin − 3PBKmax

xmax =
PBa0

|qmin − 2PBKmax|

Kmax =
qmin − ρ

a0
(3∥θ∗r∥2umax)qmin

3PB + 3ρ
a0
(rmax + 1)|qmin − 2PB∥θ∗x∥|

− 2PB∥θ∗x∥
3PB + 3ρ

a0
(rmax + 1)|qmin − 2PB∥θ∗x∥|

where

qmin = min eig(Q), pmin = min eig(P )

pmax = max eig(P )

ρ =

√
pmax

pmin
, umax = max

i
(umax,i)

umin = min
i
(umax,i), PB = |PBpΛ|, λmin = min(eig(Λ))

γmax = max(eig(Γx), eig(Γr), eig(Γλ))

with all defined norms are Euclidean norms and the matrix
PB is the induced matrix norm, which has the property
|PBpΛx| ≤ PB |x|. Based on the introduced variables we can
state the following theorem.

Theorem 4. [29] The plant described in (12), with the
adaptive feedback controller (21) using the adaptive laws
defined in (22) - (45) has bounded trajectories for ∀t ≥ t0
if

1) |xp(t0)| < xmax

ρ

2)
√
V (t0) < Kmax

√
λmin

γmax

Since |xp(t)| < xmax for ∀t ≥ t0, we can state that the
error variable is of the same order as the difference between
saturated input R(u(t)) and the unsaturated u(t), stated as:

∥ex(t)∥ = O[sup
τ≤t

∥∆u(τ)∥]

We refer to [27]–[29] for details of the proof.

B. Safety in the presence of uncertainties and control input
limits

With stability guaranteed from the discussions above, we
now derive conditions for the safety of the proposed adaptive
controller with magnitude saturation. We again set α(h(x)) =
γh(x), where γ is a positive constant. The goal once again
is to ensure safety, that is, for inequality (27) to be satisfied.



Unlike (28), we note that the modified QP-ZCBF filter in (40)
implies that the following inequality holds:

ḣm =
∂h

∂x
|xm

[Amxm(t) +Bmrs(t) + LRe0(ex(t))

+BpΛ̂R∆u0(∆u(t))] ≥ −γ(eh(t))h(xm(t)) + ∆
(46)

using ∆ex(t) = Re0(ex(t)) − ex(t) and ∆̄u(t) =
R∆u0

(∆u(t))−∆u(t) we can reformulate

ḣm =
∂h

∂x
|xm︸ ︷︷ ︸

c0

[Amxm(t) +Bmrs(t)︸ ︷︷ ︸
c1

+Lex(t)︸ ︷︷ ︸
c2

+BpΛ̂(t)∆u(t)︸ ︷︷ ︸
c3

+L∆ex(t) +BpΛ̂(t)∆̄u︸ ︷︷ ︸
S∆

]

≥ − γ(eh(t))h(xm(t))︸ ︷︷ ︸
c4

+∆

(47)

We can derive ḣp using (12) and considering (13) as

ḣp =
∂h

∂x
|xp

[Apxp +BpΛ(θ̂x(t)xp(t)

+ θ̂r(t)rs(t) + ∆u(t))]
(48)

using (12) and the error between xp and xm, we can state

ḣp =
∂h

∂x
|xp︸ ︷︷ ︸

d0

[Amxm(t) +Bmrs(t)︸ ︷︷ ︸
c1

+Lex(t)︸ ︷︷ ︸
c2

+BpΛ̂(t)∆u(t)︸ ︷︷ ︸
c3

+ē∆]

(49)

with ē∆ = ē − Lex(t) + BpΛ̃(t)∆u(t). Algebraic manipula-
tions allow us to rewrite (49) as

ḣp = d0[c1 + c2 + c3 + ē∆]

≥ −c4 +∆+ c0ē∆ + (d0 − c0)(c1 + c2 + c3 + ē∆)︸ ︷︷ ︸
w(t)

−c0S∆

(50)

Noting that the inequality in (50) is very similar to (31),
similar relations to (32) and (33) can be employed to derive
an inequality

ḣp ≥ −γ(eh(t))h(xp(t)) + ∆− F̄∆(|ē∆|, |ex|) (51)

where
F̄∆(|ē∆|,|ex(t)|) = γκ4|ex|+ |c0||ē∆|

+ κ3|ex|
(
|c1|+ |c2|+ |c3|+ |ē∆|

)
− C0S∆

(52)

Using similar arguments that utilize the asymptotic conver-
gence of F̄ (t) to zero, we obtain once again that the closed-
loop adaptive system will remain safe for all t ≥ t0 if

h(xp(t)) ≥ h0 ∀t ≥ [t0, t0 + T ] (53)

where γh0 ≥ Fmax,where

Fmax = max
t∈[t0,t0+T ]

F̄ (t)

An EBR as in (36) can be introduced as in Section III to allow
condition (52) to be satisfied for a large class of h(x(t)).

A theorem similar to Theorem 3 can be derived to encap-
sulate the safety property of the closed-loop adaptive system
with magnitude saturation using the controller specified by
(21)-(23) and (45). The resulting closed-loop system therefore
is stable, safe, and accommodates magnitude constraints on
the control input.

V. SIMULATIONS

Two simulation examples are provided in this section to
illustrate the properties of the safe and stable adaptive control
approach described in this paper that includes a QP-CBF filter
and an EBR based damping term γ.

A. Obstacle avoidance

The proposed controller is applied to a simple 2D obstacle
avoidance problem in the simulation case here. The used
model is defined as:[

ẋ
ẏ

]
=

[
−2 0
0 −2

] [
x
y

]
+

[
0.8 0
0 0.8

] [
u1

u2

]
where x and y represent the position states, ẋ and ẏ are
their derivatives. The control inputs being represented by
u1 and u2. The magnitude limit on both control inputs
u0 was set to 10. The reference model is defined as:

Am =

[
−1 0
0 −1

]
, Bm =

[
−1 0
0 −1

]
To ensure safety in the context of obstacle avoidance, we
choose for each obstacle the following CBF constraint:

ho = (x− xo)
2 + (y − yo)

2 − r2o ≥ 0

where xo and y0 represent the x and y position of the obstacles
center and ro the radius of the circular obstacles.

Figure 1: Comparison of state trajectories with different initial
states using an AC-CBF without EBR.

Figure 1 shows the state trajectories of the discussed
adaptive control framework without the proposed error-based
relaxation (EBR) of the CBF constraint for adaptive closed-
loop systems with different initial locations. It is apparent that



Figure 2: Comparison of state trajectories with different initial
states using a AC-CBF with EBR.

even though the adaptive controller learns the parameter, it
cannot ensure safety since it cannot learn fast enough. This
leads to a safety violation for most of the shown trajectories.
Figure 2 shows the state trajectories for systems with different
initial locations using the proposed adaptive controller with
EBR of the CBF constraint. It can be seen that the proposed
method introduces a helpful conservatism where the model
is not yet learned. This renders the system safer and ensures
that no trajectory violates the safety constraint even though
the model is not learned yet.

B. Missile pitch dynamics

The used missile pitch dynamics model is shared in [30].
The model was modified such that a model mismatch can be
considered:[

α̇
q̇

]
=∆Ap

[
Zα Zq

Mα Mq

] [
α
q

]
+

[
Zδ

Mδ

]
λδδ

=∆Ap

[
−0.8757 1
−68.9210 0

] [
α
q

]
+

[
−0.1531
−74.2313

]
λδδ

where α represents the aerodynamic angle of attack (AoA), q
the pitch rate and δ the fin deflection. ∆Ap and λδ are scalar
parameters used to introduce static parameter deviations. For
the here regarded case, the parameters were set to ∆Ap = 1.2
and λδ = 0.6. The regarded linear dynamics are modeled at
Mach 0.8 and an altitude of 4000 ft, with a trim angle of
attack of 6 degrees. The magnitude limits on the control input
are set to 10 degrees for δ. The reference model of the system
was chosen by defining a nominal closed-loop response, using
a conventional LQR technique to define a suitable feedback
controller [31]. The reference model is defined as:

Am =

[
−0.8707 0.9927
−65.5877 −3.5903

]
, Bm =

[
0.1395 −0.0364
68.2893 −17.7947

]
For the here presented simulation case, it was chosen that the
maximum missile’s AoA is limited by an arbitrary value. To
ensure that, we choose the following CBF constraint:

hα = αmax − α ≥ 0
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Figure 3: Trajectory comparison of state AoA for AC-CBF
with EBR and without EBR w.r.t. to the commanded and the
maxmimum AoA.
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Figure 4: Time history of relaxation parameter γ for the case
with EBR and without EBR.

Figure 3 compares the closed-loop response of the suggested
adaptive controller in both versions, with and without the
error-based relaxation parameter. In this case, the desired AoA
is set to 5 degrees, but the maximum allowable state was
set to 4 degrees. It can be seen that the controller without
the EBR violates the defined maximum AoA constraint. The
controller with EBR is able to cope better with the problem
of uncertainties and uses the added conservatism during the
learning to converge to the defined maximum value when
the confidence in the model allows it. Figure 4 shows how
the relaxation parameter γ(e), for the adaptive controller with
EBR, decreases at the beginning when the model is the least
known. During the learning, the value increases and indicates a
higher confidence in the operation within the safe set. Figure 5
compares the time history of the control input for the proposed
adaptive controller with and without EBR, which shows that
the control input always stays well within its limits. We expect
that the oscillations can be improved further by deploying rate
limits and extending the proposed approach in this paper along
the lines of [27].
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Figure 5: Comparison of the time history of the fin deflection
δ for the adaptive controller with EBR and without EBR.

VI. CONCLUSIONS

This paper takes a step in combining adaptive control
methods with safety-critical methods for a specific class of
dynamic systems. In addition to ensuring safety and stability,
the proposed adaptive control design also seeks to accommo-
date magnitude constraints on the control input. The proposed
approach employs a combination of classical adaptive control,
closed-loop reference model that is calibrated to accommodate
input saturation, a quadratic programming based CBF filter,
and an error-based relaxation of the damping characteristics
of the CBF. The resulting combination is shown to lead to
global boundedness without input constraints, and a domain
of attraction result with input constraints. In both cases,
conditions for the existence of a control barrier function are
derived. Numerical results validate the analytical derivations.
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APPENDIX A
EXTENDED DERIVATION OF SAFETY CONDITIONS FOR

ADAPTIVE CONTROLLER IN THE PRESENCE OF
UNCERTAINTIES

We assume the following CBF for the plant:

ḣp ≥ −γh(xp) (54)

The integrated QP-CBF filter ensures that the following in-
equality holds

ḣm =
∂h

∂x
|xm︸ ︷︷ ︸

a0

[Amxm +Bmrs︸ ︷︷ ︸
a1

] ≥ − γh(xm)︸ ︷︷ ︸
a2

+∆ (55)

In order to ensure that a ZCBF exists for the adaptive system
specified by (12),(21)-(23), we consider

ḣp =
∂h

∂x
|xp

[
Apxp +BpΛ(θ̂xxp + θ̂rrs)

]
(56)

From (12), (19)-(21), (24), (55) and the control input error
eu = u− u∗ = θ̃xxp + θ̃rrs, we obtain that

ḣp =
∂h

∂x
|xp

[Apxp +BΛ(θ̃xxp + θ̃rrs + θ∗xxp + θ∗rrs)]

(57)

with additionally applying (19) and (20) from assumption 1,
the definition of the tracking error ex = xp − xm, we obtain

ḣp =
∂h

∂x
|xp︸ ︷︷ ︸

b0

[Amxm +Bmrs︸ ︷︷ ︸
a1

+Amex +BpΛeu︸ ︷︷ ︸
ē

]
(58)

Algebraic manipulations allow us to rewrite (58) using (55) as

ḣp = b0[a1 + ē]

≥ −a2 +∆+ a0ē+ (b0 − a0)ē+ (b0 − a0)a1︸ ︷︷ ︸
z(t)

(59)

Since the goal is to establish safety of the closed-loop adaptive
system, we utilize the following two inequalities:

|g(xp)− g(xm)| ≤ κ1|ex| (60)

|h(xp)− h(xm)| ≤ κ2|ex| (61)

where g(x) = ∂h
∂x , κ1 and κ2 are Lipschitz constants associated

with g(xp) and h(xp), respectively. We note additionally from
Theorem 2 that ∥xp(t)∥, ∥h(xp)∥ and ∥ē(t)∥ are bounded.
Therefore, |z(t)| ≤ z0, where z0 is defined as

z0 = |a0||ē|+ κ1|ex|
(
|ē|+ |a1|

)
(62)

with −z0 ≤ z(t) ≤ z0 holding. Using the lower bound −z0
for z(t), we rewrite (59) as

ḣp ≥ −γh(xp) + ∆− F̄ (|ē|, |ex|) (63)

where

F̄ (|ē|, |ex|) = γκ2|ex|+ |a0||ē|+ κ1|ec|
(
|ē|+ |a1|

)
(64)

The inequality in (35) implies that safety of the closed-loop
adaptive system will be guaranteed after t ≥ t0 + T , where

T is a finite interval, as F̄ (t) → 0 as t → ∞, and therefore
|F̄ (t)| ≤ ∆ ∀t ≥ t0 + T . This in turn implies that the closed-
loop adaptive system will remain safe for all t ≥ t0 if

h(xp(t)) ≥ h0 ∀t ≥ [t0, t0 + T ] (65)

where γh0 ≥ Fmax,where

Fmax = max
t∈[t0,t0+T ]

F̄ (t) (66)

As F (t) is bounded, it is clear that such an Fmax exists.
Condition (65) is satisfied if there is a separation between
the period of adaptation and the time at which the system
approaches its limit of safety. This property is summarized in
the following theorem, where

APPENDIX B
EXTENDED DERIVATION OF SAFETY CONDITIONS FOR

ADAPTIVE CONTROLLER IN THE PRESENCE OF
UNCERTAINTIES AND CONTROL INPUT LIMITS

Basd on the CCRM defined in (40) the following inequality
holds:

ḣm =
∂h

∂x
|xm

[Amxm +Bmrs + LRe0(ex)

+BpΛ̂R∆u0(∆u)] ≥ −γ(eh)h(xm) + ∆
(67)

using ∆ex = Re0(ex) − ex and ∆̄u = R∆u0(∆u) −∆u we
can reformulate

ḣm =
∂h

∂x
|xm︸ ︷︷ ︸

c0

[Amxm +Bmrs︸ ︷︷ ︸
c1

+ Lex︸︷︷︸
c2

+BpΛ̂∆u︸ ︷︷ ︸
c3

+ L∆ex +BpΛ̂∆̄u︸ ︷︷ ︸
S∆

] ≥ − γ(eh)h(xm)︸ ︷︷ ︸
c4

+∆

(68)

We can derive ḣp using (12) and considering (13) as

ḣp =
∂h

∂x
|xp

[
Apxp +BpΛ(θ̂xxp + θ̂rrs +∆u)

]
(69)

with applying (19) and (20) from assumption 1, the control
input error eu = u − u∗ = θ̃xxp + θ̃rrs and the error ex =
xp − xm, we can state

ḣp =
∂h

∂x
|xp︸ ︷︷ ︸

d0

[Amxm +Bmrs︸ ︷︷ ︸
c1

+ Lex︸︷︷︸
c2

+BpΛ̂∆u︸ ︷︷ ︸
c3

+ē∆]

(70)

with ē∆ = ē − Lex + BpΛ̃∆u and Λ̃ = Λ − Λ̂. Algebraic
manipulations allow us to rewrite (70) as

ḣp = d0[c1 + c2 + c3 + ē∆]

≥ −c4 +∆+ c0ē∆ + (d0 − c0)(c1 + c2 + c3 + ē∆)︸ ︷︷ ︸
w(t)

−c0S∆

(71)



Noting that the inequality in (71) is very similar to (59),
similar relations to (60) and (61) can be employed to derive
an inequality

ḣp ≥ −γ(eh)h(xp) + ∆− F̄∆(|ē∆|, |ex|) (72)

where

F̄∆(|ē∆|,|ex|) = γκ4|ex|+ |c0||ē∆|
+ κ3|ex|

(
|c1|+ |c2|+ |c3|+ |ē∆|

)
− C0S∆

(73)

Using similar arguments that utilize the asymptotic conver-
gence of F̄ (t) to zero, we obtain once again that the closed-
loop adaptive system will remain safe for all t ≥ t0 if

h(xp(t)) ≥ h0 ∀t ≥ [t0, t0 + T ] (74)

where γh0 ≥ Fmax,where

Fmax = max
t∈[t0,t0+T ]

F̄ (t)

An EBR as in (36) can be introduced as in Section III to allow
condition (52) to be satisfied for a large class of h(x).
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