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Abstract—We consider the problem of behind-the-meter EV
charging by a prosumer, co-optimized with rooftop solar, electric
battery, and flexible consumptions such as water heaters and
HVAC. Under the time-of-use net energy metering tariff with the
stochastic solar production and random EV charging demand,
a finite-horizon surplus-maximization problem is formulated.
We show that a procrastination threshold policy that delays
EV charging to the last possible moment is optimal when
EV charging is co-optimized with flexible demand, and the
policy thresholds can be computed easily offline. When battery
storage is part of the co-optimization, it is shown that the net
consumption of the prosumer is a two-threshold piecewise linear
function of the behind-the-meter renewable generation under
the optimal policy, and the procrastination threshold policy
remains optimal, although the thresholds cannot be computed
easily. We propose a simple myopic solution and demonstrate
in simulations that the performance gap between the myopic
policy and an oracle upper bound appears to be 0.5-7.5%.

Index Terms—EV charging, distributed energy resources,
stochastic dynamic programming, net energy metering

I. INTRODUCTION

We address the problem of co-optimizing behind the
meter(BTM) electric vehicle (EV) charging, flexible con-
sumptions, rooftop solar, and energy storage. This work is
motivated by the increasing installation of the BTM DER and
storage [1] to shift and flatten the aggregated household loads.
With EV as a deferrable and interruptible load, co-optimizing
BTM resources benefits not only individual prosumers but
also the distribution grid operations in reduced power flow
[2].

Most households with BTM DER in the U.S. are under
some form of the net energy metering (NEM) tariff offered by
a regulated utility or consumer choice aggregator, which bills
the prosumer for its net energy consumption reading from
the revenue meter, as shown in Fig. 1. Under that setting, we
assume that an energy management system (EMS) controls
flexible household demands, such as water heater, HVAC,
EV charging, and BTM storage operations based on available
renewable generations.

The co-optimization problem can be formulated as a
continuous state and action space Markov decision process
(MDP). Unfortunately, the solution to such a stochastic
dynamic program (DP) is intractable without exploiting the
special properties of the co-optimization. To this end, we
focus on the particular structure of the NEM2.0 and beyond
[2], where the purchasing (importing) rate is higher than the
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Fig. 1: NEM scheme of the household with the BTM storage and
EV. The direction of arrow indicates the direction of the power flow.

selling (exporting) rate. A striking property of such NEM
tariffs is that it creates a net-zero zone in the household’s
net consumption. Our work in this paper builds upon these
structural properties uncovered recently in [2], [3].

A. Related works

This work is closely related to [3], [4] which studied joint
scheduling of EV and flexible loads [4], and joint scheduling
of ESS and flexible loads [3]. A considerable amount of
research has also been conducted on the joint scheduling
of BTM ESS with an EV [5]–[10] and flexible demands
[11]–[15], along with DER. However, only a few studies
have specifically incorporated EV charging deadlines and
the deferrable nature of EV into the co-optimization with
storage. Moreover, to the best of our knowledge, no previous
literature has explored an online scheduling of EV, storage,
and consumption under NEM tariffs. In this article, we
examine previous works that have investigated comparable
optimization frameworks and techniques.

The co-optimization problem for the EMS with uncertain-
ties (e.g. rooftop solar generation and outside temperature)
is modeled as an one-shot optimization problem in [6],
[7], [11]. However, this approach requires perfect forecasts
of the uncertainties and can not provide an online policy.
The authors of [6] aimed to maximize household surplus
by co-optimizing flexible loads with BTM DER. In [7],
the authors formulated a mixed integer linear programming
(MILP) for scheduling of EV, storage, and PV power usage
for the customer enrolled in a demand response program.
Authors considered NEM 2.0 as the pricing tariff but they
did not explicitly consider controlling household devices.
In [11], MILP was formulated for the joint scheduling of
controllable loads and storage with rooftop solar but EV was
not considered.

Another method involves formulating co-optimization
problem as an MDP and solving it using stochastic DP, which
allows making online decision using the current DER gener-
ation [3]–[5], [13], [14], [16]. In [5], the optimal scheduling
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of EV and battery with rooftop solar to minimize cost and
incomplete EV charging demand was studied. However, the
authors did not take into account flexible demand and selling
excess DER generation to the grid. In [3], [13], the authors
focused on finding optimal threshold exploiting threshold
structure of the optimal policy for scheduling storage and
loads. Although [3], [13] did not consider EV, they are
among the closely related works that studied the scheduling
of loads and storage to maximize expected household surplus
with surplus renewables allowed to be sold to the grid.
Additionally, [4], [16] explored optimal threshold policies
for the joint scheduling of deferrable and non-deferrable
loads. In [14], the authors formulated stochastic control
problem into Lyapunov optimization and derived closed-
form scheduling of storage and loads. However, they did
not consider controlling individual loads and deferrable loads
such as EV.

Model predictive control (MPC) has been widely studied
for joint scheduling under uncertainties as an alternate ap-
proach for solving MDP [8], [9], [17]. MPC can be adapted
in real-time using the current available information but it’s
performance highly depends on the forecasting algorithm,
and problem size, such as look ahead horizon, and state,
action space. In [8], an MPC-based joint scheduling of
rooftop solar, battery, and EV that optimizes user comfort
and cost was studied. Selling surplus solar generation was
allowed but the selling price was the same as the energy
purchasing price. In [9], the same optimization problem
using MPC-based method was studied but the work included
storage battery degradation cost. An MPC-based algorithm
was proposed in [17] to schedule EV and flexible loads.
However, the storage wasn’t scheduled, and selling to the
grid was not allowed.

Recently, reinforcement learning (RL) based methods have
been applied for home EMS co-optimization [10], [15], [18].
The RL-based approach has the advantage that of not requir-
ing knowledge about uncertainties, but it is not free from
the curse of dimensionality for high-dimensional discrete
or continuous state/action space. For instance, [10], [18]
discretized EV charging and battery operation, and applied Q-
learning based method for joint scheduling of EV and loads
under random price and PV generation. In [15], the authors
used deep deterministic policy gradient (DDPG) algorithm
for joint scheduling storage and loads in the continuous
state/action space, but the algorithm converges slowly, which
restricts the usage of the algorithm in an online setting.

B. Summary of results and contributions

• We demonstrate that the procrastination threshold policy,
which involves delaying EV charging to the last possible
moment, which is the optimal policy for the EV, con-
trollable loads, and DER co-optimization problem under
NEM [4], is the optimal strategy for the co-optimization
including myopic battery operation with the additional
procrastination thresholds. Co-optimization including
myopic storage operation considers battery operations
with immediate stage reward and ignore future renew-

ables and storage decisions. Additional procrastination
thresholds determine the priority rule of storage opera-
tions and EV charging based on the current remaining
charging demand. The procrastination thresholds, which
characterize the optimal policy, can be computed of-
fline when the BTM DER is modeled as a sequence
of independent random variables. Assuming a non-
binding battery SoC limit, the optimal policy for the co-
optimization including non-myopic battery operations
becomes myopic policy.

• The myopic storage decisions are piecewise linear func-
tion of renewable generation which is divided into 5
segments by 4 thresholds. The myopic battery operation
stores energy in the battery solely using BTM DER
generation, and storage discharges only to curtail the
net consumption of the household.

• The empirical studies using the real-world data show
that the procrastination threshold policy with my-
opic storage operations outperforms other non co-
optimization policies and are in within 0.5-7% perfor-
mance gap to an oracle policy.

The notations used in the paper are standard. Vectors are
in boldface, with (x1, . . . , xN ) a column vector. We use 1 for
a column of ones with appropriate size. 1A is an indicator
function that maps to 1 if A is true, otherwise to zero.

The proofs of theorems and propositions are omitted due
to space limitations, and they can be found at [19].

II. PROBLEM FORMULATION

We consider a sequential scheduling of EV charging (vt),
controllable household loads (dt), and storage operation (et)
over a discrete-time and finite horizon of length T with
intervals indexed by T = {0, . . . , T − 1}.

A. EV charging, consumption, and storage model

a) BTM DER (rt): We model the BTM DER generation
during interval t as an exogenous variable, represented by
a sequence of independent random variables with a time-
dependent distribution ft(·). Additionally, we assume that
the renewable generation for that particular interval is already
known at the start of the interval.

rt ∼ ft(·), ∀t ∈ T (1)

b) Remaining charging demand (yt) and constraints:
At the start of every interval, the outstanding charging de-
mand (yt) is measured. A charger with a maximum capacity
v̄ and charging efficiency η provides vt in interval t. We
assume that the EV does not discharge it’s battery and the
total energy supplied to the EV will not exceed the amount
originally requested at t = 0 (sreq).

yt+1 = yt − ηvt, ∀t ∈ T . (2)
yt ∈ [0, sreq], ∀t ∈ T . (3)
vt ∈ [0,min{yt/η, v̄}], ∀t ∈ T . (4)

Without loss of generality we assume η = 1. 1

1Rescale yt by 1/η.



c) Household Consumption (dt): Consumption vector
dt =

(
dt1, · · · , dtK

)
models the flexible consumption of K

controllable devices within interval t which satisfy :

0 � dt � d̄ := (d̄1, . . . , d̄K), ∀t ∈ T . (5)

The utility Ut(dt) of consuming dt is linearly separable
differentiable concave function with marginal utility Lt(dt)

Ut(dt) =

K∑
i=1

Uti(dti), Lt(dt) := ∇Ut =
(
Lt1, . . . , LtK

)
.

Our current model didn’t consider uncontrollable loads.
However, this can be handled by modeling it as a sequence
of independent random variables with some distribution.

d) Battery storage operation (et): The battery state of
charge (SoC) is denoted as st ∈ [0, B] where B represents
maximum storage capacity of the battery. Battery charging
and discharging rate is denoted as et ∈ [−e, ē], where et ≥
0 represents charging, and et ≤ 0 represents discharging.
Battery charging and discharging have inefficiency constants
ηc ∈ (0, 1] and ηd ∈ (0, 1], respectively.

et ∈ [−e, ē], ∀t ∈ T (6)
st ∈ [0, B], ∀t ∈ T (7)

st+1 = st + ηcet1et≥0 −
et
ηd
1et≤0, ∀t ∈ T . (8)

e) Net consumption (zt): The net energy consumption
of a household within interval t is defined as the net energy
measured by the revenue meter during the billing period. This
includes EV charging, controllable loads, storage operation
and BTM DER generation within the billing period.

zt := vt + 1Tdt + et − rt, t ∈ T .

We say that household is net consuming when zt > 0, and
net producing when zt < 0.

B. NEM ToU tariff model

a) NEM payment
(
Pπt(zt)

)
: Under the NEM tariff

program, a household is billed or credited based on the net
energy consumption during each billing period, which can
range from 5 minutes to a day or a month. To simplify the
notation, we matched the length of our decision intervals with
the billing period. This enables us to index the billing period
with t.

At interval t, given NEM tariff parameters πt =
(π0
t , π
−
t , π

+
t ) ∈ R3

+, household with net consumption zt pays

Pπt(zt) := zt(1zt≥0π
+
t + 1zt≤0π

−
t ) + π0

t ,

where π+
t is a retail rate, π−t is a sell rate, and π0

t is a
fixed charge. A prosumer pays the retail rate for the net
consumption, while credited by the sell rate for the net
generation. The NEM tariff model was proposed in [2].2.

2Fixed charge doesn’t affect the optimal decision, so we assume π0
t = 0.

Fig. 2: ToU scheme and decision horizon

b) NEM ToU tariff model: ToU tariff divides 24 hours
into periods with different energy prices. For our analysis,
we adopt a ToU tariff with two distinct energy prices : off-
peak and on-peak. A typical ToU tariff sets the on-peak hours
to a five-hour period in the late afternoon and early evening
[20]. In this work, we assume that the decision horizon falls
within the first off-peak period, the on-peak period, and the
second off-peak period as shown in Fig.23. Hence, once we
know the connection time and the deadline, the scheduling
horizon is well defined : T = Toff,1 ∪ Ton ∪ Toff,2, with T =
|Toff,1|+ |Ton|+ |Toff,2|.

We assume that all the intervals in the same period have
the same NEM parameters and NEM parameters for every
interval is known a priori. Hence,

πt =

{
πon := (π−on, π

+
on), t ∈ Ton.

πoff := (π−off, π
+
off), t ∈ Toff,1 ∪ Toff,2.

(9)

We also assume that NEM parameters satisfy π−off < π−on <
π+

off < π+
on to avoid the BTM battery is used for the price

arbitrage and simplify the problem.

C. Co-optimization of EV charging, consumption, and stor-
age

We formulate the coordinated optimization problem into
stochastic DP with state xt = (st, yt, rt, πt). The initial SoC
(s0) and EV charging demand (sreq) is given.

The policy µ := (µ0, . . . , µT−1) is a sequence of functions
that maps the current state to EV charging, consumption and
storage operation :

µt(xt) := (vt, et,dt), t ∈ T . (10)

The stage reward for the stochastic DP is the household
surplus under the NEM tariff and the terminal reward is the
sum of the salvage value of battery storage and the penalty
for incomplete EV charging demand. The salvage value of
battery storage is proportional to the terminal SoC, and the
penalty for incomplete EV charging is proportional to the
remaining charging demand at t = T .

gt(xt, vt, et,dt) :=

{
Ut(dt)− Pπt(zt), t = 0, . . . , T − 1.

βsT − αyT , t = T.

3We refer period as the set of consecutive decision intervals with the same
price.



Co-optimization problem is :

P : max
µ

Er

[
T−1∑
t=0

gt(xt, vt, et,dt)− αyT + βsT

]
s.t. (1)− (10).

(11)

We denote the optimal value function as Vt(xt) that
satisfies following Bellman Equation :

Vt(xt) = max
v,e,d

{gt(xt, v, e,d) + E[Vt+1(xt+1)]}

s.t. (1)− (9)
(12)

D. Model Assumption

A1. Price - penalty - salvage value relation : We assume that
the NEM tariff parameters, the penalty for incomplete
charging demand, and the battery salvage value satisfies

π−off < π−on < ηcβ < β/ηd < π+
off < π+

on < α.

The intuition behind a high penalty for incomplete charg-
ing demand at the deadline is to allow EV charging from
the BTM DER and grid purchases in all intervals, and to
minimize incomplete charging demand. The penalty can be
interpreted as the price of charging the EV for unfulfilled
charging demand at the deadline.

An intuitive explanation for the price-salvage value relation
is that 1) β/ηd should always be greater than π−t because we
can always sell the energy stored in the battery to the grid
at the price of π−t . To avoid depleting storage, it should be
greater than π−t . 2) βηc should be less than π+

t for all t
because we can always purchase energy from the grid at the
price of π+

t . Consequently, to avoid the battery remaining
fully charged at all time, βηc should be less than π+

t .

III. PROCRASTINATION THRESHOLD POLICY
(CO-OPTIMIZATION WITHOUT BATTERY)

We first present the procrastination threshold policy which
is the optimal EV owner’s decision without a battery [4] to
provide an intuition of the procrastination threshold policy.
Here, Ṽt represents the value function of the MDP without
storage.

Theorem 1 (Procrastination threshold policy). NEM ToU
tariff parameters satisfying A1, and rt is a sequence of
independent random variables, optimal EV charging v∗t and
consumption d∗t decisions are monotone increasing function
of rt, and :

v∗t =


hτt(yt), rt < ∆+

t (yt)

hwt+1(ν)(yt), ∆+
t (yt) ≤ rt ≤ ∆−t (yt)

hδt(yt), rt > ∆−t (yt).

d∗ti =


lti(π

+
t ), rt < ∆+

t (yt)

lti(ν), ∆+
t ≤ rt ≤ ∆−t (yt)

lti(π
−
t ), rt > ∆−t (yt),

∀ i = 1, . . . ,K,

where ν ∈ [π−t , π
+
t ] satisfies, rt = v∗t +

∑K
i=1 d

∗
ti.

V̄t(y) := E[Ṽt(y, rt, πt)], wt(π) := (∂V̄t)
−1(−π),

hθ(y) := min{v̄,max{y − θ, 0}},

lti(π) := min{L−1
ti (π), d̄i}, lt(π) :=

K∑
i=1

lti(π),

∆−t (yt) := lt(π
−
t ) + hδt(yt)

∆+
t (yt) := lt(π

+
t ) + hτt(yt).

The procrastination threshold policy at the interval t is
characterized by two procrastination thresholds τt and δt.
These thresholds represent the limit of procrastination for
charging the EV. The limit of procrastination for charging
EV with grid purchase is τt. If yt ≤ τt, the controller will
postpone charging the EV unless there is surplus BTM DER
after fulfilling consumption, as shown in Fig.3. If yt ≥ τt,
energy will be purchased from the grid to charge the EV if
DER is not sufficient, but EV charging using the grid energy
will not exceed yt − τt. On the other hand, δt represents
thresholds of using DER to charge the EV. Similarly, if yt ≤
δt, EV is not charged even if there are surplus renewables.

An intuitive explanation for the optimality of procrastina-
tion charging behavior is that it increases the likelihood of
completing the job using DER, which is a cheaper charg-
ing option. Let’s consider special case-a charging session
with a single price-to gain insights into the policy. In this
case, the limit of procrastination for purchasing energy is
the maximum charging capacity of remaining intervals :
τt = (T − t − 1)v̄. Since there is no difference between
purchasing at the current interval and in later intervals, it
will postpone purchasing energy for charging the EV unless
it’s necessary, and anticipate future renewables to complete
the job with lower price.

The procrastination threshold policy is optimal if the
household is either net consuming or net producing, which
corresponds to the BTM DER being less than ∆+

t , and
greater than ∆−t , respectively. The optimal consumption of
in these regions has the marginal value of π+

t and π−t .
In between these two thresholds, the total household load,

which is the sum of EV charging and consumption, matches

Fig. 3: Procrastination threshold policy for δt = 0 < yt < τt. In
such yt, controller will delay charging EV charging using the DER.
So if renewable level is low, rt ≤ ∆+

t , EV is not charged, and EV
is charged only when there are surplus renewables, rt ≥ ∆+

t .



the current BTM DER generation, meaning the household is
in the net-zero zone. In this region, BTM DER is allocated
to consumption and EV charging so that the marginal utility
matches the marginal reward for charging EV, ∂V̄t. The
marginal reward for charging EV is the expected price of
energy that can be saved by charging at the current interval.

As the utility function and NEM payment is concave, it’s
easy to show that value function is also concave (Proof in
the [19]). Then, the subdifferential of V̄t(y) is non-empty,
compact and monotone set. Hence, ht(π) is well defined.
Also, due to the concavity of V̄t(y) and Ut(d), optimal
EV charging and consumption is monotone increasing with
respect to rt as in the Fig.3.

Following proposition shows procrastination behavior of
purchasing energy to charge EV.

Proposition 1 (Procrastination charging behavior). NEM
ToU tariff parameters satisfying A1, and DER is modeled
as a sequence of independent random variables, the optimal
charging decisions satisfy

If z∗t0v
∗
t0 > 0 for t0 ∈ Tx then v∗t = v̄, t0 < ∀t ∈ Tx ,

where Tx is Toff,1, Toff,2, Ton.

This proposition implies that once the controller is pur-
chasing energy from the grid to charge the EV, it will charge
at the maximum capacity in the remaining period, as if it
had reached the limit of procrastination and devoting its full
capacity.

IV. OPTIMAL PROSUMER DECISIONS

We now present a prosumer’s decision for EV charging,
flexible loads, and storage.

A. Myopic co-optimization

We will use the result from the previous section and
consider a co-optimization with myopic storage operations
to avoid solving infinite-dimensional optimization and to
unveil the structure of the policies. The battery is myopic
in the sense that its storage operations ignore future storage
operations and renewable generations, and immediately gen-
erate stage reward, which are the salvage values of storage.
Then, the Bellman equation for the myopic co-optimization
becomes :

VMt (xt) = max
v,e,d

gt(xt, v, e,d) +
(
ηc1et≥0 − 1et≤0/ηd

)
βet

+ E[VMt+1(st, yt − v, rt+1, πt+1)]

s.t. −min{e, stηd} ≤ et ≤ min{ē, (B − st)/ηc}
(4), (5).

(13)
where VMt (xt) is the optimal value function for the myopic
co-optimization. For the rest of the paper, we will denote the
maximal charging and discharging rate constrained by SoC
limit as e′ := min{e, stηd}, ē′ = min{ē, (B − st)/ηc}.

Theorem 2 (Myopic optimal policy). NEM ToU tariff pa-
rameters satisfying A1, and rt is a sequence of independent
random variables, the optimal net consumption z∗t of myopic

co-optimization (13) is a piecewise linear monotone decreas-
ing function of rt :

z∗t =


rt −∆+

t (yt), rt < ∆+
t (yt)

0, ∆+
t (yt) ≤ rt ≤ ∆−t (yt)

rt −∆−t (yt), ∆−t (yt) < rt.

The optimal EV charging v∗t , consumption d∗t and the storage
e∗t decisions are monotone increasing function of rt, seg-
mented by 6 thresholds on rt : ∆+

t (yt),∆t,1(yt)−∆t,4(yt),
and ∆−t (yt), and they are decided by Algorithm 1.

∆+′

t (yt) := max{∆+
t (yt)− e′, 0},

∆t,1(yt) := max{lt(β/ηd) + hσ+
t

(yt)− e′, 0},
∆t,2(yt) := lt(β/ηd) + hσ+

t
(yt),

∆t,3(yt) := lt(βηc) + hσ−t
(yt),

∆t,4(yt) := lt(βηc) + hσ−t
(yt) + ē′,

∆−
′

t (yt) := ∆−t (yt) + ē′,

where τt > σ+
t > σ−t > δt for all t ∈ T .

If rt < ∆+′

t and rt > ∆−
′

t (the first and the last case
in Algorithm 1), the household is net consuming and net
producing, and in these cases, consumption, and EV charging
decisions follow procrastination threshold policy introduced
in the section III.

In between these two thresholds, the household is in the
net-zero zone. Here, two additional procrastination thresh-
olds, σ+

t and σ−t , are introduced for the EV charging
decisions. These thresholds determine the priority of EV
charging and storage operations for allocating BTM DER.
When yt < σ−t , it implies that the remaining EV charging
demand is small or deadline is still far away. Hence, priority
is given to charging the storage over charging the EV. For
instance, in the Fig. 4, v∗t > 0 when rt > ∆t,4 and e∗t = ē′.

Similarly, for yt < σ+
t , the priority is given to the

discharging storage over charging the EV, which means the
EV will not charge using stored energy in the BTM battery.
For instance, in the Fig. 4 v∗t = 0 when e∗t < 0.

In the net-zero zone, either the total household load
(sum of consumption and EV charging) or storage operation

Fig. 4: Myopic optimal policy for δt = 0 < yt < σ−
t < σ+

t . For
such yt, charging and discharging the storage is prioritized over EV
charging. Hence, the EV is charged only if storage is charged to
maximum, and the EV is not charged when storage is discharging.



Algorithm 1 Myopic optimal decisions

Input: yt, πt, rt
Output: v∗t , e∗t ,d∗t

For all i = 1, . . . ,K, myopic optimal decisions of each
device are :
(with a slight abuse of notation, V̄t(y) :=
E[VMt (y, rt, πt))],
wt(π) := (∂V̄t)

−1(−π))
if rt < ∆+′

t (yt) then
v∗t ← hτt(yt), d∗ti ← lti(π

+
t ), e∗t ← −e′,

else if rt ∈
[
∆+′

t (yt),∆t,1(yt)
)

then
v∗t ← hwt+1(ν)(yt), d∗ti ← lti(ν), e∗t ← −e′,

where rt + e′ = v∗t +
∑K
i=1 d

∗
ti, and ν ∈ [β/ηd, π

+
t ],

else if rt ∈
[
∆t,1(yt),∆t,2(yt)

)
then

v∗t ← hσ+
t

(yt), d∗ti ← lti(β/ηd), e∗t ← rt −∆t,2,
else if rt ∈

[
∆t,2(yt),∆t,3(yt)

)
then

v∗t ← hwt+1(ν)(yt), d∗ti ← lti(ν), e∗t ← 0,
where rt = v∗t +

∑K
i=1 d

∗
ti, and ν ∈ [βηc, β/ηd]

else if rt ∈
[
∆t,3(yt),∆t,4(yt)

)
then

v∗t ← hσ−t
(yt), d∗ti ← lti(βηc), e∗t ← rt −∆t,3,

else if rt ∈
[
∆t,4(yt),∆

−′
t (yt)

)
then

v∗t ← hwt+1(ν)(yt), d∗ti ← lti(ν), e∗t ← ē′,
where rt − ē′ = v∗t +

∑K
i=1 d

∗
ti, and ν ∈ [π−t , βηc]

else
v∗t ← hδt(yt), d∗ti ← lti(π

−
t ), e∗t ← ē′

end if

increases with renewables. When, the battery operation is a
constant function of rt (case 2, 4, and 6 in Algorithm 1),
the total household load matches rt−et, BTM DER adjusted
by storage output. For instance, if rt ∈

[
∆+′

t (yt),∆t,1(yt)
)
,

the total household load matches sum of BTM DER and
maximal storage discharging. The storage output adjusted
renewables are allocated as the net-zero zone decisions of
the co-optimization without storage.

One thing to note that, by introducing the storage, the
household has a wider net zero zone compared to the co-
optimization without storage. This implies increased internal
usage of BTM DER within the household.

The optimal myopic storage operation is a piecewise
linear function and it shows a complementarity property with
the total household load, which is defined as e∗t z

∗
t ≤ 0

[3]. This implies that energy is stored in the battery only
using the BTM DER, and storage only discharges to reduce
net consumption. This result is intuitive because, from A1,
π− < βηc < π+, so storage charging is beneficial only when
using the BTM DER. Also, as π− < β/ηd < π+, discharging
stored energy in the battery is beneficial only if it is used to
reduce the net load.

B. Co-optimization with non-binding SoC assumption

Now, we make the following additional assumption on the
battery SoC limit :
A2. Non-binding battery SoC limit : Battery SoC limit

constraint, (7), is non binding for all t ∈ T .

This assumption is restrictive but it can be valid if the
storage capacity is large relative to the maximum storage
charging and discharging rate, or if the maximum charging
and discharging rate is relatively low. Under assumption A2,
we can show that the optimal policy for the stochastic co-
optimization problem (11) becomes myopic.

Theorem 3 (Optimal prosumer decisions). Under A1-A2,
and BTM DER modeled as a sequence of independent
random variables, optimal battery, consumption, EV charging
decisions of Theorem 2 is the optimal solution of the problem
(11).

C. Computation of the thresholds

We now comment on the computation of the thresholds
that characterize the myopic optimal policy. The renewable
thresholds, ∆t’s, are comprised of thresholds on consumption
and EV charging. Flexible loads are not coupled between
time, hence given consumer utility function, NEM parameter,
and storage parameters, we can compute the consumption
thresholds offline.

The following proposition presents the characterization of
procrastination thresholds.

Proposition 2 (Characterization of procrastination thresh-
olds). NEM ToU tariff parameters satisfying A1, and DER
is modeled as a sequence of independent random variables,
the optimal procrastination thresholds τt, σ+

t , σ
−
t , δt satisfy :

τt =

{
(T − t− 1)v̄, t ∈ Toff,2 ∪ Ton

wt+1(π+
off), t ∈ Toff,1

δt =


0,

t ∈ Toff,1 ∪ Toff,2,

t ∈ Ton ∧ Toff,2 = ∅
wt+1(π−on), t ∈ Ton ∧ Toff,2 6= ∅

σ+
t = wt+1(β/ηd)

σ−t = wt+1(βηc)

τt and δt satisfy following recursive relation within same
pricing period :

τt = τt+1 + v̄,

δt = δt+1.

In intervals with the purchasing procrastination threshold
τt = (T − t − 1)v̄, energy is purchased for charging EV
only if it’s necessary to meet the charging requirement by
the deadline. Combining the result of Proposition 1-2, the
procrastination threshold policy always guarantees comple-
tion of the charging requirement by the deadline whenever
it’s possible (sreq ≤ T v̄).

Other thresholds that involve wt+1(·) can be computed
offline by solving dynamic programming equations. Such
procrastination thresholds depend on the distribution of future
renewable generation, and represent value of yt such that
expected value of charging is equal to the argument of
wt+1(·).



Fig. 5: Relative performance gap of the MO(blue), CCO(red), CSO(yellow), NCO(purple), CR(green) to the oracle policy for different
π+
t − π−

t is plotted. The estimated mean of renewable is scaled by 0.5, 1, 1.5 for the figures from left to right.

V. NUMERICAL RESULTS

We implemented numerical simulations using real-world
data, which involve a household with the BTM storage and
EV under the utility’s NEM tariff, to verify the performance
of the myopic optimal policy presented in this paper and
demonstrate the benefits of co-optimization.

We compared the performance of different policies using
the relative expected accumulated surplus gap to the oracle
policy. The oracle policy is the offline policy which is the
outcome of solving convex optimization (11) with the real-
ization of renewables, which will serve as the upper bound of
the performance. If the oracle policy and comparing policy’s
expected accumulated reward is ROR, and Rµ, respectively,
the performance measure of the policy is

ROR −Rµ
ROR

.

The myopic optimal policy (MO) in Theorem 2 is com-
pared with 4 different policies with different level of co-
optimization. The policies we considered are :

1) Cost reduction policy (CR)
2) Non co-optimization policy (NCO)
3) Consumption-storage co-optimized policy (CSO)
4) Charging-consumption co-optimized policy (CCO)

Policies are listed in the order of increasing levels of co-
optimization. CR uses renewables and storage to reduce the
costs, with the EV primarily charges in off-peak periods,
while consumption is not optimized. NCO and CSO optimize
the EV first, while NCO optimizes each device separately in
the order of EV, consumption, and storage. CSO co-optimizes
consumption and storage. CCO co-optimizes consumption
and EV charging as Theorem 1, and then optimizes storage.
Essentially, all the policies use the battery to reduce the cost
and store surplus renewables.

A. Simulation setting

We implemented Monte Carlo simulations with random
EV charging demand, BTM DER trajectory, and connection
time. The distribution of EV charging demand was modeled
using the charging request data from Adaptive Charging
Network [21]. To model the distribution of rooftop solar
generation, we used New York residential solar generation
data from the Pecan Street [22]. Lastly, we assumed that the
connection time of the EV is equally distributed.

For the NEM ToU tariff parameters, we used the ToU retail
rate from the Pacific Gas and Electronic (PG&E)4 with on-
peak hours from 4 PM to 9 PM. The sell rate was selected
as a parameter to vary.

The BTM storage has a maximum capacity of B = 13.5
kWh and we assumed that s0 = 0.5B. The maximum
charging and discharging rate are ē = e = 3.2kW, and the
charging/discharging inefficiency constants are ηc = ηd =
0.95. The chosen salvage value of storage, β, satisfies A1.

In our simulation, we considered a household with a
single controllable load, modeling total consumption of the
household. We adopted a quadratic concave utility function
that has the form U(d) = ad − 1/2bd2. The coefficients of
the utility function were estimated based on the consumption
data from Pecan Street, and the ToU retail rate.

As mentioned earlier, the EV charger has an efficiency of
1 and the maximum charging capacity is 3.6 kW.

B. Performance of myopic optimal policy

We present the simulation results of 100,000 Monte Carlo
runs that show the performance gap of different policies when
the retail rate is fixed and the sell rate is varied, assuming
that π+

t − π−t is kept constant at all intervals. The decision
horizon T is fixed as 16 hours. The three different plots in
Fig.5 show the relative surplus gap when the mean of the

4PG&E ToU tariff data can be found at PGE E ToU-B.

https://www.pge.com/tariffs/electric.shtml


distribution of DER generation is scaled by 0.5, 1, 1.5 from
left to right.

In the plots, we can observe that the MO has the smallest
gap with the oracle policy ranging from 0.5-7.5% in all
scenarios. This result shows the value of co-optimization.
The performance gap increases as the mean of the renewable
increases, because with a higher renewable level, more re-
newables will be stored in the battery, and it is more likely
that the non-binding SoC limit assumption will be violated.

When π−t is lowered, the performance gap of MO is
increasing. For instance, for 50% renewable means case,
performance gap is increased from 0.6% to 3.8%. A low
sell rate means that BTM DER generation has low value
when it’s exported to the grid. It also implies using renewable
internally is cheaper in terms of opportunity cost. Hence, to
complete charging requirement of EV using the renewables,
procrastination thresholds (τt, σ

+
t , σ

−
t ) are increased. This

procrastinating behavior allocates more renewables to the
storage, increasing the likelihood of violating the SoC limit
non-binding assumption.

We can also observe that the gap with MO to other
policies (CCO, CSO, NCO) are shrinking as the mean of the
renewable distribution increases. The biggest gap between
MO and NCO is reduced from 6.4% for the 50% renewable
mean case to 1.9% for 150% renewable mean case. When
the renewable level is high, the decisions of co-optimization
policy get closer to the decisions of non co-optimization
policies because there are sufficient renewables to be used
for all devices. Hence, this result implies that the value of
co-optimization is maximized when renewable level is low.

VI. CONCLUSION

This paper has presented a comprehensive analysis of
co-optimizing BTM DER with storage, EV charging and
controllable loads under NEM tariff. Our results suggest that
under the NEM tariff, procrastination threshold policy for
EV charging and myopic storage operations provide eco-
nomic benefit to the household. Furthermore, the thresholds
that characterize the procrastination threshold policy can be
computed offline and the policy can be easily implemented
in real-time.

It should be noted that the scope of this study was limited
to co-optimizing a single EV with BTM DER and storage,
and as such, application of our work to commercial or
industrial EMS settings, which can have multiple EVs, is
not trivial. There reside priority rules of different EVs, and
high dimensionality of the control space can complicate
the problem. This problem can be studied in future works.
Also, our work assumes that we have information on the
consumer utility and the BTM DER distribution. Model-
free reinforcement learning approach using the structure of
the proposed policy can be studied in the future works to
avoid modeling of unknown utility function and BTM DER
generation distributions.
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APPENDIX A
PROOFS

The optimality of procrastination threshold policy for the
co-optimization without storage (Theorem 1) was proved [4].
We will prove the Proposition 1 which wasn’t stated in [4].

A. Proof of Proposition 1

Proof. By the proposition 2 in [4], τt and τt+1 satisfy :

τt = τt+1 + v̄

For some t0 ∈ Tx, given yt0 , if z∗t0v
∗
t0 > 0, by the

procrastination threshold policy, yt0 > τt0 and,

v∗t0 = min{v̄, yt0 − τt0}.

Then, yt0+1 = yt0 − v∗t0 ≥ τt0 = τt0+1 + v̄. Hence, by
the monotonicity of v∗t with respect to rt, v∗t0+1 = v̄ for all
rt0+1.

The recursive relation of τt holds within the same period,
therefore, v∗t = v̄ for all t ∈ T0 such that t > t0.

B. Concavity of the optimal value function

We first prove the concavity of the optimal value function
of myopic co-optimization. Here, we are only interested in
concavity of the value function with respect to yt. So, let’s
simplify the notation as VMt (yt).

Lemma 1. Optimal value function of myopic co-
optimization, VMt (yt), that satisfies Bellman equation (??)
is concave function of yt.

Proof. At t = T − 1, there is no uncertainty and Bellman
equation becomes

VMT−1(yT−1) = max
v,e,d
{gT−1(xT−1, v, e,d)− α(yT−1 − v)

+ β(1e≥0ηc − 1e≤0/ηd)(sT−1 + e)}
s.t. (4)− (5)

As α > π+ > π−, the optimal EV charging action is

v∗ = min{v̄, yT−1}.

For yT−1 > v̄, optimal consumption and storage operation
are independent to yT−1 and ∂

∂yT−1
VMT−1 = −α.

For yT−1 ≤ v̄, optimal consumtion and storage operation
is decided based on the remaining renewables r̃T−1 =
max{rT−1−yT−1, 0}. Consumption-storage co-optimization
decision is based on myopic co-optimization in [3].

If household is net consuming, r̃T−1 ≤ lT−1(π+
T−1)− e′,

∂
∂yT−1

VMT−1 = −π+
T−1 < −α.

As yT−1 reduces, r̃T−1 increases, and household will be
in the net zero zone. In the net zero zone, ∂

∂yT−1
VMT−1

is the negative of marginal utility of consumption, and as
the consumption is increasing, marginal utility decreases.
Therefore, ∂

∂yT−1
VMT−1 increases. At last, household enters,

net producing region, which means ∂
∂yT−1

VMT−1 = −π−T−1.
Hence, ∂

∂yT−1
VMT−1 is a decreasing function of yT−1,

therefore, VMT−1(xT−1) is a concave function of yT−1.

Suppose, VMt+1 is a concave function of yt+1. Then, the
objective function of bellman equation is concave and con-
tinuous in the compact feasible set, there exists a optimal
solution for every yt. Let’s denote the optimal solution for
yt = κ, as v∗κ, e

∗
κ,d

∗
κ, and for yt = ζ as v∗ζ , e

∗
ζ ,d
∗
ζ .

λVMt (κ) + (1− λ)VMt (ζ)

= λ{gt(κ, v∗κ, e∗κ,d∗κ) + E[VMt+1(κ− v∗κ)]}
+ (1− λ){gt(ζ, v∗ζ , e∗ζ ,d∗ζ) + E[VMt+1(ζ − v∗ζ )}
≤ gt(ξ, vξ, eξ,dξ) + E[VMt+1(ξ − vξ)]
≤ gt(ξ, v∗ξ , e∗ξ ,d∗ξ) + E[VMt+1(ξ − v∗ξ )]

= VMt (ξ) = VMt (λκ+ (1− λ)ζ)

Here, ξ = λκ + (1 − λ)ζ, vξ = λv∗κ + (1 − λ)v∗ξ ,
eξ = λe∗κ + (1− λ)e∗ξ , dξ = λd∗κ + (1− λ)d∗ξ .

The first inequality holds, because of the concavity of the
stage reward function of inductive hypothesis.

Hence, VMt is a concave function of yt for all t ∈ T .

C. Storage operation propositions

For the rest of the proofs, d∗t = 1Td∗t . The proof of the
following propositions are shown in [3]

Proposition 3 (Storage salvage value under non-binding SoC
assumption). Under assumption A1 and A2, for ε > 0 that
doesn’t violate non-binding SoC assumption,

Vt(st + ε, yt, rt) = Vt(st, yt, rt) + βηcε

Vt(st − ε, yt, rt) = Vt(st, yt, rt)− β/ηdε

Proposition 4 (Storage-total load complementarity condi-
tion). Under A1-A2, optimal storage operations and net
consumption of the myopic co-optimization (??) satisfy

e∗t z
∗
t ≤ 0,

e∗t (d
∗
t + v∗t − rt) ≤ 0.

Proposition 5 (Optimal storage operation). Under A1-A2, for
all t ∈ T , for the optimal consumption d∗t and EV charging
v∗t of (??), e∗t satisfies

e∗t =

{
max{rt − d∗t − vt,−e′}, rt ≤ d∗t + v∗t
min{rt − d∗t − vt, ē′}, rt > d∗t + v∗t

and e∗t ≤ rt.

D. Proof of Theorem 2

Proof. Let’s consider three regions of rt divided by ∆+′

t and
∆−

′

t .
1) rt < ∆+′

t (yt) : Define storage output augmented re-
newable r̃t := rt − e∗t . Then, by Proposition 5, and
e∗t ≥ −e′,

0 < r̃t < lt(π
+
t ) + hτt(yt)

Hence, by Theorem 1,

v∗t = hτt(yt), d
∗
ti = lti(π

+
t ), ∀i = 1, . . . ,K.



Then, v∗t + d∗t > rt, and e∗t = −e′. Therefore,

z∗t = v∗t + d∗t + e∗t − rt = ∆+′

t (yt)− rt

2) rt > ∆−
′

t (yt) : For such rt, storage output augmented
renewable satisfies

r̃t = rt − e∗t > lt(π
−
t ) + hδt(yt)

Then, by Theorem 1,

v∗t = hδt(yt), d
∗
ti = lti(π

−
t ), ∀i = 1, . . . ,K.

From Proposition 5, as v∗t +d∗t < rt, e∗t = ē′. Therefore,

z∗t = v∗t + d∗t + e∗t − rt = ∆−
′

t (yt)− rt

3) rt ∈ [∆+′

t (yt),∆
−′
t (yt)] : Note that z∗t = 0 for

rt = ∆+′

t (yt) and rt = ∆−
′

t (yt). Hence, it’s suffice to
show that z∗t is a monotone decreasing function of rt
in this region.

For rt = ∆+′

t (yt), and ε > 0 such that rt + ε ∈
[∆+′

t (yt),∆
−′
t (yt)], suppose optimal net consumption of

rt + ε is z̃∗t > 0. Let’s denote the optimal scheduling of
each device as ṽ∗t , d̃∗t , ẽ

∗
t . By Proposition 5, ẽ∗t = −e′.

rt+ε−ẽ∗t = rt+ε+e
′ ≥ rt−e∗t = lt(π

+
t )+hδt(yt) = ∆+

t (yt)

The first inequality holds because e∗t ≥ −e′. The
second equality comes from Theorem 1.

By Theorem 1, if rt+ ε− ẽ∗t ≥ ∆+
t (yt), ṽ∗t + d̃∗t ≤ rt+

ε− ẽ∗t . Hence, z̃∗t ≤ 0 which contradicts the assumption.
Therefore, z∗t is a monotone decreasing function with
respect to rt.

Now let’s show that v∗t , d
∗
t , e
∗
t are determined by Algo-

rithm 1. From the proof of optimal net consumption, we
proved optimal myopic decision for rt < ∆+′

t (yt) and
r + t > ∆−

′

t (yt). Let’s prove the myopic optimal schedule
in the net-zero zone. In this region, myopic co-optimization
becomes,

max
v,e,d

Ut(d) +
(
ηc1et≥0 − 1et≤0/ηd

)
βet

+E[VMt+1(st, yt − v, rt+1, πt+1)]

s.t. − e′ ≤ et ≤ ē′ (λ̄e, λe)

0 � d � d̄ (λ̄d,λd)

0 ≤ v ≤ v̄ (λ̄v, λv)

v + 1Td + e = r (ν)

Here, (λ̄e, λe), (λ̄d,λd), (λ̄v, λv) are the Lagrange multipli-
ers for the corresponding constraints.

Lagrangian of the optimization problem is

L = U(d) +E[VMt+1(st, yt − v, rt+1, πt+1)]

+
(
ηc1et≥0 − 1et≤0/ηd

)
βet + λe(et + e′) + λ̄e(ē

′ − et)

+ λTd d + λ̄
T
d (d̄− d) + λvv + λ̄v(v̄ − v)

+ ν(v + 1Td + e− r)

As above optimization satisfies Slater’s condition, KKT
condition becomes necessary and sufficient condition. Let’s

verify myopic optimal decisions in Algorithm 1 satisfies
KKT condition.

1) rt ∈
[
∆+′

t (yt),∆t,1(yt)
)

: By complementary
slackness, λe = 0. Then, ν = β/ηd + λ̄e.

r̃t = rt + e′ ∈ [∆+
t (yt), lt(β/ηd) + hσ+

t
(yt)). Hence,

from Theorem 1, optimal EV charging and consumption
decisions are

v∗t = hwt+1(ν)(yt), d
∗
ti = lti(ν), ∀i = 1, . . . ,K

where ν ∈ [π+
t , β/ηd). Here, due to the monotonicity of

Lt and ∂(V̄t), v∗t and d∗t are monotone increasing with
respect to rt.

2) rt ∈
[
∆t,1(yt),∆t,2(yt)

)
: By complementary slack-

ness, λ̄e = λe = 0. Hence, ν = β/ηd. Then, by
the stationarity condition, optimal EV charging and
consumption decisions are

v∗t = hσ+
t

(yt), d
∗
ti = lti(β/ηd), ∀i = 1, . . . ,K,

where σ+
t = wt+1(β/ηd). By monotonicity of Lt and

∂(V̄t), optimal EV charging and consumption decisions
are no less than the optimal EV charging and consump-
tion decisions of previous case, respectively. Hence,
montonicity of myopic optimal policy still holds.

3) rt ∈
[
∆t,2(yt),∆t,3(yt)

)
: As e∗t = 0, by complemen-

tary slackness, λ̄e = λe = 0. From Theorem 1, optimal
EV charging and consumption decisions are

v∗t = hwt+1
(yt), d

∗
ti = lti(ν), ∀i = 1, . . . ,K

where ν ∈ [βηc, β/ηd] and v∗t + d∗t = rt. Similarly,
monotonicity of v∗t and d∗t holds due to monotonicity
of Lti and ∂(V̄t).

4) rt ∈
[
∆t,3(yt),∆t,4(yt)

)
: By complementary slack-

ness, λ̄e = λe = 0 and ν = ηcβ. By stationarity con-
dition, optimal EV charging and consumption decisions
are

v∗t = hσ−t
(yt), d

∗
ti = lti(β/ηd), ∀i = 1, . . . ,K,

where σ−t = wt+1(βηc). Montonicity of the optimal
decisions still holds.

5) rt ∈
[
∆t,4(yt),∆t(yt)

−′) : By complemenatry slack-
ness, λ̄e = 0. Then, ν = βηc + λe.
For r̃t = rt − ē′ ∈

[
lt(βηc) + hσ−t

(yt),∆
−
t (yt)

)
,

by Theorem 1, optimal EV charging and consumption
decisions are

v∗t = hwt+1(yt), d
∗
ti = lti(ν), ∀i = 1, . . . ,K,

where ν ∈ [βηc, π
−
t ].

Overall, monotonicity of v∗t , d
∗
t holds due to the monotonic-

ity of lti and ∂(V̄t).



E. Proof of Theorem 3

Proof. It’s suffice to show that for st that satisfies A2 and
γ = (ε, 0, 0, 0) (ε > 0), optimal value function that satisfies
(12), satisfies

Vt(xt + γ) = Vt(xt) + βε (14)

If Vt satisfies above equations, Vt reduces to VMt . Let’s show
above equations by backward induction. For t = T − 1,

VT−1(xT−1 + γ) = max
v,e,d

{gT−1(xT−1 + γ, v, e,d)

+β(sT−1 + ε+ ηc1et≥0e− 1et<0/ηd)e) + α(yT−1 − αv)}
= max

v,e,d
{gT−1(xT−1, v, e,d) + β(sT−1 + ηc1et≥0e− 1et<0/ηd)e)

+α(yT−1 − αv)}+ βε = VT−1(xT−1) + βε.

Suppose Vt+1 satisfies (14), then, from (12),

Vt(xt + γ) = max
v,e,d

{gt(xt + γ, v, e,d) +E[Vt+1(xt+1 + γ)]}

= max
v,e,d
{gt(xt, v, e,d) +E[Vt+1(xt+1)]}+ βε

= Vt(xt) + βε.

F. Proof of Proposition 2

Proof. Procrastination thresholds τt and δt follows from the
Theorem 2 in [4]. Also, characterization of σ+

t and σ−t comes
from the proof of Theorem 2.

Also, recursive relation of τt and δt comes from the proof
of Proposition 1 in [4].


	I Introduction
	I-A Related works
	I-B Summary of results and contributions

	II Problem Formulation
	II-A EV charging, consumption, and storage model
	II-B NEM ToU tariff model
	II-C Co-optimization of EV charging, consumption, and storage
	II-D Model Assumption

	III Procrastination threshold policy (co-optimization without battery)
	IV Optimal prosumer decisions
	IV-A Myopic co-optimization
	IV-B Co-optimization with non-binding SoC assumption
	IV-C Computation of the thresholds

	V Numerical results
	V-A Simulation setting
	V-B Performance of myopic optimal policy

	VI Conclusion
	References
	Appendix A: Proofs
	A-A Proof of Proposition 1
	A-B Concavity of the optimal value function
	A-C Storage operation propositions
	A-D Proof of Theorem 2
	A-E Proof of Theorem 3
	A-F Proof of Proposition 2


