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Abstract— This paper proposes a novel online data-driven
adaptive control for unknown linear time-varying systems.
Initialized with an empirical feedback gain, the algorithm
periodically updates this gain based on the data collected
over a short time window before each update. Meanwhile, the
stability of the closed-loop system is analyzed in detail, which
shows that under some mild assumptions, the proposed online
data-driven adaptive control scheme can guarantee practical
global exponential stability. Finally, the proposed algorithm is
demonstrated by numerical simulations and its performance is
compared with other control algorithms for unknown linear
time-varying systems.

I. INTRODUCTION

In both classical control and modern control theory, the
analysis and design of most controllers rely on the explicit
knowledge of the plants. This requirement becomes less prac-
tical when the system is complex and highly dimensional.
One of the recent research interests in the control community
focuses on directly controlling the system by only using the
data – that is, the information of inputs/outputs/states – while
skipping the modelling step. For linear time-invariant (LTI)
systems, Willems et al.’s fundamental lemma [1] states that
if a finite-length input-output trajectory of an LTI system
satisfies the so-called persistence of excitation condition, then
any possible input-output trajectories of this system can be
obtained from the aforementioned input-output trajectory.
This result was leveraged to avoid system identification
in control design, and develop purely data-based methods.
For instance, [2] developed data-driven model predictive
control methods, [3] deals with classical problems, such as
stabilization, [4] with data-driven model reference control,
and [5] considers the case where the persistence of excitation
condition is not met. Some other related developments are
for switched systems (e.g., [6], [7]), delay systems (e.g., [8]),
and general nonlinear systems (e.g., [9], [10]).

A particularly interesting class of system is that of linear
time-varying (LTV) systems. These appear in many real
life applications, for instance, due to changes in operating
conditions (such as temperature, pressure, etc.) and mechan-
ical wear. Moreover, LTV systems can also be obtained by
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linearizing nonlinear systems around trajectories of time-
varying operating points. As a natural extension of the well-
established data-driven control theory for LTI systems, data-
driven control methods for LTV systems have also attracted
much attention in recent years. In [11], an optimal control
scheme for unknown discrete-time LTV systems is proposed,
in which the approximate optimal control is obtained via
data-driven off-policy policy iteration. Based on the ensem-
ble of input-state trajectories collected offline, [12] shows a
different method of data-driven control of LTV systems. [13]
extends the fundamental lemma to linear parameter-varying
systems and develops a data-driven predictive control scheme
for such systems. Nevertheless, because a sufficient amount
of data is required a priori to start the control process, the
aforementioned methods cannot be run completely online.
In [14], an online data-enabled predictive control is modified
from the data-enabled predictive control proposed in [2], and
it is claimed to be computationally efficient due to the use
of fast Fourier transform and the primal-dual formulation
in the algorithm. Nevertheless, stability is not guaranteed
theoretically for the proposed controller therein. To this
end, [15] proposes a different data-driven control method by
combining matrix inequalities and the matrix S-lemma. This
method is technically for linear parameter-varying (LPV)
systems, but is applicable to systems with time-varying
system matrices. However, that work requires the assumption
of a known range of variations.

This paper proposes a novel online data-driven adaptive
control (ODDAC) algorithm to stabilize LTV systems. In
contrast to the aforementioned methods in the literature,
our algorithm can run completely online. Meanwhile, we
do not impose the usual assumptions on the knowledge of
the system matrices: they do not need to be affine in a
time-varying parameter, and they can be unbounded in time.
The control gain is periodically updated based on the data
collected over a short time window, aiming to stabilize the
system up to the time of the next update. The functionality of
the ODDAC algorithm is also investigated in this paper via
a detailed stability analysis, which shows that under some
mild assumptions, the closed-loop system is guaranteed to
be practically globally exponentially stable.

Notation. Let R be the real line, N be the set of all non-
negative integers, and N+ be the set of all positive integers.
0n and In denote the zero matrix and the identity matrix
in Rn×n, respectively, and the subscript n is omitted if the
dimension can be determined according to the context. For
any symmetric matrix M ∈ Rn×n, M ≻ 0 (resp. M ⪰
0,M ≺ 0, and M ⪯ 0) means that M is positive definite
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(resp. positive semi-definite, negative definite and negative
semi-definite). For any n,m ∈ N+ and any vector x ∈ Rn,
|x| denotes the 2-norm of x; for any matrix N ∈ Rn×m, ∥N∥
denotes the induced 2-norm of N . For two sets of matrices
Σ1,Σ2 ⊂ Rn×n, denote the Minkowski sum as Σ1 ⊕Σ2 :=
{A1 +A2 : A1 ∈ Σ1, A2 ∈ Σ2}.

The rest of the paper is organized as follows. Section II
introduces the preliminaries. In section III, the mechanism of
the ODDAC algorithm and the update law of the feedback
gain are explained. In Section IV, the stability properties
of the closed-loop system with ODDAC are analyzed. In
Section V, a numerical example to demonstrate the ODDAC
algorithm is presented and the performance is compared to
that of other control algorithms for unknown LTV systems.
Section VI concludes the paper with some discussions on
future research directions.

II. PRELIMINARIES

In this section, we will introduce the preliminaries, in-
cluding the system definition, regularity assumptions, and
the problem formulation for control design.

Consider a discrete-time LTV system

x(t+ 1) = A(t)x(t) +B(t)u(t), (1)

where x : N → Rn is the state; u : N → Rm is the
control input; and A(t), B(t) are time-varying matrices of
compatible dimensions. We assume that these matrices have
a bounded rate of variation; that is, they admit a Lipschitz
constant as follows.

Assumption 1 (Lipschitz matrix trajectories) There
exists L ⩾ 0 such that for all t, s ∈ N,∥∥[A(t)−A(s) B(t)−B(s)

]∥∥ ⩽ L|t− s|. (2)

We are interested in stabilizing the system (1) without
precisely knowing the matrix trajectories A(t), B(t). Nev-
ertheless, the knowledge of an initial feedback gain K0 is
required to start such a process. K0 can either be computed
via initially known values of A(0), B(0), or empirically
assigned based on a priori knowledge of the system. We
summarize this condition, together with the controllability
assumption as follows.

Assumption 2 (Controllability and initial gain) The ma-
trix pair (A(t), B(t)) is controllable for all t ∈ N. In
addition, for some given λ ∈ (0, 1), there exist a known
positive definite matrix P0 ∈ Rn×n and a known matrix
K0 ∈ Rm×n such that

(A(0) +B(0)K0)
⊤P0(A(0) +B(0)K0) ⪯ λP0. (3)

Under Assumption 2, u = K0x is a stabilizing feedback
control law for the LTI system obtained by “freezing” the
LTV system (1) at t = 0.

The main objective of this paper is to solve the following
problem:

Problem 1 (Data-driven control of an LTV system)
Assume that the time-varying matrices A(t), B(t) in (1)
are unknown. Under Assumptions 1, 2, find a control law
which makes the closed-loop system practically globally
exponentially stable (pGES), namely, there exist positive
constants c1, c2, and c3 such that the solution of the
trajectories of the closed-loop system satisfy

|x(t)| ⩽ c1e
−c2t|x(0)|+ c3, (4)

for all t ⩾ 0 and x(0) ∈ Rn.

III. DATA-DRIVEN AND ADAPTATION MECHANISM

We propose a novel ODDAC algorithm in order to solve
Problem 1. In this section, we first introduce the timing of
data collection and control gain update. To explain in detail
how the control gains are selected based on the data, we
convert the LTV system (1) into a piece-wise LTI system
perturbed by a time-varying term. This allows re-formulating
the problem of finding a stabilizing control gain into a
linear matrix inequality (LMI) problem, which can be solved
efficiently.

A. Periodically updated control law

Due to the time-varying nature of (1), the initial feedback
law u = K0x may not stabilize the system for all t ∈ N.
To this end, the proposed adaptation mechanism periodically
updates the feedback gain at time instants tSi = iT, i ∈ N+,
where T ∈ N+ is the period of gain update. Our goal is to
find a feedback gain Ki ∈ Rm×n for each i ∈ N+, such
that the control law is “essentially” u(t) = Kix(t) for all
t ∈ Ti. Since the system matrices are unknown, the value
of Ki needs to be computed in a way that it only depends
on the data over a finite time window prior to time tSi . To
be precise, let TW ∈ N+ be the length of time window and
denote tWi := tSi − TW . In the sequel, we denote T0 :=
{0, 1, · · · , tS1 − 1} and

Ti := {tSi , tSi + 1, · · · , tSi+1 − 1},
T W
i := {tWi , tWi + 1, · · · , tSi − 1},

for all i ∈ N+. Following the earlier discussion, we aim to
construct a piece-wise control law:

u(t) =

{
Kix(t), t ∈ Ti\T W

i+1,

Kix(t) + v(t), t ∈ T W
i+1,

(5)

where v(t) ∈ Rm is random and uniformly bounded for all
t ∈ ∪i∈N+

T W
i . The reason for introducing the additional

signal v to (5) over T W
i+1 is that we need the collected

data to be “sufficiently exciting” so that the underlying data-
driven problem (Problem 2 to be discussed later) is feasible.
Interested readers are referred to [1], [16] for further details.

The timing of data collection and control gain update is
illustrated in Fig. 1. As the system is time-varying, a con-
vergent identification for the matrix trajectories A(t), B(t)
is difficult. Instead, based on the data collected over the
time window T W

i , we aim to first conclude a set to which
A(tSi ), B(tSi ) belong. The controller further predicts what



Fig. 1. Illustration of the timing of data collection and control gain update.
The purple curve represents a “trajectory” of [A(t), B(t)] ∈ Rn×n ×
Rn×m. At each time instant tSi , the controller estimates a set to which
[A(t), B(t)], t ∈ Ti, belongs, represented by the green frustum-shaped
region. Such estimation is made based on the data collected over the time
window T W

i .

values A(t), B(t) can reach for t ∈ Ti, under Assumption 1.
It then finds a common stabilizing feedback gain Ki for the
system for all possible values of A(t), B(t), t ∈ Ti.

Remark 1 (Choice of the time window length) In princi-
ple, one can assign a time-dependent length TW

i to the
ith time window, and TW

i can be selected up to tSi (in
which case all the history data since t = 0 is used). The
potential advantage of using a variable window length will
be studied in future work whereas in this paper we focus on
the case in which TW is fixed and short (in the sense that
TW < T ). By keeping the time window short, the resulting
control algorithm is more efficient in both memory use and
online computation.

B. A data-driven model of the LTV system

We exploit the idea of the congelation of variables method
[17], which treats the original unknown time-varying system
as an unknown time-invariant system (namely, the con-
gealed part) perturbed by some time-varying terms. More
specifically, the time-varying perturbation terms are defined
as ∆Ai(t) := A(t) − A(tSi ), ∆Bi(t) := B(t) − B(tSi ),
for i ∈ N+. This allows estimating the constant matrices
A(tSi ), B(tSi ) and attenuating the destabilizing effect of
∆Ai(t), ∆Bi(t), separately. To proceed, re-write system (1)
as

x(t+ 1) = Aix(t) +Biu(t) + wi(t), (6)

for t ∈ T W
i ∪ Ti, where Ai := A(tSi ), Bi := B(tSi ) and the

“virtual disturbance” wi(t) := ∆Ai(t)x(t)+∆Bi(t)u(t). We
now define the following:

Xi :=
[
x(tWi ) x(tWi + 1) · · · x(tSi − 1)

]
, (7a)

X+
i :=

[
x(tWi + 1) x(tWi + 2) · · · x(tSi )

]
, (7b)

Ui :=
[
u(tWi ) u(tWi + 1) · · · u(tSi − 1)

]
, (7c)

Wi :=
[
w(tWi ) w(tWi + 1) · · · w(tSi − 1)

]
. (7d)

Equation (6) can be re-written into a compact form:

X+
i = AiXi +BiUi +Wi. (8)

Note that if Wi is known and
[
Xi

Ui

]
is full row rank, we can

directly compute the values of Ai, Bi:[
Ai Bi

]
= (X+

i −Wi)

[
Xi

Ui

]†
,

where (·)† denotes the right inverse. However, such com-
putation is infeasible, as Wi depends on unknown ∆Ai(t)
and ∆Bi(t). Nevertheless, we can employ Assumption 1 and
estimate that

wi(t)w
⊤
i (t) ⪯ |wi(t)|2I

=

∣∣∣∣[∆Ai(t) ∆Bi(t)
] [x(t)

u(t)

]∣∣∣∣2 I
⪯
∥∥ [∆Ai(t) ∆Bi(t)

] ∥∥2 ∣∣∣∣[x(t)u(t)

]∣∣∣∣2 I
⪯ L2|t− tSi |2

∣∣∣∣[x(t)u(t)

]∣∣∣∣2 I,
which further implies that

WiW
⊤
i =

tSi −1∑
t=tWi

wi(t)w
⊤
i (t) ⪯ L2

TW∑
k=1

k2
∣∣∣∣[x(tSi − k)
u(tSi − k)

]∣∣∣∣2 I,
or equivalently[

I Wi

] [Π 0
0 −I

] [
I Wi

]⊤ ⪰ 0, (9)

where

Π := L2
TW∑
k=1

k2
∣∣∣∣[x(tSi − k)
u(tSi − k)

]∣∣∣∣2 I. (10)

Although we do not know the exact values of Ai, Bi, we
can define a set of pairs (Ai, Bi) that are consistent with
the collected data Xi, X+

i , Ui, and “virtual disturbance” Wi

(which is not measured), i.e.,

Σi :=
{
(Ai, Bi) ∈ Rn×n × Rn×m :

∃Wi s.t. (8) and (9) hold.
}

(11)

Note that Σi is associated with the state and input data
collected over T W

i and such a relationship is indicated by
the time window index i, for conciseness. This definition
is made in the same spirit as the one defined in [5] to
characterize data informativity. Interested readers may refer
to the explanations therein for further detail.

We now proceed to estimate the time-varying matrices
∆Ai and ∆Bi (the time arguments are omitted for concise-
ness). Recall Assumption 1 and note that (2) yields[

∆Ai ∆Bi

] [
∆Ai ∆Bi

]⊤ ⪯ L2|t− tSi |2I ⪯ L2T 2I

for any t ∈ Ti. This inequality can be equivalently written
as

[
I ∆Ai ∆Bi

] L2T 2I 0 0
0 −I 0
0 0 −I

 I
∆A⊤

i

∆B⊤
i

 ⪰ 0.

(12)



Similar to the spirit of (11), one can define a set of consistent
pairs (∆Ai,∆Bi), that is

ΣD := {(∆Ai,∆Bi) ∈ Rn×n × Rn×m : (12) holds.} (13)

The set ΣD, unlike Σi, is a sheer result of Assumption 1.
Thus, ΣD depends on neither the collected data nor the index
i.

Since A(t) = Ai + ∆Ai(t), B(t) = Bi + ∆Bi(t) for
all t ∈ Ti, we conclude that (A(t), B(t)) ∈ Σi ⊕ ΣD for
all t ∈ Ti. Thus in order to solve Problem 1, we aim to
find a common control gain Ki for the system uniformly
with respect to the set Σi ⊕ ΣD. As such, we arrive at the
following formal problem:

Problem 2 (Finding the feedback gain) For the given λ
as in Assumption 2, use the collected data Xi, X+

i , Ui to find
a positive definite matrix Pi ∈ Rn×n, a matrix Ki ∈ Rm×n

such that

(A+BKi)
⊤Pi(A+BKi) ⪯ λPi, (14)

for all (A,B) ∈ Σi ⊕ ΣD.

If we take u = Kix, then the function Vi(x) = x⊤Pix
has the property that Vi(x(t+1)) ⩽ λVi(x(t)) for all t ∈ Ti,
regardless of the values of A(t), B(t). Clearly, Vi will play
a large role in the stability analysis, making the resolution
of Problem 2 an important step towards solving Problem 1.

The following proposition provides LMI conditions, under
which we can solve Problem 2.

Proposition III.1 (An LMI for the feedback gain) Given
a scalar λ ∈ (0, 1) and the collected data Xi, X+

i , Ui

over T W
i . If there exist scalars α1 ⩾ 0, α2 ⩾ 0, a positive

definite matrix Qi ∈ Rn×n, and a matrix Li ∈ Rm×n such
that

M̄ − α1N̄1 − α2N̄2 ⪰ 0, (15)

where M̄ , N̄1, and N̄2 are as in (16) and Π is as defined
in (10). Then, the matrices Ki := LiQ

−1
i and Pi := Q−1

i

solve Problem 2.

The proof of Proposition III.1 is based on methods developed
in [18] and is provided in the Appendix.

Remark 2 (Proposition III.1 is only sufficient) The LMI
formulation (15) is inspired by the S-procedure in [19, Chap-
ter 2.6]. However, not all solutions of Problem 2 can be found
by solving this LMI. This is because the Minkowski sum of
two sets of matrices defined via quadratic matrix inequalities
(i.e., Σi and ΣD) cannot be expressed by another quadratic
matrix inequality in general. Conservatism introduced by
formulating Problem 2 into the LMI (15) can be further
investigated in future research.

IV. STABILITY ANALYSIS AND ALGORITHMIC
REALIZATION

We summarize here that the proposed ODDAC algorithm
applies the control law (5) to the system (1), where the gain
Ki can be computed via solving the LMI in Proposition III.1.
In this section, we will discuss the stability property of the
closed-loop system equipped with ODDAC and present an
algorithmic realization of the proposed control scheme.

A. Stability analysis

Note that since the control gain is updated at each time
instant tSi , the closed-loop system can be viewed as a
switched system and hence it is stable if there exists a
common Lyapunov function (see [20, Section 2.1]). In other
words, stability is guaranteed when Pi’s found by solving
Problem 2 are the same for all i ∈ N (including the one
given initially). Such a condition, however, is restrictive as it
imposes an equality constraint to the subsequent computation
of Kj for all j ⩾ i. We therefore adopt an alternative
approach to establish stability to allow a different Pi for
each control gain update, stated as follows.

Theorem IV.1 (Stability of the closed-loop system)
Consider the discrete-time LTV system (1) equipped with
the control law (5), under Assumption 1 and Assumption 2.
If the LMI (15) is feasible for all i ∈ N+ and the matrices
Pi := Q−1

i satisfy

σ1I ⪯ Pi ⪯ σ2I, (17)

Pi+1 ⪯

(
λ̂

λ

)T

Pi, (18)

for all i ∈ N and some λ̂ ∈ [λ, 1), σ1 > 0, σ2 > 0, then, the
system is pGES. In other words, the solutions of the closed-
loop system satisfy that

|x(t)| ⩽ σ2√
σ1

λ̂
t
2 |x(0)|+

√
σ2

σ1

(
1−

√
λ̂
)−1

(
λ̂

λ

)T
2

B̄v̄,

(19)
where v̄ is the uniform bound of v, i.e., |v(t)| ⩽ v̄ for all
t ∈ ∪i∈N+

T W
i .

The proof of Theorem IV.1 exploits standard arguments
of multiple Lyapunov function approach that has been exten-
sively used in the literature (see e.g., [21]) and is presented
in the Appendix.

We now make some comments to facilitate the under-
standing of Theorem IV.1. Equation (17) is essentially the
“sandwich” condition typically required for the multiple
Lyapunov function approach. Meanwhile, if there exists µ ⩾
1 such that Pi+1 ⪯ µPi for all i ∈ N, it is sufficient to
require

T > − lnµ

lnλ
, (20)

in order for (18) to hold, in which case λ̂ ∈ [λµ
1
T , 1).

Equation (20) imposes a dwell time condition on the switch-
ing [22]. This can be intuitively understood as follows: a



M̄ :=


λQi 0 0 0 0 0
0 0 0 0 0 Qi

0 0 0 0 0 Li

0 0 0 0 0 Qi

0 0 0 0 0 Li

0 Qi L⊤
i Qi L⊤

i Qi

, N̄1 :=


I X+

i
0 −Xi

0 −Ui

0 0
0 0
0 0


[
Π 0
0 −I

]

I X+

i
0 −Xi

0 −Ui

0 0
0 0
0 0



⊤

, N̄2 :=


I 0 0
0 0 0
0 0 0
0 I 0
0 0 I
0 0 0


L2T 2I 0 0

0 −I 0
0 0 −I



I 0 0
0 0 0
0 0 0
0 I 0
0 0 I
0 0 0


⊤

.

(16)

switched system is stable if it is stable in each mode, and
the switching is sufficiently slow. With this controller, we
observe in (19) that the solutions can converge to a ball of
arbitrarily small radius, by making v̄ sufficiently small. In
theory, one can establish global asymptotic stability for the
closed-loop system by selecting a exciting signal v(t) that
depends on |x(t)|. This is however not practically useful as
numerical issues arise in the solution of the LMIs if |v| is
too small.

B. The control algorithm

Recall that Proposition III.1 gave an LMI approach to
solve Problem 2, which is not directly formulated in terms
of Pi,Ki. Yet, our stability results rely on some additional
conditions imposed on Pi; namely, the conditions (17) and
(18). We remark here that with given values of λ̂, σ1,and
σ2, these two conditions can be easily encoded as additional
LMIs with respect to variables Qi = P−1

i . To do this, note
that (17) is equivalent to

σ−1
2 I ⪯ Qi ⪯ σ−1

1 I. (21)

Meanwhile, multiply (18) by Qi on both sides, we get

QiPi+1Qi ⪯

(
λ̂

λ

)T

Qi,

which, by exploiting Schur complement, can be equivalently
written as [

λ̂TQi Qi

Qi λ−TQi+1

]
⪰ 0. (22)

Based on the timing mechanism sketched in Section III-
A, we can now summarize the control algorithm as in
Algorithm 1. In the pseudo-code of the algorithm, Lines 1–
5 are the initialization procedures. For t ∈ Ti\T W

i+1, which
leads to the branch starting from Line 11, the control u(t) =
Kix(t) is applied to the system, where the gain Ki is
either initialized at the beginning of the control process,
or computed in the last while-loop. This is consistent with
the first line in (5). When the time reaches tWi+1, which
triggers the condition in Line 8, the controller activates the
exciting signal and starts to collect the data. As the time
reaches tSi , which triggers the condition in Line 12, a new
feedback gain is computed, by solving the LMIs (15), (21)
and (22). Meanwhile, the index i is updated, indicating that
a new period has started, and the data buffers Xi, X

+
i , Ui

are reset. Thanks to Theorem IV.1, we have the following
result regarding the functionality of Algorithm 1.

Algorithm 1 Online Data-Driven Adaptive Control
Input: K0, P0, λ, T , TW

1: i← 0, t← 0
2: Set λ̂ ∈ (λ, 1), σ1 > 0, σ2 > 0, and v̄ > 0.
3: u(0)← K0x(0)
4: Q0 ← P−1

0

5: Set Xi, X
+
i , Ui as empty matrices

6: while system is running do
7: inew = ⌊ t

T ⌋
8: if t− inewT ⩾ T − TW then ▷ When t ∈ T W

i+1

9: Append x(t), x(t+ 1), u(t) to Xi, X
+
i , Ui ▷

Collect the new data
10: u(t)← Kix(t) + v(t) ▷ Update the control

input with the exciting signal v
11: else ▷ When t ∈ Ti\T W

i+1

12: if inew ̸= i then ▷ When t = tSinew

13: i← inew
14: Solve the LMIs (15), (21), and (22)

for Qi, Li, α1, α2

15: Ki ← LiQ
−1
i ▷ Update the control gain

16: Reset Xi, X
+
i , Ui as empty matrices

17: end if
18: u(t)← Kix(t) ▷ Update the control input

without the exciting signal v
19: end if
20: t← t+ 1
21: end while

Corollary IV.2 (Functionality of the ODDAC algorithm)
Consider the discrete-time LTV system (1) under
Assumption 1 and Assumption 2. Let the ODDAC
Algorithm 1 be applied to the system and assume that
Line 14 of the algorithm is always feasible. Then the
closed-loop system is pGES, in the sense that (19) holds on
all solutions.

V. SIMULATION

In this section, we present a numerical example to which
our controller is applied and compare the performance of the
proposed controller to that of some control schemes in the
literature.

Consider an LTV system in the form of (1) with n =
5,m = 2. The time-varying A(t) and B(t) are generated by
the (element-wise) cubic interpolation of the three pairs of
matrices:



A(0)=

[−0.5 −0.4 0.1 −0.8 −0.2
−0.5 −0.1 0.2 0.7 0
−0.4 −0.9 0.6 −0.3 0.4
0.2 −0.3 −1.2 0 −0.1
−0.6 0.8 −0.5 −0.1 −0.1

]
, B(0)=

[−1.4 2.2
0.9 1.4
2.7 0.5
−0.7 1.5
0.6 −1.9

]
,

A(500)=

[−0.5 −0.7 0.3 −0.6 0
0 0 0 0.8 0.4

−0.7 −1.0 0.7 0.1 0.2
−0.2 −0.2 −1.1 0.3 0.3
−0.9 0.7 −0.9 0.5 0.4

]
, B(500)=

[−1.5 2.4
0.9 1.3
2.9 0.7
−0.7 1.5
0.4 −1.9

]
,

A(1000)=

[ 0 −0.6 −0.2 −0.7 0.5
0 0.1 0.4 1.1 0.7

−1.4 −0.9 0.5 0.5 0.5
−0.2 −0.2 −1.5 −0.3 0.5
−0.9 0.5 −0.6 0.7 0.5

]
, B(1000)=

[−1.4 2.4
0.9 1.5
3.0 0.6
−0.8 1.5
0.5 −1.9

]
.

One can numerically verify that Assumption 1 holds with
the Lipschitz constant L = 0.0037. Assumption 2 also holds
with initial values of Ki, Qi given by

K0 =

[
0.13 0.26 −0.25 0.04 −0.13
0.08 0.28 0.13 0.05 0.01

]
,

Q0 =


0.75 −0.13 0.03 −0.26 −0.08
−0.13 0.88 −0.08 −0.12 0.36
0.03 −0.08 0.21 0.01 −0.01
−0.26 −0.12 0.01 0.43 0.14
−0.08 0.36 −0.01 0.14 1.13

 .

Let the initial state be x(0) =
[
1 1 1 1 1

]⊤
. We con-

sider four different control methods to stabilize the system:
1) static state feedback control u = K0x, 2) a discrete-time
version of the model reference adaptive control (MRAC) in
[23, Section 5.2.6] with normalization [24, Section 4.3], 3)
online data-enabled predictive control (ODeePC) as recently
proposed in [14], and 4) the proposed ODDAC method. As-
sume that the matrix trajectories A(t), B(t) are unknown to
all four controllers. In particular, the parameters of ODDAC
are selected such that T = 100, TW = 10, λ = 0.9,
λ̂ = 0.91, σ1 = 0.001, σ2 = 1000, v̄ = 10−10. The semi-
logarithmic time histories of |x(t)| are shown in Fig. 2. We
also apply the four control schemes with the same parameters
to the LTI system (i.e., (A(t), B(t)) = (A(0), B(0)) for
all t ∈ N). The semi-logarithmic time histories of |x(t)|
of the LTI system are plotted in Fig. 3, where it is seen
that both static state feedback control and MRAC make the
closed-loop system exponentially stable, and both ODeePC
and ODDAC make the closed-loop system pGES.

From Fig. 2, one can observe that all the controllers can
guarantee that the solutions of the LTV system evolve close
to the origin over a short period of time. Nevertheless,
only ODDAC can maintain this for the entire simulated
time interval. For all other methods, the solutions of the
closed-loop system diverge after some time. Note that the
“sawtooth” pattern of log |x(t)| in the ODDAC time history
has a time period of 100 time units. This is caused by the
exciting signal v(t), which drives |x(t)| to an acceptable
amplitude (depends on the magnitude of v̄) to collect the data
for computing the new feedback gain. This is the “price”
paid to guarantee practical stability for an arbitrarily long
time. The simulation results are hence consistent with the
practical stability property established in the paper and reveal
the advantage of the proposed control algorithm in time-
varying systems.
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Fig. 2. Semi-logarithmic time histories of |x(t)| of the LTV system in the
four control schemes.
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Fig. 3. Semi-logarithmic time histories of |x(t)| of the LTI system in the
four control schemes.

VI. CONCLUSION

This paper has proposed and discussed a novel control
algorithm for LTV systems: ODDAC. Based on the data col-
lected over the preceding short time window, the algorithm
periodically updates a feedback gain, aiming to stabilize the
system up to the time of the next update. In order to guaran-
tee pGES of the closed-loop system equipped with ODDAC,
we assume that the LMIs for finding the feedback gains
always have solutions. Although feasibility of these LMIs
is expected to be true when the system varies sufficiently
slowly, this assumption needs to be further investigated
in detail. In the meantime, other future research includes
taking measurement error into account, modification of the
algorithm for the case when the system dynamics is partially
known, and a more involved adaptive controller design via
dynamic feedback instead of switched static feedback.

APPENDIX

Proof of Proposition III.1. First of all, by Schur comple-
ment, (15) is equivalent to

M − α1N1 − α2N2 ⪰ 0, (23)

where

M : =


λQi 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

−

0
Qi

Li

Qi

Li

Q−1
i


0
Qi

Li

Qi

Li


⊤

, (24)



N1 : =


I X+

i

0 −Xi

0 −Ui

0 0
0 0


[
Π 0
0 −I

]
I X+

i

0 −Xi

0 −Ui

0 0
0 0


⊤

, (25)

N2 : =


I 0 0
0 0 0
0 0 0
0 I 0
0 0 I


L2T 2I 0 0

0 −I 0
0 0 −I



I 0 0
0 0 0
0 0 0
0 I 0
0 0 I


⊤

.

(26)

Define

Θi :=
[
I Ai Bi ∆Ai ∆Bi

]
∈ Rn×(3n+2m).

It follows from (8) that

[
I Wi

]
= Θi


I X+

i

0 −Xi

0 −Ui

0 0
0 0

 . (27)

Hence (9) is equivalent to

ΘiN1Θ
⊤
i ⪰ 0. (28)

Meanwhile,

[
I ∆Ai ∆Bi

]
= Θi


I 0 0
0 0 0
0 0 0
0 I 0
0 0 I

 . (29)

Hence, (12) can be equivalently written as

ΘiN2Θ
⊤
i ⪰ 0. (30)

Finally, we show that the condition (14) can also be converted
to a similar quadratic form. To this end, we first define Qi :=
P−1
i . Then it can be shown by Schur complement that (14)

is equivalent to the inequality

(Ai+∆Ai+(Bi+∆Bi)Ki)Qi(Ai+∆Ai+(Bi+∆Bi)Ki)
⊤

⪯ λQi. (31)

Next, since

Ai+∆Ai+(Bi+∆Bi)Ki = Θi

[
0 I K⊤

i I K⊤
i

]⊤
,

the inequality (31) is equivalent to

Θi


0
I
Ki

I
Ki

Qi


0
I
Ki

I
Ki


⊤

Θ⊤
i ⪯ λQi.

Plug in Ki = LiQ
−1
i , we conclude that with M as in (24),

ΘiMΘ⊤
i ⪰ 0. (32)

Now, with all the aforementioned identities, Problem 2 is
equivalent to (32) for all Θi ∈ Rn×(3n+2m) such that (28)
and (30) hold. Clearly, when inequality (23) holds for some
α1, α2 ⩾ 0, we have

ΘiMΘ⊤
i ⪰ Θi(α1N1 + α2N2)Θ

⊤
i

= α1ΘiN1Θ
⊤
i + α2ΘiN2Θ

⊤
i ⪰ 0,

which proves Proposition III.1. □
Proof of Theorem IV.1. Define

q(t) :=

(
λ̂

λ

) t−iT
2

|P
1
2
i x(t)|, (33)

for all t ∈ Ti, i ∈ N. Note that q only depends on t (not on
i because i = ⌊ t

T ⌋). We first claim that when the conditions
in Theorem IV.1 hold, then

√
σ1|x(t)| ⩽ q(t) ⩽

(
λ̂

λ

)T−1
2 √

σ2|x(t)|, (34)

q(t+ 1) ⩽
√
λ̂q(t) +

(
λ̂

λ

)T
2 √

σ2B̄v̄ (35)

for all t ∈ N.
The claim (34) is not difficult to show, by noting the fact

that 0 ⩽ t − iT ⩽ T − 1, for all t ∈ Ti, and the fact that
|P

1
2
i x|2 = x⊤Pix. Hence it follows from (17) that σ1|x|2 ⩽

|P
1
2
i x|2 ⩽ σ2|x|2.
We then prove the claim (35). Define

ṽ(t) :=

{
0, t ∈ Ti\T W

i+1, i ∈ N,
v(t), t ∈ T W

i+1, i ∈ N.

Then u(t) = Kix(t) + ṽ(t) for all t ∈ Ti, i ∈ N. With this
notion, it follows from (14) and triangle inequality that√
x⊤(t+ 1)Pix(t+ 1)

= |P
1
2
i (A(t)x(t) +B(t)u(t))|

=
∣∣P 1

2
i

(
(A(t) +B(t)Ki)x(t) +B(t)ṽ(t)

)∣∣
⩽ |P

1
2
i (A(t) +B(t)Ki)x(t)|+ |P

1
2
i B(t)ṽ(t)|

=
√

x⊤(t)(A(t) +B(t)Ki)⊤Pi(A(t) +B(t)Ki)x(t)

+ |P
1
2
i B(t)ṽ(t)|

⩽
√

λx⊤(t)Pix(t) +
√
σ2B̄v̄.

In other words, we have

|P
1
2
i x(t+ 1)| ⩽

√
λ|P

1
2
i x(t)|+

√
σ2B̄v̄, (36)

for all t ∈ Ti, i ∈ N. We now consider two cases. In the first
case, for any t ∈ Ti\{tSi +T −1}, i ∈ N, we have t+1 ∈ Ti
as well. Hence it follows from (36) that

q(t+ 1) =

(
λ̂

λ

) t+1−iT
2

|P
1
2
i x(t+ 1)|



⩽

(
λ̂

λ

) t+1−iT
2 (√

λ|P
1
2
i x(t)|+

√
σ2B̄v̄

)

⩽
√

λ̂

(
λ̂

λ

) t−iT
2

|P
1
2
i x(t)|+

(
λ̂

λ

)T−1
2 √

σ2B̄v̄

=
√

λ̂q(t) +

(
λ̂

λ

)T−1
2 √

σ2B̄v̄.

In the second case, for any t = tSi + T − 1, i ∈ N, we have
t + 1 = tSi+1 ∈ Ti+1. Therefore, t + 1 = (i + 1)T and it
follows from (18) and (36) that

q(t+ 1) = |P
1
2
i+1x(t+ 1)|

⩽

(
λ̂

λ

)T
2

|P
1
2
i x(t+ 1)|

⩽

(
λ̂

λ

)T
2 (√

λ|P
1
2
i x(t)|+

√
σ2B̄v̄

)

=
√
λ̂

(
λ̂

λ

)T−1
2

|P
1
2
i x(t)|+

(
λ̂

λ

)T
2 √

σ2B̄v̄

=
√

λ̂q(t) +

(
λ̂

λ

)T
2 √

σ2B̄v̄.

Hence in both cases, we have proven that (35) holds.
Now by iteratively applying the inequality (35), we con-

clude that

q(t) ⩽ λ̂
t
2 q(0) +

(
t−1∑
i=0

λ̂
i
2

)(
λ̂

λ

)T
2 √

σ2B̄v̄

= λ̂
t
2 q(0) +

(
1− λ̂

t
2

1− λ̂
1
2

)(
λ̂

λ

)T
2 √

σ2B̄v̄

⩽ λ̂
t
2 q(0) +

(
1−

√
λ̂
)−1

(
λ̂

λ

)T
2 √

σ2B̄v̄.

Finally, recall the definition of q. Using (34), we conclude
that (19) holds. □
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