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Abstract

This paper presents a linear-programming based algorithm to perform data-driven stabilizing control
of linear positive systems. A set of state-input-transition observations is collected up to magnitude-
bounded noise. A state feedback controller and dual linear copositive Lyapunov function are created
such that the set of all data-consistent plants is contained within the set of all stabilized systems. This
containment is certified through the use of the Extended Farkas Lemma and solved via Linear Program-
ming. Sign patterns and sparsity structure for the controller may be imposed using linear constraints.
The complexity of this algorithm scales in a polynomial manner with the number of states and inputs.
The Linear-Programming based algorithm is extended to positive-stabilization of switched linear systems
and Linear Parameter-Varying systems. Effectiveness is demonstrated on example systems.

1 Introduction

This paper performs Data-Driven Control (DDC) of Positive Linear Time Invariant (LTI) Continuous-Time
Systems (CTSs) and Discrete-Time Systems (DTSs) by finding full-state-feedback stabilizing controllers.
These controllers, which stabilize all possible plants that are consistent with observed data, are formulated
as the solution to a Linear Program (LP).

Positive systems are a class of dynamical systems whose state and output responses to positive (non-
negative) initial conditions and inputs remain positive (nonnegative) for all time [1, 2, 3, 4]. Instances of
positive systems include population models [5], chemical networks [6], radio communications [7], queuing [8],
and Markov chains [9]. Full-state-feedback stabilization of known LTI positive systems can be accomplished
by solving an LP to find control (dual) linear copositive Lyapunov functions [10]. Alternatively, one can
perform stabilization by formulating a Semidefinite Program (SDP) to find a quadratic Lyapunov function
[11, 12].

The peak-to-peak (L∞ → L∞ for a CTS or `∞ → `∞ for a DTS) gain of an extended positive plant can
be calculated and regulated using an LP [13, 14, 15, 16], which has also been derived using stability radius
formulas [17]. Analysis and stabilization results can be extended to uncertain and switched positive systems
[18], as well as time-delay positive systems [19]. The tutorial in [20] is a survey of topics about stabilization
and performance regulation for positive linear systems.

DDC is a method that synthesizes controllers for a class of data-consistent plants without first performing
a possibly expensive and inaccurate system identification step [21, 22]. Methods that require a reference
signal include iterative feedback tuning [23], virtual reference feedback tuning [24], [25], and correlation-based
tuning [26], but these algorithms lack stability guarantees for all consistent systems. Data-driven predictive
control through input-output data can be accomplished through Willem’s Fundamental Lemma, assuming
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that a rank condition of the Hankel matrices is satisfied (persistency of excitation) [27]. Stabilization, worst-
case-optimal control, and Model Predictive Control problems can be solved through the use of this Lemma
[28, 29, 30, 31], but the Lemma is vulnerable to noise sensitivity (even with regularization).

Prior knowledge of noise characteristics can be employed to synthesize controllers that will stabilize all
plants that are consistent with data. L∞-bounded noise arises from bounds on the time-derivative of the
state (CTS) or discretization of continuous-time finite-difference approximations (DTS). Work addressing
DDC of L∞-bounded noise by solving LPs includes [32] using an Extended Farkas Lemma [33]. Tools from
polynomial optimization may be applied to the L∞ setting, such as for quadratic stabilization [34], switched
systems [35, 36], and error-in-variables control [37, 38]. Quadratic Matrix Inequalities may be used to
represent consistency sets (including energy-based or L2-bounded noise) [39, 40], and stabilizing controllers
may be synthesized by solving SDPs using a Matrix S-Lemma [41]. The work in [42] employs polynomial
optimization for DDC under the assumption that magnitude bounds on Taylor polynomial coefficients and
residual terms are known.

The work in [43] utilizes the Fundamental Lemma [27] to perform DDC of positive systems by solving
an SDP. System identification of positive systems is performed in [44]. The method in [45] uses data-driven
Lyapunov-Metzler inequalities to perform switched positive-systems control at the expense of solving Bilinear
Matrix Inequalities.

The contributions of this work are:

• An LP that performs data-driven positive-stabilizing control for all systems consistent with observed
data.

• A tabulation of computational complexity required to solve this LP.

• An extension of this LP towards worst-case peak-to-peak gain minimizing control.

• An application of the LP for positive switched and positive Linear Parameter-Varying (LPV) systems.

This paper has the following structure: Section 2 reviews the preliminaries of notation, positive systems,
copositive Lyapunov functions, and the Extended Farkas Lemma. Section 3 presents an LP to perform
data-driven stabilizing control of positive systems. Section 4 extends this LP framework to yield controllers
that minimize the worst-case peak-to-peak gain between an external input and a controlled output. Section
5 extends the LP stabilization methods towards control of switched positive linear systems. Section 6 details
how these approaches can be used for positive LPV systems. Section 7 demonstrates effectiveness of these
methods on stabilizing and worst-case-optimal control of example systems. Section 8 concludes the paper.

2 Preliminaries

2.1 Notation

The n-dimensional Euclidean vector space is Rn. Its nonnegative orthant will be written as Rn≥0 and its

positive orthant will be denoted as Rn>0. The set of n×m matrices will be Rn×m. The transpose of a matrix
M ∈ Rn×m is MT ∈ Rm×n.

The n-dimensional identity matrix is In. The vector of all ones is 1n ∈ Rn. The n × m matrix of all
zeros is 0n×m ∈ Rn×m. The matrix with v ∈ Rn appearing on its main diagonal and zeros elsewhere is
diag(v) ∈ Rn×n. The Kronecker product of matrices A and B is A⊗B. The column-wise vectorization of a
matrix M is vec(M). The elementwise division between a, b ∈ Rn is a./b.

The symbol δx will refer to x+ (next state) in discrete-time or ẋ in continuous-time. The symbols
(~,⊕,	,�) correspond to an unrestricted (real-valued), a nonnegative, a nonpositive, and a zero-valued
element respectively.

2.2 Positive Systems

A controlled LTI system with states x ∈ Rn, inputs u ∈ Rm, and outputs y ∈ Rp has the form

δx = Ax+Bu y = Cx+Du. (1)
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2.2.1 Positive System Descriptors

Definition 2.1. The system (1) is internally positive iff for any initial condition x(0) ∈ Rn≥0 and input
u(t) ∈ Rm≥0, the state and output responses remain in the positive orthant (x(t) ∈ Rn≥0, y(t) ∈ Rp≥0 ∀t ≥ 0)
[3].

Internal positivity requires that (B,C,D) are all nonnegative, along with the property that A is Metzler
(off-diagonals are nonnegative) for a CTS or that A is nonnegative for a DTS. The system is positive-stable
if A is Hurwitz and Metzler (CTS), or Schur and Nonnegative (DTS). For the remainder of this paper, we
will assume that C = In and D = 0n×m.

The state-feedback control u = Kx with K ∈ Rm×n positively-stabilizes (1) if the closed-loop matrix
A+BK is Metzler-Hurwitz or Nonnegative-Schur (as appropriate).

2.2.2 Copositive Functions

Definition 2.2. A function f : Rn → R is copositive (with respect to the positive orthant) if ∀x ∈ Rn>0 :
f(x) > 0.

Copositivity of the linear function V (x) = vTx and the dual-linear function V (x) = max(x./v) may be
checked by verifying that v > 0, but copositivity of a matrix function such as xTMx for some M ∈ Rn×n is
generically NP-hard [46].

2.2.3 Stability of Positive Systems

Theorem 2.1. Let the system (1) be internally positive. Then it is asymptotically stable (positive-stable)
iff one of the following equivalent conditions is satisfied [20]:

C1) The matrices −A (CTS) or In −A (DTS) have positive principal minors.

C2) There exists a p ∈ Rn>0 with P = diag(p) such that ATP + PA ≺ 0 (CTS) or ATPA− P ≺ 0 (DTS).

C3) There exists a positive vector v ∈ Rn>0 with a Linear Copositive Lyapunov Function (LCLF) vTx such
that AT v < 0 (CTS) or AT v < v1 (DTS).

C4) There exists a positive vector v∞ ∈ Rn>0 with a Dual Linear Copositive Lyapunov Function (DLCLF)
max(x./v∞) such that Av∞ < 0 (CTS) or Av∞ < v∞ (DTS).

In this paper we will exclusively use Condition C4 of Theorem 2.1 with a DLCLF max(x./v∞). We note
that the conditions in Theorem 2.1 strictly treat the case of (dual) LCLFs. Proposition 3.3 of [18] states that
every uniformly exponentially stable positive linear system admits a polyhedral Lyapunov function with an
undecidable number of facets.

2.2.4 Positive System Stabilization

DLCLFs may be employed to find positive-stabilizing controllers K ∈ Rm×n.

Theorem 2.2 ([10]). The closed-loop system δx = (A+BK)x from (1), given a control u = Kx, is positive
and asymptotically stable if there exists a vector v ∈ Rn>0 with a diagonal matrix X = diag(v), and a matrix
Y ∈ Rm×n such that the gain K satisfies KX = Y and

−(AX +BY )1n ∈ Rn>0 AX +BY is Metzler (CTS) (2a)

v − (AX +BY )1n ∈ Rn>0 AX +BY ∈ Rn×n≥0 (DTS). (2b)

Finding a controller through (2) requires solving an LP with both strict and nonstrict inequality con-
straints.
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2.2.5 Structured Control

The stabilization task in (2) may be restricted to a set of controllers that obey sign patterns and sparsity
structures. Such sparsity might arise from network information constraints.

Let S be an m × n matrix filled with the symbols (~,⊕,	,�). A controller with the structure K ∈ S
may be constructed by solving (2) under the constraint that Y ∈ S, given that multiplication by the matrix
X with v ∈ Rn>0 does not change the sign pattern. An unstable internally positive system cannot be
positive-stabilized by a nonnegative state feedback controller K ∈ Rm×n≥0 .

2.3 Extended Farkas Lemma

This work will find a state-feedback controller u = Kx such that the set of all K-stabilized systems contains
the set of systems consistent with observed data. The method used to enforce this containment is the
Extended Farkas Lemma:

Lemma 2.3 (Extended Farkas Lemma [33, 47]). Let P1 = {x | G1x ≤ h1} and P2 = {x | G2x ≤ h2} be a
pair of polytopes. Then P1 ⊆ P2 if and only if there exists a nonnegative matrix Z of compatible dimensions
such that,

ZG1 = G2, Zh1 ≤ h2. (3)

3 Data-Driven Stabilization

This section will detail the data-driven positive-stabilization problem and its solution using robust linear
programming.

3.1 Problem Setting

A set of T observations are recorded of system (1) as corrupted by a noise process w ∈ Rn,

δx(t) = Ax(t) +Bu(t) + w(t). (4)

These observations are collected into the data D = (X,U,Xδ) with the expressions,

X := [x(0) x(1) . . . x(T − 1)]
U := [u(0) u(1) . . . u(T − 1)]
Xδ := [δx(0) δx(1) . . . δx(T − 1)].

(5)

The discrepancy matrix W satisfies the relation,

W = Xδ − (AX +BU). (6)

The noise model that we will use is that each w(t) (column of W) is L∞-norm-bounded by some given
ε ≥ 0 (‖w(t)‖∞ ≤ ε).

The set of all system matrices (A,B) that are compatible with the L∞-corrupted data in D forms a
polytopic consistency set ΣD. If it is known a priori that A is Metzler/Nonnegative and/or B is nonnegative,
then these constraints in (A,B) may be adjoined to ΣD.

The data-driven positive-stabilization problem is:

Problem 3.1. Find a vector v ∈ Rn>0 and a controller K ∈ S such that max(x./v) is a common DLCLF
ensuring positive-stability of A+BK for all (A,B) ∈ ΣD.

3.2 Polytope Description

We will describeK-stabilized andD-consistent polytopes that will be used in solving Problem 3.1 Throughout
this section, the column-vectorization of the plant matrices will be defined as a = vec(A), b = vec(B). The
identity vec(UVW ) = (WT ⊗ U)vec(V ) for matrices (U, V,W ) of compatible dimensions will be judiciously
used in derivations.
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3.2.1 Data-Consistent Polytopes

The polytopic set Σdata
D of plants consistent with the data in D may be represented as

Gdata
1 =

[
XT ⊗ In UT ⊗ In

]
(7a)

Σdata
D =

{
(A,B) | Gdata

1

[
a
b

]
≤
[
ε1nT + vec(Xδ)
ε1nT − vec(Xδ)

]}
. (7b)

The consistency set of plants ΣD is the intersection of Σdata
D and the prior knowledge on system-positivity

of (A,B) (linear constraints) described in Σprior. As an example, where A is a positive system in discrete-

time, then Σprior = {A | A ∈ Rn×n+ }, Gprior
1 = −In2 , and hprior1 = 0n2 . Let (G1, h1) be matrices such that

the polytopic data-consistency set ΣD = Σdata
D ∩ Σprior can be expressed as

ΣD = P1 =

{
(A,B) | G1

[
a
b

]
≤ h1

}
. (8a)

3.2.2 Controller-Stabilizing Polytopes

In order to apply the Extended Farkas Lemma 2.3, we will convert the strict inequalities in (2) and in
v ∈ Rn>0 to non-strict inequalities by utilizing a sufficiently small η > 0.

−(AX +BY )1n − η1n ∈ R≥0 (CTS) (9a)

v − (AX +BY )1n − η1n ∈ R≥0 (DTS). (9b)

Define the canonical Metzler-indexing matrix Mn ∈ Rn(n−1)×n2

as a 0/1-valued matrix that extracts
off-diagonal elements, such as

M2vec

([
1 3
2 4

])
=

[
2
3

]
. (10)

The polytope PC2 of continuous-time plants (A,B) that can be positive-stabilized via (9a) under a state-
feedback controller K ∈ S with a DLCLF max(x./v) such that Y = KX can be described by

GC2 =

[
vT ⊗ In (Y 1n)T ⊗ In

−Mn(X ⊗ In) −Mn(Y T ⊗ In)

]
(11a)

PC2 =

{
(A,B) | GC2

[
a
b

]
≤
[
−η1n

0n(n−1)

]}
. (11b)

The top row of GC2 is the DLCLF stabilization criterion, and the bottom row enforces that AX +BY is
Metzler.

The polytope PD2 of discrete-time plants (A,B) positive-stabilized by (K,Y ) under the same conditions
is

GD2 =

[
vT ⊗ In (Y 1n)T ⊗ In
−X ⊗ In −Y T ⊗ In

]
(12a)

PD2 =

{
(A,B) | GD2

[
a
b

]
≤
[
v − η1n

0n2

]}
. (12b)

3.3 Stabilizing Programs using the Extended Farkas Lemma

To unite notation, let P2 be the appropriate stabilizing polytope for continuous-time (PC2 ) or discrete-
time (PD2 ) from Section 3.2.2. The number of constraints in the stabilizing polytope P2 (length of h2) is
q = n + n(n − 1) for continuous-time and q = n + n2 for discrete-time. The polytope P2 has a constraint
matrix G2 ∈ Rq×n(n+m) and vector h2 ∈ Rq such that P2 = {(A,B) | G2[aT bT ]T ≤ h2}. The entries in G2

and h2 are affinely-dependent on (v, Y ).
Problem 3.1 may be expressed in the language of polytope-containment as,

Problem 3.2. Find a vector v ∈ Rn>0 and a matrix Y ∈ S such that P1 ⊆ P2.

5



Theorem 3.3. Problem 3.2 (equivalent to (3.1)) has a solution iff the following LP involving variables
(v, Y, Z) is feasible:

find
v,Y,Z

ZG1 = G2(v, Y ), Zh1 ≤ h2(v, Y ) (13a)

v − η1n ∈ Rn≥0, Y ∈ S, Z ∈ Rq×2nT≥0 , (13b)

whereby the state-feedback gain K ∈ S can be recovered by calculating K = Y X−1.

Proof. The LP in (13) is a direct application of the Extended Farkas Lemma 2.3 to prove polytope contain-
ment P1 ⊆ P2.

3.4 Computational Complexity

Table 1 computes the number of inequality and equality constraints required to represent Program (13a).
The number of equality constraints associated with Y is set to 0 because zero-valued entries of Y will be
removed and will not be treated as scalar variables. The LP in (13) has up to n + mn + (2nT )q scalar
variables distributed into (v, Y, Z), plus q additional nonnegative slack variables required to represent the
inequalities in constraint (13a).

Table 1: Number of Inequality and Equality constraints in Program (13)

# Ineq. # Eq.
v n 0
Y ≤ mn 0
Z (2nT )q 0

(13a) q qn(n+m)

In discrete-time with q = n2 + n and no value-restrictions on K (Y ∈ Rm×n), Program (13a) will have
N = (2nT + 1)(n2 + n) + (2m + 1)n nonnegative scalar variables (representing Y = Y + − Y − where both
Y + and Y − are nonnegative) and (n2 + 1)n(n+m) equality constraints.

The running-time of an Interior Point Method solver for LPs up to γ-optimality is approximately
O(Nω+0.5|log(1/γ)|) [48], where ω is the matrix-multiplication constant. Our DDC algorithm therefore
has performance on the order of (Tn3)ω+0.5 ∼ n12.5. Significant gains in performance may be realized by
noting that the matrices (G1, G2) are sparse and are highly structured.

Remark 1. The polytope ΣD may possess a large number of redundant faces. These half-space constraints
may be removed to improve computational performance without affecting the description of ΣD. Nonredun-
dant faces may be discovered by linear programming over the polytope [49].

Remark 2. An alternative approach is to perform vertex enumeration, in which relations (2) hold at every
vertex of ΣD. The polytopes ΣD that are gathered as part of the data-acquisition process empirically have a
number of vertices that scales exponentially with dimension, for which the face-based approach of the Extended
Farkas Lemma is more favorable.

Remark 3. This paper focused on the case of L∞-bounded noise. This set-containment framework will
also be nonconservative when applied to other with other semidefinite-representable noise processes, such as
when each column of the discrepency matrix W in (6) has bounded L2 norm. The Extended Farkas Lemma
2.3 is a specific instance of a more general Robust Counterpart posed over a system of linear inequalities
[50, Theorem 1.3.14]. In the L2 case, each inequality constraint in the polytope in P2 over the uncertain
(a, b) is replaced via a robust counterpart by n(n+m) second-order-cone variables, n(n+m) linear equality
constraints, and one linear inequality constraint. This procedure is performed programmatically in [51] under
the ‘duality’ option.
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4 Peak-to-Peak Gain Regulation

This section performs worst-case peak-to-peak (p2p) gain minimization using the Extended Farkas Lemma.
System (1) may be affected by an external noise process ξ ∈ Re to form dynamics with a controlled

output of z ∈ Rp

δx(t) = Ax(t) +Bu(t) + Eξ(t) (14a)

z(t) = Cx(t) +Du(t) + Fξ(t). (14b)

For a given set of parameters (A,B,C,D,E, F ) with C ∈ Rp×n, D ∈ Rp×m, E ∈ Rn×e, F ∈ Rp×e, this
peak-to-peak gain may be computed by solving an LP,

Lemma 4.1 ([14]). There exists a state-feedback controller u = Kx with K,Y ∈ S and v ∈ Rn>0 such that
peak-to-peak gain of (14) is less than or equal to γ ≥ 0 for continuous-time if

− (AX +BY )1n − E1e ∈ Rn>0 (15a)

γ1q − (CX +DY )1n − F1e ∈ Rq>0 (15b)

CX +DY ∈ Rq×n≥0 (15c)

AX +BY is Metzler, (15d)

and for discrete-time if

v − (AX +BY )1n − E1e ∈ Rn>0 (16a)

γ1q − (CX +DY )1n − F1e ∈ Rq>0 (16b)

CX +DY ∈ Rq×n≥0 (16c)

AX +BY ∈ Rn×n≥0 , (16d)

whereby the state-feedback gain can be recovered by K = Y X−1.

We aim to solve the following problem:

Problem 4.2. Find a state-feedback controller u = Kx with K ∈ S to minimize the worst-case peak-to-peak
gain ξ → z for any data-consistent plant (A,B) ∈ ΣD.

Remark 4. The ε-corrupted data in D is obtained when ξ(t) = 0 at all time samples. It is further assumed
that the matrices (C,D,E, F ) are all fixed and are known in advance.

Peak-to-peak polytopes for (A,B) in (15) and (16) may be construct in a similar manner to the stabilizing
polytopes P2 in Section 3.2.2. The right hand sides of these polytopes for CTSs and DTSs are,

hp2p:C2 =

[
−η1n − E1e

0n(n−1)

]
hp2p:D2 =

[
v − η1n − E1e

0n2

]
. (17)

Theorem 4.3. Problem 4.2 has a solution iff the following LP in variables (v, Y, Z, γ) is feasible,

γ∗ = min
γ∈R

γ (18a)

ZG1 = G2(v, Y ), Zh1 ≤ hp2p2 (v, Y ) (18b)

(γ − η)1q − (CX +DY )1n − F1e ∈ Rq≥0 (18c)

CX +DY ∈ Rq×n≥0 (18d)

v − η1n ∈ Rn≥0, Y ∈ S, Z ∈ Rq×2nT≥0 , (18e)

whereby the p2p-minimizing state feedback gain K ∈ S can be recovered by K = Y X−1.

Proof. The outer (peak-to-peak) polytope is P p2p
2 = {(A,B) | G2[aT bT ]T ≤ hp2p2 } for the appropriate

continuous-time or discrete-time vector in (17), as constructed from conditions (15a) or (16a). The Extended
Farkas Lemma 2.3 is then applied in (18b) to ensure that γ is an upper bound for the peak-to-peak gain
of all consistent systems. The objective in (18a) reduces this gain as much as possible. The minimum is
achieved because all constraints in (18) are strict (due to the given tolerance η > 0).
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5 Positive Switched Systems

This section will extend the approach of Section 3 to switched linear systems.

5.1 Problem Setting

The ground-truth switched system will be composed of Ns subsystems with parameters (As, Bs) for s ∈ 1..Ns.
A right-continuous switching function S : [0,∞)→ 1..Ns (CTS) or S : N→ 1..Ns (DTS) is used to define a
switched system trajectory. Given a switching sequence S, the switched system trajectory x(t) satisfies

δx(t) = AS(t)x(t) +BS(t)uS(t)(t) ∀t ≥ 0. (19)

System (1) is an instance of (19) with only a single subsystem (A,B). We will assume in this paper
that S may switch between subsystems arbitrarily often, and is not subject to dwell-time constraints. The
matrices Bs ∈ Rn×ms are allowed to have different number of inputs ms.

Data from (5) is collected with the addition of a known switching sequence S to form D = (X,U,Xδ,S):

X := [x(0) x(1) . . . x(T − 1)]
U := [u(0) u(1) . . . u(T − 1)]
Xδ := [δx(0) δx(1) . . . δx(T − 1)]
S := [S(0) S(1) . . . S(T − 1)].

(20)

Our goal is to find DLCLFs and controllers to stabilize all possible systems (19) consistent with (20).
We will discuss scenarios where the switching sequence S(t) is unknown or is known.

5.2 Data-Consistency Polytope

We will collect together columns of (X,U,Xδ) that have the same switching subsystem. As an example,
(Xs,Us,Xs

δ) are the matrices formed from data in D where S(t) = s. For notational convenience, we will
use the abbreviations as = vec(As) and bs = vec(Bs) for s = 1..Ns. Given an L∞ noise bound ε for the
discrepancy (6), we express the set of all D-consistent switched systems as the intersection of subsystem
polytopes from (7)

Gdata
s =

[
(Xs)T ⊗ In (Us)T ⊗ In

]
(21a)

Σdata
D,s =

{
(A,B) | Gdata

s

[
as
bs

]
≤
[
ε1nT + vec(Xs

δ)
ε1nT − vec(Xs

δ)

]}
(21b)

Σdata
D =

Ns⋂
s=1

Σdata
D,s . (21c)

5.3 Stabilizing Polytope

This section will list stabilization tasks and their nominal DLCLF-based criteria for stabilization. Each task
description will conclude with a presentation of their DDC stabilization polytope. The specific LP of the
form of Theorem (13) will be skipped; it is enough to note that Extended Farkas Lemma 2.3 will be used
to compute stabilizing controllers based on the data-consistent polytope (21) and the respective stabilizing
polytope.

5.3.1 Common DLCLF, Common Controller

This task will require the number of inputs are the same among all subsystems ∃m : ms = m∀s ∈ 1..Ns, and
that the controller is unaware of the current switching sequence S(t).
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Theorem 5.1. The switched system (19) is positive-stabilized by the switching-independent state-feedback
controller u = Kx if there exists a DLCLF with v > 0, a matrix X = diag(v), a tolerance η > 0, and a
matrix Y ∈ Rm×n such that ∀s = 1..Ns :

−(AsX +BsY )1n − η1n ∈ Rn≥0 (CTS) (22a)

v − (AsX +BsY )1n − η1n ∈ Rn≥0 (DTS). (22b)

The control gain K is recovered by K = Y X−1.

Proof. Switched-stabilization for a common DLCLF is documented in [18, Proposition 3.4] without applied
control. The control term Y is used as an extension of [10] (summarized in Theorem 2.2). The convergence
of this DLCLF scheme is established in [52].

Letting P2 = {(A,B) | G2[aT bT ]T ≤ h2} be the single-system stabilization polytope (according to the
notation in Section 3.3) with a common (v,X, Y ), the switched system stabilizing polytope is,

P sw1
2 =

Ns⋃
s=1

{(As, Bs) | G2[aTs , b
T
s ]T ≤ h2}. (23)

5.3.2 Common DLCLF, Different Controller

This task will allow the controller to access the switching sequence S(t). Each subsystem s is equipped
with its own controller Ks ∈ Rn×ms , in which the number of inputs ms is allowed to be different between
subsystems.

Theorem 5.2. System (19) is positive-stabilized by the switching-dependent state-feedback controller u(t) =
KS(t)x(t) if there exists a DLCLF with v > 0, a matrix X = diag(v), a tolerance η > 0, and matrices
Ys ∈ Rms×n such that ∀s = 1..Ns :

−(AsX +BsYs)1n − η1n ∈ Rn≥0 (CTS) (24a)

v − (AsX +BsYs)1n − η1n ∈ Rn≥0 (DTS). (24b)

The subsystem control gains are recovered by Ks = YsX
−1 for s = 1..Ns.

Proof. The DLCLF max(x./v) is common among all subsystems. Allowing the controller Ks to change
between subsystems allows more freedom to attempt solution for a positive-stabilizing controller.

Let G2(v,X, Y ) be the stabilizing polytope from the CTS (11) or the DTS (12) as appropriate. The
switching-aware positive-stabilizing polytope P sw2

2 is

P sw2
2 =

Ns⋃
s=1

{(As, Bs) | G2(v,X, Ys)[a
T
s , b

T
s ]T ≤ h2}. (25)

6 Positive Linear Parameter-Varying Systems

This section will perform data-driven positive-stabilzation for a class of LPV systems. The presented ap-
proach is similar to subsystem-aware switched systems stabilization from Section 5.3.2.

6.1 Problem Setting

The LPV framework involves parameters θ restricted to a known set Θ ⊂ RL that are measured on-line
during operation. The general LPV structure is

δx = A(θ)x+B(θ)u. (26)
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We will focus on the Linear Parameter-Varying A-Affine (LPVA) structure [53], involving a set of matrices
∀` : A` ∈ Rn×n and a constant B ∈ Rn×m

δx =
(∑L

`=1A`θ`

)
x+Bu. (27)

The open-loop system δx = A(θ)x is asymptotically stable if limt→∞ x(t) = 0 for all possible parameter
sequences θ(·) taking values inside Θ.

Data will be collected from (26) with an L∞ noise bound of ε. The observed data D with T records is

Θ := [θ(0) θ(1) . . . θ(T − 1)]
X := [x(0) x(1) . . . x(T − 1)]
U := [u(0) u(1) . . . u(T − 1)]
Xδ := [δx(0) δx(1) . . . δx(T − 1)].

(28)

The data in (28) is collected into D = (Θ,X,U,Xδ).
Our goal is to find a DLCLF with parameter v > 0 and a control policy u(t) = K(θ(t))x(t) such that

the closed-loop LPVA system δx = A(θ) + BK(θ) is stable and positive (Metzler for CTS or Nonnegative
for DTS) for all θ ∈ Θ.

We will assume that there exists a finite Nc ∈ N and a bounded discrete set of points Ω = {ωc}Nc
c=1 ∈ Θ

such that Θ equals the convex hull of Ω. We will refer to Ω as the set of ‘vertices’ of Θ. The controller will
have knowledge of Ω and θ during operation.

6.2 Data-Consistency Polytope

Expression of the LPVA data-consistency polytope will use the column-wise Khatri-Rao product for matrices
M1 ∈ Rm×n, M2 ∈ Rp×n (notated as ⊗col) [54]

M1 ⊗col M2 = (1p×1 ⊗M1)� (M2 ⊗ 1m×1). (29)

Data consistency of the LPVA plant {A`, B} from (27) with L∞-norm error ε w.r.t. D requires that

∀t ∈ 0..T − 1 : ‖δx(t)− (
∑L
`=1A`θ(t)`)−Bu(t)‖∞ ≤ ε. (30)

Define a` as vec(A`) for all ` = 1..L. Constraint (30) is equivalent to requiring that all T columns of the
following matrix W have L∞-norm ≤ ε:

W = Xδ −
(∑L

`=1 Θ` ⊗col A`

)
X− −BU. (31)

The data-consistent LPVA polytope arising from (31) is

Gdata
LPV =

[
(X⊗col Θ)T ⊗ In UT ⊗ In

]
(32a)

Σdata
LPV =

{
{A`, B} | Gdata

LPV

[
aT1 , a

T
2 , . . . , a

T
L, bT

]T ≤ [ε1nT + vec(Xs
δ)

ε1nT − vec(Xs
δ)

]}
(32b)

6.3 Stabilizing Polytope

Positive-Stabilization of consistent LPVA will occur using a gain-scheduled controller [55] based on vertex-
interpolation [56].

The θ-dependent control gain K(θ) will be constructed from a linear combination of controllers {Kc}Nc
c=1.

Each vertex ωc ∈ Ω has a corresponding vertex-controller Kc ∈ Rm×n for every c = 1..Nc. The control
policy u = K(θ)x at a given θ will be found by first finding a feasible solution β to the following LP

find β ∈ RNc
+

∑Nc

c=1 βc = 1
∑Nc

c=1 βcωc = θ, (33a)

and subsequently returning the linear combination

K(θ) =
∑Nc

c=1 βcKc u = K(θ)x. (33b)

We define the vertex-plant Ac corresponding to ωc ∈ Ω as

Ac =
∑L
`=1 ωv`A` ∀v ∈ 1..Nc (34)
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Theorem 6.1. The LPVA system (27) is positive-stabilized by the gain-scheduled feedback controller u =
K(θ)x from (33b) if there exists a DLCLF with v > 0, a matrix X = diag(v), a tolerance η > 0, and matrices
Yc ∈ Rm×n such that ∀c = 1..Nc :

−(AcX +BYc)1n − η1n ∈ Rn≥0 (CTS) (35a)

v − (AcX +BYc)1n − η1n ∈ Rn≥0 (DTS). (35b)

The subsystem controllers {Kc}Nc
c=1 may be recovered by Kc = YcX

−1.

Proof. The LPVA framework may be interpreted as switching in the sense of Theorem 5.2 between systems
(Ac, B) for c ∈ 1..Nc. Compatibility between imposing positive-stabilization conditions on the vertices Ω
and requiring the property to hold ∀θ ∈ Θ is assured by Lemma 2.1 of [57].

The continuous-time LPVA stabilization polytope from (35a) is

GC2c =

[
ωTc ⊗ (vT ⊗ In) (Y 1n)T ⊗ In

−Mn(ωTc ⊗ (X ⊗ In)) −Mn(Y T ⊗ In)

]
(36a)

PC2LPV =

{
({A`}, B) | ∀c = 1..Nc : GC2c

[
aT1 , a

T
2 , . . . , a

T
L, b

T
]T ≤ [ −η1n

0n(n−1)

]}
. (36b)

The discrete-time LPVA stabilization polytope from (35b) is

GD2c =

[
ωTc ⊗ (vT ⊗ In) (Y 1n)T ⊗ In
−(ωTc ⊗ (X ⊗ In)) −(Y T ⊗ In)

]
(37a)

PD2LPV =

{
({A`}, B) | ∀c = 1..Nc : GD2c

[
aT1 , a

T
2 , . . . , a

T
L, b

T
]T ≤ [v − η1n

0n2

] }
. (37b)

The stabilizing polytopes PC2LPV and PD2LPV can be used in conjunction with the D-consistency polytope
Σdata
LPV to form LPVA DDC LPs by the Extended Farkas Lemma.

7 Numerical Examples

MATLAB 2021a Code to reproduce the experiments is available at https://github.com/jarmill/data_

driven_pos, and includes Mosek [58] and YALMIP [59] dependencies. All provided experiments have pa-
rameters of η = 10−3 and ε = 0.1.

7.1 Continuous-Time Stabilization

The ground-truth continuous-time system in this example has n = 3 inputs and m = 2 outputs

A =

−0.55 0.3 0.65
0.06 −1.35 0.25
0.1 0.15 0.4

 B =

0.18 0.08
0.47 0.25
0.07 0.95

 . (38)

System (38) is internally positive but is open-loop unstable (poles of 0.4907,−0.6055,−1.3851). The
stabilization task in (13) with T = 5 and an additional normalization constraint that 1Tnv = 1 results in

v =
[
0.5570 0.1401 0.3029

]T
(39a)

K =

[
0.0279 −0.2660 0.5041
0.0107 −0.0222 −0.8650

]
. (39b)

Figure 1 visualizes 100 controlled trajectories (red curves) starting from x(0) = [1; 1; 1] (black circle).
Each trajectory follows ẋ(t) = (A+ BK)x(t) in the times t ∈ [0, 20], where the plants (A,B) are randomly
sampled from ΣD and K is the controller in (39b).

Figure 2 plots values of the Lyapunov function max(x./v) (for the v in (39a)) along the 100 systems in
1.
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Figure 1: Application of the controller u = Kx from (39b) to positively-stabilize 100 consistent systems in
ΣD.

0 5 10 15 20

0

2

4

6

8

Lyapunov Function along Trajectories

Figure 2: DLCLF along the 100 trajectories.

7.2 Discrete-Time Stabilization

This example involves a discrete-time system with n = 5 states and m = 3 inputs. The ground-truth system
is internally positive, and is unstable with poles of 1.3094, −0.1218±0.0992j, 0.1201±0.1108j. With T = 60
observations the following DLCLF and stabilizing controller is recovered

v =
[
0.2076 0.1212 0.2651 0.2516 0

]T
(40)

K =

 0.0483 0.0088 −0.1326 −0.0188 −0.4273
−0.3243 0.0115 0.0299 −0.2980 0.0337
0.1601 0.0749 −0.5962 −0.3537 −0.2194

 .
It is now desired to obtain a stabilizing controller for all consistent plants that obeys the sign pattern

S =

� � � � 	
� � ~ � ⊕
� � � ~ ~

 (41a)
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Such a DLCLF certificate and controller is

v =
[
0.2147 0.1259 0.2448 0.2516 0.1630

]T
(41b)

K =

0 0 0 0 −0.6853
0 0 −0.3206 0 0.1206
0 0 0 −0.5604 −0.3317

 . (41c)

7.3 Continuous-Time Peak-to-Peak

The following ground-truth positive-stable continuous-time system has n = 3 inputs and m = 2 outputs

A =

−0.2 0.2 0.2
0.4 −0.7 0.2
0 0.8 −3

 B =

−0.4 0.5
0.2 −0.8
−1 2

 . (42)

This system has e = 2 external input channels and p = 5 controlled outputs with

C =

[
I3

02×3

]
, D =

[
03×2
I2

]
, E =

[
I2

01×2

]
, F = 05×2. (43)

The peak-to-peak gain of the ground-truth (42) under the parameters in (43) when uncontrolled (K =
02×3) is γ∗ = 32.178. Lemma 4.1 synthesizes a controller for the ground-truth system resulting in a gain of
γ∗ = 3.742. The constraint CX +DY ∈ Rq×n≥0 with the values in (43) imposes that all elements of Y and K
are nonnegative (⊕).

Table 2 collects the worst-case peak-to-peak gains obtained by (18) as a function of the number of samples
T . These gains decrease as T increases and the consistency set ΣD shrinks. The top row of (2) incorporates
the prior knowledge that the ground-truth A from (42) is Metzler when constructing the polytope ΣD. The
bottom row does not impose this positivity (Metzler) prior on A, and therefore yields peak to peak bounds
that are always greater than or equal to the Metzler-imposed bounds.

Table 2: Worst-case peak-to-peak gain γ∗ computed by (18) decreases as the number of samples T increases

T 20 30 50 80 120
A Metzler 6.4539 5.0182 4.4967 4.0619 4.0028

No Prior 6.4823 5.0719 4.5292 4.0659 4.0029

The system with T = 50 and a Metzler-prior on A has a worst-case peak-to-peak gain of γ∗ = 4.4967
and solution outputs of

v =
[
4.4967 4.2021 0.4303

]T
(44a)

K =

[
0.5095 0.4765 0.4727
0.2587 0 0

]
. (44b)

The polytope ΣD under the Metzler-prior has 2nT + (n2−n) = 300 + 6 = 306 faces and 308,672 vertices,
of which 62 faces are nonredundant (see Remark 1). The nonnegative Farkas matrix is Z ∈ R9×62

≥0 .

7.4 Switched System Control

This example will involve a continuous-time system with n = 3 inputs, m = 2 outputs, and N = 2 subsystems

Atrue
1 =

−0.55 0.3 0.65
0.06 −1.35 0.25
0.1 0.15 0.4

 Btrue
1 =

0.18 0.08
0.47 0.25
0.07 0.95


Atrue

2 =

0.1 0.1 0.1
0.1 −1.9 0.15
0.1 0.1 0.6

 Btrue
2 =

1 0
0 0
0 1

 . (45)
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A set of T = 55 observations of system (45), 28 of which in are s = 1 and the remaining 27 in s = 2. The
polytope P c1 has Nn(n+m) = 30 dimensions, 108 nonredundant faces, and 246 redundant faces.

The recovered controller (and DLCLF vector) that simultaneously stabilizes both systems in (45) (Section
5.3.1) are

v =
[
0.4989 0.0572 0.4439

]
(46a)

K =

[
−0.1390 −0.0860 −0.0663
0.0362 −0.0810 −0.8146

]
. (46b)

Figure 3 plots controlled trajectories of the system in (45) with the gain in (46b) starting from x(0) =
[0.5, 1.5, 1]. The switching time of each trajectory to a new subsystem is exponentially distributed with a
mean of 0.3 time units. The red trajectory on the left subplot highlights the ground truth system in (45),
and the other blue curves are trajectories of 15 subsystems inside P c

1 when the identical switching sequence
is applied. The right subplot overlays trajectories of 30 switching sequences.

Figure 3: Controlled switched trajectories using the gain in (46b)

Figure 3 is generated with T = 55 datapoints. When only T = 20 observations are collected, it is
infeasible to find a common DLCLF and controller. However, a common DLCLF and a pair of subsystem
controllers that can stabilize both systems in (45) (Section 5.3.2) are

v =
[
0.5423 0.1327 0.3250

]
(47a)

K1 =

[
0.0444 −0.3097 0.4207
−0.0010 0.2910 −1.0869

]
(47b)

K2 =

[
−0.4223 0.1510 0.1520
0.0059 −0.0171 −0.9607

]
. (47c)

Figure 4 plots switching-aware controlled trajectories of (45) based on (47c).
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Figure 4: Controlled switched trajectories using the subsystem-dependent gains in (47c)

7.5 LPV System

The considered ground truth continuous-time system with a parameter set Θ = {1} × [−1, 1]× [−0.5, 0.9] is

Atrue
1 =

[
−0.9190 0.5555
0.4936 −0.5761

]
, Atrue

2 =

[
−1.2653 0.0574
0.2981 0.2455

]
Atrue

3 =

[
0.9328 0.5702
0.0636 −1.0487

]
, Btrue =

[
0.4570 0.2828
0.2115 0.8863

]
. (48)

This internally positive system has parameters n = 2,m = 2 and L = 3. The plant matrix corresponding
to the vertex ω = [1,−1, 0.9] ∈ Θ is unstable, because Atrue

1 − Atrue
2 + Atrue

3 has a positive eigenvalue of
1.2700.

Data with a horizon of T = 10 (10 state-input-transition tuples) was collected with ε = 0.1. The polytope
Σdata
LPV from (32) has n(Ln + m) = 16 dimensions, 42 nonredundant faces, 8 redundant faces, and 607590

vertices.
The following continuous-time vertex controllers positive-stabilize all consistent D-plants by (35a) using

the stabilizing polytope (36).

K(1,−1,−0.5) =

[
−14.2950 9.9057

6.2326 −5.8745

]
K(1,−1,0.9) =

[
−20.8043 9.7975

8.5165 −6.9282

]
K(1,1,−0.5) =

[
−6.9969 6.5542
2.5340 −4.3078

]
(49)

K(1,1,0.9) =

[
−5.2847 2.3813
2.0480 −2.3017

]
.

These controllers were synthesized under the prior knowledge (Σprior) that each ground-truth {A`} is
Metzler and B is nonnegative.

The controllers in (49) have an associated common DLCLF

V (x) = max(x1/0.4482, x2/0.5518). (50)
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Figure 5 plots system trajectories starting from the black-circle point x(0) = [0.5, 1.5]. Parameter values
in θ are drawn uniformly from the box Θ, and change values at mean-0.05 exponentially distributed switching
times. The top plot of Figure 5 plots controlled trajectory execution for the ground truth in (48) (red) as

well as 15 other systems randomly drawn from P c,LPV
1 . The bottom plot displays controlled trajectories

arising from 30 parameter-switching sequences for each of the 16 sampled systems.

Figure 5: Controlled LPV trajectories using the gains in (49)

8 Conclusion

This paper presented an LP-based algorithm (Theorem 3.3) to perform data-driven stabilizing control of
positive linear systems. The state-feedback controller K stabilizes all possible systems in the L∞-norm
bounded consistency set ΣD, as certified by a common DLCLF function V (x) = max(x./v) and the Extended
Farkas Lemma. There is no conservativeness in such a design: Equation (13) will find a controller iff there
exists such a linear copositive Lyapunov function across all consistent systems. This framework can also
be used to perform data-driven worst-case peak-to-peak gain minimization using Equation (18). The LP
framework is extended to positive switched and positive LPV systems.

Future work includes applying these techniques to monotone systems and systems with dwell time. Other
aspects include applying Lyapunov-Metzler inequalities to perform stabilization when the controller is able
to select the switching sequence S [18, 45].
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