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Data-driven Eigenstructure Assignment for Sparse Feedback Design

Federico Celi, Giacomo Baggio, and Fabio Pasqualetti

Abstract— This paper presents a novel approach for solving
the pole placement and eigenstructure assignment problems
through data-driven methods. By using open-loop data alone,
the paper shows that it is possible to characterize the allowable
eigenvector subspaces, as well as the set of feedback gains
that solve the pole placement problem. Additionally, the paper
proposes a closed-form expression for the feedback gain that
solves the eigenstructure assignment problem. Finally, the paper
discusses a series of optimization problems aimed at finding
sparse feedback gains for the pole placement problem.

I. INTRODUCTION

Data-driven control methods have gained popularity in

recent years thanks to their ability to synthesize feedback

controllers directly from historical data [1]–[3]. One major

advantage of these methods is that they eliminate the need

for constructing or identifying a model for the underlying

system to be controlled. This is especially useful in situations

where deriving first-principle models is challenging or where

the identification process may lead to unreliable model

parameters. Despite the popularity of data-driven control, the

problems of data-driven pole placement and eigenstructure

assignment have not been explored until recently [4], [5].

The traditional (i.e., model-based, non-sparse) pole place-

ment and eigenstructure assignment problems have a rich

history, including in practical applications [6], [7]. The pole

placement (eigenstructure assignment) problem consists in

finding a static feedback gain that produces a closed-loop

system where the state matrix has a pre-specified set of

eigenvectors (eigenvalues and eigenvectors) [8]. We refer to

the seminal works [9]–[13] and to the recent papers [14],

[15], which highlight the ongoing interest in these topics.

In general, the feedback gain which solves the pole

placement problem is not unique, adding a certain degree

of freedom on the choice of the feedback gain. This can be

leveraged to enforce further control objectives, for example,

by imposing a sparsity pattern on the feedback gain itself.

By using a feedback with predefined sparsity patterns, or by

maximizing the overall number of zero entries of the feed-

back gain, the number of feedback signals can be reduced

while still achieving the desired closed-loop behavior. This

can be advantageous in applications where the number of

sensors or feedback signals is limited as, for example, in

complex network systems [16].
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In this paper, we address these problems and show that it is

possible to place the closed-loop eigenvalues exactly at any

desired location by designing a static feedback gain through

open-loop data alone, i.e., without explicit knowledge of the

system matrices. Further, we show that the static gain for

eigenstructure assignment can be found through a closed-

from data-driven expression. Finally, we apply these results

to the design of sparse feedback gains.

Related work. Despite the recent advancements in data-

driven control theory [17]–[19], to the best of our knowledge,

the only works discussing data-driven strategies for pole

placement and eigenstructure assignment are [4] and [5] (the

latter was developed concurrently and independently to the

present paper). Both [4], [5] are based on the behavioral

approach [20] and rely on the Fundamental Lemma [21] to

characterize the behavior of a linear system from a single,

long, experimental trajectory. In contrast, our approach col-

lects data from multiple trajectories, which has proven ad-

vantageous, e.g., when dealing with unstable systems, since

shorter trajectories can be leveraged. A detailed analysis of

the benefits of using multiple (shorter) trajectories over a

single trajectory in control and reinforcement learning can

be found in [22]. It is worth noting that [4] uses Linear

Matrix Inequalities to solve the problem of pole placement

and it does not offer any closed-form solution, while [5] does

not discuss a characterization of the set of static feedbacks

for pole placement. Additionally, neither [4] nor [5] provide

any insights on designing sparse feedback gains, which

is a relatively unexplored topic even in the model-based

framework [16], [23]. This knowledge gap further motivates

our interest in this problem. In [24], the authors propose a

data-driven approach to designing sparse stabilizing feedback

gains, however this method does not assign specific eigenval-

ues/eigenvectors as we do in this paper. Recently, the System

Level Approach to Controller Synthesis has proposed a set

of tools for designing constrained robust, sparse, and optimal

controllers, see [25]. However, the System Level Approach

is based on designing a dynamic compensator, while the

problems of pole placement and eigenstructure assignment

are based on static feedback gains [8].

Paper contribution. This paper presents novel results on

pole placement and eigenstructure assignment with sparse

feedback achieved by using (possibly direct) data-driven for-

mulas. Specifically, we characterize (i) the allowable eigen-

vector subspace and (ii) the set of feedback gains which solve

the pole placement problem, both as a function of data. From

these, we derive (iii) a closed-form expression of the gain that

solves the eigenstructure assignment problem. Additionally,
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we (iv) discuss strategies for computing sparse feedback

controllers for the pole placement problem, by incorporat-

ing our data-driven expressions into non-linear optimization

problems. Finally, numerical simulations demonstrate the

effectiveness of the proposed approach.

Paper organization. The paper is organized as follows.

Section II introduces the problem setting, together with

some classical results on pole placement and eigenstructure

assignment. Section III presents our main expressions for

data-driven pole placement and eigenstructure assignment.

Section IV discusses strategies for the design of sparse

controllers and validates them through numerical examples.

The concluding remarks are left to Section V.

Notation. Let R (N, C) and R+ (N+) denote the set of

real (integer, complex) and strictly positive real (integer)

numbers, respectively. Given a matrix A ∈ Rn×m, Rank(A),
Ker(A), and A⊤ denote the rank, the kernel, and the

transpose of A. In and 0n,m stand for the n × n identity

matrix and n×m zero matrix, respectively (subscripts will be

omitted when clear from the context). The 2-norm of matrix

A is ‖A‖, the Kronecker product between matrices A and

B is denoted by A ⊗ B, and the Hadamard (elementwise)

product by A ◦ B. We let vec(·) : Rn×m → Rnm denote

the vectorization operator of a matrix. We let ρ(A) denote

the spectrum of matrix A, i.e., the set of eigenvalues of A.

We let λ∗ denote the complex conjugate of λ ∈ C. For

matrix A ∈ R
m×n and n-dimensional subspace V , we let

AV = {Avi, vi ∈ V}.

II. PROBLEM SETUP AND PRELIMINARY NOTIONS

Consider a controllable discrete-time linear system

x(t+ 1) = Ax(t) +Bu(t), (1)

where x(t) ∈ Rn and u(t) ∈ Rm are the state and input

vectors, respectively, at time t ∈ N, and A ∈ Rn×n and

B ∈ Rn×m, and where we assume that Rank(B) = m. In

this paper we study the problem of computing a controller

K ∈ Rm×n which shapes the closed loop trajectory

x(t+ 1) = (A−BK)x(t) (2)

according to some design objectives. We assume that the

model of the dynamical system (1), i.e., matrices A and

B, is not available and, instead, we leverage a series of

offline open-loop trajectories of (1). In particular, we perform

and collect data from N ∈ N+ experiments of length

T ∈ N
+, where xi(0), x

i
T = vec (xi(1), . . . , xi(T )) and

u
i
T = vec(ui(0), . . . , ui(T − 1)) are the initial state, the

state trajectory and the input trajectory, respectively, recorded

for (1) during experiment i ∈ {1, . . . , N}. The dataset is

available through matrices

X0 =
[

x1(0) x2(0) . . . xN (0)
]

, (3a)

X =
[

x
1
T x

2
T . . . x

N
T

]

, and (3b)

U =
[

u
1
T u

2
T . . . u

N
T

]

. (3c)

The following Assumption and Lemma enable us to write

any trajectory of (1) in terms of data collected as in (3).

Assumption 2.1: (Persistency of excitation) Data matrices

X0 and U in (3) satisfy

Rank

([

X0

U

])

= mT + n.

�

Lemma 2.2: (Data-driven trajectories of (1) [26]) Let (3)

be the dataset generated by (1), and let x̄T be any state

trajectory of (1) generated with some initial condition x̄0

and control ūT . Then, there always exist vectors α and β,

of appropriate dimension, such that

x̄T =
[

XKU XK0

]

[

α

β

]

,

where KU = Basis(Ker(U)) and K0 = Basis(Ker(X0)).
Moreover, x̄0 = X0KUα and ūT = UK0β. �

Assumption 2.1 is typical in data-driven studies and lever-

ages the linearity of (1) to ensure that the collected dataset

(3) is sufficiently informative, i.e., that any state trajectory

x̄T of (1) can be expressed as a linear combination of

the recorded state trajectories X . Lemma 2.2 goes a step

further by decomposing x̄T into its free response (XKUα)

and forced response (XK0β), and by expressing them as a

function of data, for given initial condition x̄0 and input ūT .

In the following we let L = {λ1, . . . , λn} be the set of

desired closed-loop eigenvalues and V = {υ1, . . . , υn} be

the set of desired closed-loop eigenvectros, with λi ∈ R and

υi ∈ R
n, for all i ∈ {1, . . . , n}.1

Assumption 2.3: (Properties of closed-loop eigenvalues

and eigenvectors) We assume that the set of desired eigenval-

ues L of A−BK is closed under complex conjugation, and

that, for each eigenvalue, the geometric multiplicity matches

the algebraic multiplicity. Eigenvectors corresponding to

complex conjugate eigenvalues are complex conjugate. �

We leave the problem of generalizing the results of this

paper to eigenvalues with different geometric and algebraic

multiplicity as the focus for future research, and note that

the condition on the multiplicity of the eigenvalues in As-

sumption 2.3 is met when the elements of L are distinct.

An important limitation of the eigenstructure assignment

problem is that it does not allow for arbitrary selection

of eigenvalue/eigenvector pairs through feedback gain K .

Instead, the choice of each eigenvector is constrained to

a specific subspace within the system’s state space. This

restriction is formally expressed in the following theorem.

Theorem 2.4: (Feasibility of eigenstructure assignment

[8]) Using the control law u(t) = −Kx(t) in (1) n

eigenvalues of A − BK may be assigned and m entries of

each corresponding eigenvector can be chosen freely. �

Theorem 2.4 ensures that L = {λ1, . . . , λn} eigenvalues

can be freely assigned, but restricts the choice of each

eigenvector υi ∈ Rn in V = {υ1, . . . , υn}, to the subspace

Pi ⊆ R
n, termed the allowable eigenvector subspace [8].

We recall a second fundamental result which ensures the

existence and uniqueness of K under certain conditions.

1Although both left and right eigenvectors can be considered, in this paper
we shall refer to the right eigenvectors.



Theorem 2.5: (Uniqueness of feedback for eigenstruc-

ture assignment [11]) Let L = {λ1, . . . , λn} and V =
{υ1, . . . , υn}, with υi ∈ Pi, be the set of desired closed loop

eigenvalues and eigenvectors, with Rank(
[

υ1 · · · υn
]

) =
n. Let Assumption 2.3 hold, and let Rank(B) = m. Then,

the matrix K such that A − BK has eigenvalues in L and

eigenvectors in V exists and is unique. �

In the pole placement problem, the set of desired closed-

loop eigenvectors is not specified. This leaves some degrees

of freedom in the selection of the columns of V , as long

as υi ∈ Pi (cf. Theorem 3.1). In general, the matrix K

in the pole placement problem is, therefore, not unique.

In the next section we give a data-driven expression for

Pi, as well as a data-driven characterization of the set of

matrices K such that ρ(A − BK) = L. Further, we show

that the unique K can be found as a closed-form function

of the data for the eigenstructure assignment problem. In

Section IV we leverage the flexibility on K for the pole

placement problem, by introducing additional design goals,

i.e., enforcing sparsity constraints on K .

III. DATA-DRIVEN POLE PLACEMENT AND

EIGENSTRUCTURE ASSIGNMENT

We begin with a data-driven expression to compute Pi, the

allowable eigenvector subspace associated with eigenvalue

λi for system (1). That is, we wish to find the subspace

Pi such that (A − BK)υi = λiυi, for all υi ∈ Pi, and

some K . We remark that Pi is independent of K [8], and in

this paper we compute Pi without any explicit knowledge of

system matrices A and B, but leveraging only offline data

(3). Throughout the paper, given λi ∈ L, we define

Λi =
[

I λiI λ2
i I · · · λT−1

i I λT
i I

]⊤
∈ R

n(T+1)×n,

(4)

and matrices Z =
[

InT 0nT×n

]

(i.e., the matrix that

extracts the first nT rows from Λi) and W =
[

0nT×n InT
]

(i.e., the matrix that extracts the last nT rows from Λi).

Theorem 3.1: (Data-driven allowable eigenvector sub-

space) Let λi be a desired closed loop eigenvalue. The eigen-

vector associated with λi belongs to the following subspace:

Pi = X0KU

[

I 0
]

Ker
([

XKU −WΛiX0KU XK0

])

.

(5)

Proof: First, we notice that if λi and υi are an

eigenvalue and the corresponding eigenvector of A − BK ,

then the following must hold

(A−BK)υi = λiυi. (6)

Further, only a trajectory xT starting in υi will always remain

in υi when evolving according to (2). That is, if and only

if x(0) = υi ∈ Pi, then x(t) ∈ Im(υi) for all times t, and

x(t+ 1) = λix(t). For a trajectory of length T , this can be

written as

xT =











λiI

λ2
i I
...

λT
i I











x(0) =
[

XKU XK0

]

[

α

β

]

(7)

if and only if x(0) ∈ Pi. From the rightmost equality in (7)

and by noticing that x(0) = X0KUα (cf. Lemma 2.2) one

can conclude that x(0) ∈ Pi if and only if α and β verify
[

α

β

]

∈ Ker
([

XKU −WΛiX0KU XK0

])

. (8)

Extracting α from (8) and recalling that

x(0) = υi = X0KUα, (9)

concludes the proof.

Through Theorem 3.1 one can write the allowable eigen-

vector subspace associated to eigenvalue λi for a closed

loop dynamics (2) as a function of the open loop data

(3). However, Theorem 3.1 cannot be used to compute a

static feedback controller K . In fact, simply imposing uT =
UK0β with β as in (8) might result in an input generated by

a non-static feedback. Next, we give a condition that restricts

the choice of β so that uT is the result of a static feedback of

the state, i.e. u(t) = −Kx(t). Specifically, in Theorem 3.2

we characterize the set of all static feedback K that precisely

place the eigenvalues of A−BK to the desired set L.

Theorem 3.2: (Data-driven pole placement) Let L =
{λ1, . . . , λn} be the desired closed loop eigenvalues. Then,

ρ(A−BK) = L if and only if K ∈ K, where

K =

{

K :

n
⋂

i=1

Ker
([

(I ⊗K)ZΛiX0KU UK0

])

6= 0

}

.

(10)

Proof: Let λi be a desired closed loop eigenvalue and

let x(0) ∈ Pi. Then x(t + 1) = λix(t) = λt+1
i x(0). From

u(t) = −Kx(t) = −Kλt
ix(0) we write

uT = −















K

K

K

. . .

K





























I

λiI

λ2
i I
...

λT−1
i I















x(0). (11)

We recall that uT = UK0β and x(0) = X0KUα in (11) (cf.

Lemma 2.2) and therefore we can write

UK0β = (IT ⊗−K)ZΛiX0KUα, (12)

for all i ∈ {1, . . . , n}. Equation (12) needs to be verified for

every Λi and therefore the vectors α and β need to satisfy

[

α

β

]

∈

n
⋂

i=1

Ker
([

(I ⊗K)ZΛiX0KU UK0

])

. (13)

That is, K is a static feedback (cf. (11)) such that ρ(A −
BK) = L if and only if α and β in (13) exist. From this

conclusion, the condition (10) on K is directly derived.

Through Theorem 3.2 we can characterize the set of

feedback gains such that ρ(A − BK) = L, that is, all the

feedback gains which solve the pole placement problem for

a given set L. This condition will be used in Section IV with

the aim of extracting matrices K from K which satisfy some

desired sparsity pattern.



We conclude this section by leveraging Theorem 3.1 and

3.2 to find a closed-from expression for the eigenstructure

assignment problem, i.e., when both L and V are given.

For simplicity, and without affecting the generality of the

approach, we limit the data collection phase in (3) to T = 1.

Theorem 3.3: (Closed-form expression of the feedback

gain for eigenstructure assignment) Let L = {λ1, . . . , λn}
and V = {υ1, . . . , υn}, with υi ∈ Pi, be the set of desired

closed loop eigenvalues and eigenvectors. Let

[

αi

βi

]

= Basis
(

Ker
([

XKU − λiX0KU XK0

]))

γi,

(14)

where X , X0, and U are as in (3) with T = 1, and γi satisfies

Basis(Pi)γi = υi. The closed-loop matrix A−BK , with

K = −UK0

[

β1 · · · βn

] (

X0KU

[

α1 · · · αn

])−1
,

(15)

has eigenvalues L and eigenvectors V . �

Proof: From condition (13), we seek the K such that

[

αi

βi

]

∈ Ker
([

KX0U UK0

])

, ∀i = {1, . . . , n}, (16)

with αi, βi defined in (14), and where (IT ⊗K)ZΛi = K

from T = 1. We can write condition (16) on K as

[

KX0KU UK0

]

[

α1 α2 · · · αn

β1 β2 · · · βn

]

= 0, (17)

from which we find that

KX0KU

[

α1 · · · αn

]

= −UK0

[

β1 · · · βn

]

.

We notice that X0KU

[

α1 · · · αn

]

is invertible since both

X0KU and
[

α1 · · · αn

]

are square matrices with full

rank.2 This ensures the existence and uniqueness of K and

concludes the proof.

Thanks to Theorem 3.3 a closed-form solution for the

eigenstructure assignment problem is found. When needed,

Theorem 3.3 can be also used to find a solution for the

pole placement problem by simply selecting any arbitrary

V such that υi ∈ Pi, by leveraging Theorem 3.1. As we

have discussed, fixing L while leaving more freedom on the

choice of eigenvectors V renders K not unique. This allows

for more interesting problems to be solved, for example, by

imposing some sparsity constraints on matrix K . In the next

section we explore strategies to leverage Theorem 3.1 and

Theorem 3.2 to find a sparse K ∈ K. These solutions are

not closed-form but rather based on the solution of bilinear

optimization programs.

2The fact that X0KU is full rank is a direct consequence of Assumption
2.1, see also [26]. The fact that Γ =

[

α1 · · · αn

]

is full rank
can be proved by contradiction. Assume, without loss of generality, that

{δ1, · · · , δn−1}, δi ∈ R, exist such that αn =
∑

n−1

k=1
δkαk , i.e., αn

is a linear combination of the remaining columns of Γ, and therefore Γ

is singular. Then, from (9), υn = X0KUαn = X0KU

∑

n−1

k=1
δkαk =

∑

n−1

k=1
δkυk . This would imply that the elements in V are not linearly

independent, contradicting Assumption 2.3.

IV. DATA-DRIVEN POLE PLACEMENT WITH SPARSE

FEEDBACK MATRICES

Consider the pole placement problem with desired closed

loop eigenvalues L. As previously discussed, each eigen-

vector υi corresponding to eigenvalue λi must belong to a

subspace Pi. Let K in (10) be the set containing all matrices

K such that ρ(A−BK) = L. Then, we can look for a pair

of K and V = {υ1, . . . , υn} that satisfy

arg min
K,V

f1(K)

subject to K ∈ K,

υi ∈ Pi, ∀i ∈ {1, . . . , n},

f2(K) = 0,

(18)

where f1(K) : Rm×n → R and f2(K) : Rm×n → Rq

are some functions of K . We notice that (18) is a bilinear

optimization problem in the variables K and V , which

follows from the definition of K in (10). Different choices of

f1(K) and f2(K) lead to the solution of different problems,

as will be detailed next.

A. Data-driven Minimum-gain Pole Placement with Sparse

Static Feedback

Problem (18) can be cast as a data-driven optimization

problem thanks to the results of Section III. In particular, the

condition on υi ∈ Pi can be imposed through Theorem 3.1,

while K is characterized in Theorem 3.2. We now propose

an optimization-based strategy to compute a static feedback

K with sparsity constraints, directly from data.

Let S ∈ {0, 1}m×n be the binary matrix that specifies the

sparsity structure of feedback K . That is, we wish to find K

such that

Kij =

{

0 if Sij = 1,

⋆ if Sij = 0.
(19)

Now, consider the following optimization problem to find a

K ∈ K which has sparsity constraints as specified by S

arg min
K

{γ1,...,γn}

1

2
‖K‖

2
F

subject to
∥

∥

[

(IT ⊗K)ZΛiX0KU UK0

]

wi

∥

∥ = 0,

wi = Ker
([

(X −WΛiX0)KU XK0

])

γi,

S ◦K = 0m×n.
(20)

The above is a data-driven implementation of (18), with

f1(K) = ‖K‖
2
F and f2(K) = S ◦ K . Minimizing the

norm of the gain in f1(K) reduces the overall control

effort, while f2(K) imposes the desired sparsity pattern on

K . We notice that υi depends on the choice of γi, since

υi = X0KU

[

I 0
]

wi, a direct consequence of (5).

Remark 1: (Feasibility of (20)) There is no known proce-

dure to determine the feasibility of (20), i.e., if K ∈ K exists

such that S ◦K = 0. In general, assessing the existence of a

sparse static feedback K is an NP-hard problem even when

(A,B) are known [23]. Therefore, in the following, we shall

assume the feasibility of (20). We refer the interested reader



to [23] for a detailed analytical characterization of the locally

optimal solution of (18) in terms of the eigenvector matrices

of the closed-loop system. �

Remark 2: (Fixed modes of (A − BK) [27]) We recall

that the fixed modes of (A,B) with respect to the sparsity

constraints S are the eigenvalues of A that cannot be changed

using a sparse state feedback. When the fixed modes of

(A,B) do not belong to L, problem (20) becomes unfeasible

and a different sparsity constraint S must be selected. �

We now discuss a numerical implementation of (20).

Example 1: (Data-driven sparse feedback) We consider

the discretized version of a batch reactor system [?] (with

sampling time of 0.1s), with

A =

[

1.178 0.001 0.511 −0.403
−0.051 0.661 −0.011 0.061
0.076 0.335 0.560 0.382

0 0.335 0.089 0.849

]

, B =

[

0.004 −0.087
0.467 0.001
0.213 −0.235
0.213 −0.016

]

,

which is open-loop unstable with σ(A) =
{1.2200, 1.0049, 0.4206, 0.6025}. We set T = 10 and

collect a series of N = n + mT = 24 experiments (3)

satisfying Assumption 2.1. We select the desired closed-

loop eigenvalues L = {−0.3, 0.2, 0.5, 0.7} and the sparsity

pattern

S =

[

1 0 0 0
0 0 1 0

]

.

Problem (20) is implemented in MATLAB and solved using

the fmincon routine. A stabilizing K , satisfying the con-

ditions required by L and S is found, with

K =

[

0.0000 2.7633 2.7324 0.4122
−2.3621 1.2654 −0.0000 1.1906

]

, (21)

and

V =









0.0475 −0.1938 −0.2007 −0.5204
0.9606 −0.8211 −0.6873 0.3220
−0.2581 0.5266 0.5699 −0.2354
0.0914 0.1046 0.4032 −0.7550









, (22)

where V =
[

υ1 · · · υn
]

. We remark that K and V are

not unique, in general. �

B. Data-driven Maximally Sparse Feedback

As a second example of the application of the results of

Section III to the data-driven design of sparse controllers,

we consider the problem of finding the maximally sparse

feedback K . In this scenario we are not seeking for a

feedback with a defined sparsity pattern, as specified in S,

but rather the one which has the most number of entries

at zero. This is done by removing the specification on the

sparsity pattern and by minimizing
∑

ij |Kij | which is often

used as a proxy for the L0-norm of a matrix. In this case,

problem (18) can be written as

arg min
K

{γ1,...,γn}

∑

ij

|Kij |

subject to
[

(IT ⊗K)ZΛiX0KU UK0

]

wi = 0,

wi = Ker
([

(X −WΛiX0)KU XK0

])

γi.

(23)

This is, again, a bilinear optimization problem. We now

show a numerical implementation of this approach.

Example 2: (Data-driven maximally sparse feedback)

Consider the same problem settings as in Example 1. We

let L = {−0.3, 0.2, 0.5, 0.7} be sets of the desired closed-

loop eigenvalues. By running (23) we find

K =

[

0.0000 1.6901 0.0000 4.4741
−1.9515 0.0000 −1.0042 0.0000

]

and

V =









0.7460 0.5153 0.0752 −0.0053
0.1892 0.4018 0.9439 0.9901
−0.6318 −0.7451 −0.2829 0.1127
−0.0922 −0.1332 −0.1532 0.0834









.

Despite the non-convexity of (23) we obtain a sparse con-

troller with a total of 4 entries at zero. �

V. CONCLUSIONS

In this paper we consider a data-driven strategy for the

design of, possibly sparse, feedback gains for pole place-

ment and eigenstructure assignment. Given a set of desired

closed-loop eigenvalues L, we characterize the allowable

eigenvector subspaces of the dynamical system described by

unknown (A,B), as well as the set K of feedback gains

such that ρ(A − BK) = L for all K ∈ K. For the

eigenstructure assignment problem, we give a closed-form

data-driven expression for the gain K which assigns the de-

sired closed-loop eigenvalues L together with the associated

desired eigenvectors V . Further, we discuss optimization-

based strategies to find a sparse gain K ∈ K when a desired

sparsity structure needs to be imposed on K , or when the

overall sparsity of K (i.e., the number of zero elements of K)

needs to be maximized. Numerical simulations complement

our analysis. Future work includes a characterization of the

performance of these tools when data is collected with noise,

together with a comparison with model-based methods based

on system identification from data.
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