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Abstract— We introduce a decentralized mechanism for
pricing and exchanging alternatives constrained by transaction
costs. We characterize the time-invariant solutions of a heat
equation involving a (weighted) Tarski Laplacian operator,
defined for max-plus matrix-weighted graphs, as approximate
equilibria of the trading system. We study algebraic properties of
the solution sets as well as convergence behavior of the dynamical
system. We apply these tools to the “economic problem” of
allocating scarce resources among competing uses. Our theory
suggests differences in competitive equilibrium, bargaining, or
cost-benefit analysis, depending on the context, are largely due to
differences in the way that transaction costs are incorporated into
the decision-making process. We present numerical simulations
of the synchronization algorithm (RRAggU), demonstrating our
theoretical findings.

I. INTRODUCTION

Max-plus algebra, originally “minimax algebra” [1], is
an algebraic theory derived from ordinary linear algebra by
substituting the addition operation with maximum and the
multiplication operation with ordinary addition. Max-plus
algebra is a special case of tropical geometry [2], a relatively
new mathematical field concerned with simplifying difficult
problems through tropicalization—converting everything to
max-plus or min-plus arithmetic. The historical development
of max-plus algebra has been largely motivated by applica-
tions in discrete event systems (DESs), a class of dynamical
systems characterized by a discrete state space and event-
driven state transactions [3]. The application we propose
here, multi-agent economic exchange, lies outside the scope
of DESs and is more closely related to efforts to analyze and
control markov decision processes (MDPs) with max-plus
algebra [4]–[7]: states are value-vectors and state transitions
are constrained by transaction costs (e.g. rewards or penalties
to transact).

The “economic problem” is usually characterized as the
optimal allocation of scarce resources among potentially
competing uses [8]. Resources are scattered and information
about their quality and value is “dispersed” [9]. Worse,
information about value is not just dispersed, but actually
unknown, since the “transaction costs” and stated values of
bidders and sellers of a potential exchange emerge from
the process of negotiation itself [10]. In economic systems,
transaction costs—locating, negotiating terms, packaging, and
delivering—play a role analogous to friction in physical
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systems: energy (value) is lost in the form of heat rather
than being available for use.

We suggest that the problem of transaction costs as
an impediment to identifying and implementing otherwise
valuable exchanges is in fact generic, and suggest that
max-plus is a useful means of unifying the underlying
structure of the three apparently unrelated, but, in fact,
closely connected, aggregation mechanisms in economics:
“competitive equilibrium” of market processes [11], [12],
”bargaining” [10], and “cost-benefit analysis” [13], [14].

The tropical Tarski Laplacian (Definition 2) driving the
dynamics of our decentralized trading mechanism closely
resembles the alternating method for solving the two-sided
equation A ⊞ x = B ⊞ y [15]. The motivation for the
alternating method, shared in our work, is synchronization
of coupled max-plus systems. The key difference for our
application is the identification of the evolution of the system
toward a convergence, defined as a set of allocations where
all resources have “found” their highest valued uses, up to
divergences caused by transaction costs of discovering or
implementing further exchanges. Beyond generalizing the
alternating method from a single coupling to an arbitrary
(undirected) graph of couplings, we note that the updates of
the heat equation (9) induced by the Tarski Laplacian are
synchronous, in contrast to the alternating method, whose
updates alternate between two agents.

A. Related Work

Recently, there has been a resurgence in activity in max-
plus algebra focused on applications in control theory [16],
signal processing [17] (including graph signal processing
[18]), and machine learning [19] (including deep learning
[20]–[22]). Current research in applied tropical geometry
extends to statistics [23] and even optimal transport [24].
A recent focus has been on finding the sparsest possible
solutions to one-sided max-plus linear systems [22], [25],
leading to natural applications in discrete event systems [25],
optimal control [18], and multivariate convex regression [26].

The present work also connects to a recent model of
multidimensional opinions dynamics [27], more broadly
construed as “social information dynamics” [28], [29] drawing
on the recently introduced theory of sheaf Laplacians [30].
Our decentralized method for arriving at (approximate)
equilibrium is equivalent to max consensus [31] in the one-
dimensional case (d = 1). Invoking the insights that sheaf
theory [32] and sheaf Laplacians [30] bring to generalized
consensus/coherence problems, the Tarski Laplacian was
introduced in its full abstract form [33] as an operator of
assignments of lattice-valued data over an undirected graph
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tethered together by Galois connections: lattice-valued sheaves
[34]. Since then, another instance of the Tarski Laplacian
was introduced to solve multi-agent knowledge consensus
problems [28]. Convergence guarantees in that work [28] rely
on the lattices satisfying the descending chain condition [35].
In the present work, we do not have this guarantee, posing a
new challenge to convergence analysis.

B. Outline

In Section II we review background material in max-plus
algebra. Then, in Section III, we formulate the synchronization
(Problem 1) and approximate synchronization problem under
consideration (Problem 2). In Section IV, we propose an
algorithm (Algorithm 1) based on the tropical Tarski Laplacian
(Definition 2) to solve the approximate problem and, in
Section V, we analyze the convergence of the algorithm
as well as the properties of the converging solutions. Finally,
in Section VI, we present numerical experiments to illustrate
the performance and scalability of our proposed algorithm.

II. BACKGROUND

Let Rmax denote the max-plus (tropical) semiring R ∪
{−∞} with the operations

α ∨ β ≜ max{α, β},
α+ β ≜ α+ β.

This semiring has (additive) unit −∞ and (multiplicative) unit
0. Similarly, let Rmin denote the min-plus (tropical) semiring
R ∪ {−∞} with operations

α ∧ β ≜ min{α, β},
α+′ β ≜ α+ β,

and (additive) unit ∞ and (multiplicative) unit 0.
Both of these semirings define an alternative arithmetic,

leading to max-plus and min-plus linear algebra, respectively.
Suppose A ∈ Rm×p

max and B ∈ Rp×n
max . Then A ⊞ B is an

m-by-n matrix defined as

[A⊞B]i,j =

p∨
k=1

[A]i,k + [B]k,j . (1)

The identity matrix I ∈ Rn×n
max is defined [I]i,j = 0 if i = j,

[I]i,j = −∞, otherwise. Similarly, if A ∈ Rm×p
min and B ∈

Rp×n
min , then

[A⊞′ B]i,j =

p∧
k=1

[A]i,k +′ [B]k,j . (2)

The pseudoinverse of A ∈ Rm×n
max is the matrix A♯ ∈ Rn×m

min

defined as [A♯]i,j = −[A]j,i.
The set Rn

max with operations analogous to vector addition
and scalar multiplication, i.e.,

[x ∨ y]i = max{[x]i, [y]i},
[α+ x]i = α+ [x]i,

for x,y ∈ Rn
max, α ∈ Rmax, is an example of a semimodule.

Semimodules are the analogues of vector spaces in both

the max- (min-) plus setting. Suppose {xk} ∈ Rn
max and

{αk} ∈ Rmax, then their max-plus linear combination is the
vector

y =

K∨
k=1

(αi + xk) .

A subset of Rn
max closed under max-plus linear combinations

is called a subsemimodule, and is of special interest.
If A ∈ Rm×n

max is a matrix and x ∈ Rn
max is a column

vector, then the multiplication

[A⊞ x]i =

n∨
j=1

[A]i,j + [x]j

defines a transformation between the semimodules Rn
max and

Rm
max. The following assumption is standard.
Definition 1 ( [1]): A matrix A ∈ Rm×n

max is doubly G-
astic if every row and column of A has at least one entry
greater than −∞.

Max-plus transformations have the following properties
(analogous properties hold for min-plus transformations).

Lemma 1 ( [36]): Suppose A ∈ Rm×n
max , x,y ∈ Rn

max, and
α ∈ Rmax. Then,

1) A⊞ (x ∨ y) = (A⊞ x) ∨ (A⊞ y).
2) A⊞ (α+ x) = α+A⊞ x.
3) If x ≼ y, then A⊞ x ≼ A⊞ y.
The semimodule Rn

max can be viewed as a partially ordered
set under the product order: x ≼ y if and only if xi ⩽
xi, ∀i ∈ {1, 2, . . . , n} with supremum and infimum operators

[x ∨ y]i = max{[x]i, [y]i} (3)
[x ∧ y]i = min{[x]i, [y]i} (4)

called join and meet, respectively, making Rn
max a lattice [35].

Semimodules, such as Rn
max or Rn

min, with the additional
structure of a lattice have been called weighted lattices in
the literature [16], [22]. The following result follows from
residuation theory [37], closely related to Galois connections
[38, Chapter 7].

Lemma 2 ( [38, Lemma 7.26]): Suppose A ∈ Rm×n.
Then, for all x ∈ Rn

max, y ∈ Rm
min

1) A⊞ x ≼ y if and only if x ≼ A♯ ⊞′ y
2) A♯ ⊞′ (A⊞ x) ≽ x and A⊞

(
A♯ ⊞′ y

)
≼ y

One consequence of Lemma 2 is that it characterizes
(sub)solutions of max-plus matrix equations. Suppose A ∈
Rm×n

max and b ∈ Rn
max. Then, the residuation x̄ = A♯ ⊞′ b,

called the principal solution, is the greatest solution of
A ⊞ x = b, if a solution exists, otherwise, the greatest
subsolution, i.e. a vector x such that A ⊞ x ≼ b [1,
Proposition 1.1]. The vector A♯ ⊞′ b is finite, i.e. having
no entries equal to −∞, if b is finite and A is doubly G-
astic. However, non-finite subsolutions (less than x̄ in the
product order) are shown to be found by selecting entries of
x̄ to be −∞ in a greedy algorithm [25].



[Au,v ]i,j Value for exchanging j for i

−∞ exchange cannot be made
< 0 transaction cost for exchange
0 no transaction cost

> 0 transaction value (e.g. subsidy) for exchange

TABLE I

III. PROBLEM DEFINITION

Consider a multi-agent trading system, where pairs of
agents compare the value of alternatives often leading to
an exchange. We assume agents are collected in a finite set
{1, 2, . . . , N} and alternatives are collected in a finite set
X = {1, 2, . . . , d}. We use letters u, v, w to denote agents
and letters i, j, k to denote alternatives.

(Reservation) values detail the (minimal) worth of each
alternative to each agent. Agents value alternatives to various
degrees based on individual preferences and supply. We
represent the reservation value of alternatives by Agent u
with a real-valued function on domain X , equivalently, and
conveniently, written as a column vector Xu ∈ Rd

max that
collects the values of all alternatives to Agent u. Value vectors
may change over time depending on interactions with other
agents such as negotiation or bargaining. We assume values
are normalized with respect to a standardized currency. If an
agent doesn’t include Alternative i in negotiations, we set
[Xu]i = −∞.

Agents can propose transactions with other agents. An
agent that proposes the transaction is called a seller and an
agent who may accept a transaction is called a bidder. We
assume all agents may assume the role of a bidder or a seller
and may openly establish trade relationships with other agents.
Transactions, therefore, take place in a decentralized fashion.
A transaction consists of the exchange of an Alternative i
for another Alternative j less some cost which we call a
transaction cost. We assume transaction costs are dependent
on: the alternative to be traded (Alternative i), the alternative
to be acquired (Alternative j), the identity of the seller (Agent
u), and the identity of the bidder (Agent v). We model
transaction costs via max-plus matrices. Specifically, for the
seller to exchange Alternative j for Alternative i with the
bidder, let Au,v ∈ Rd×d

max be a matrix with entries [Au,v]i,j
representing a transaction value (negative transaction cost) of
Agent u trading Alternative j for Alternative i with Agent v
(see Table I).

We define the effective (supply) value of Alternative i to
the seller relative to negotiations with the bidder as

[Au,v ⊞Xu]i =
d

max
j=1

{
[Xu]j + [Au,v]i,j

}
(5)

where [Xu]i is the reservation value of Alternative i. For
instance, if Agent u was to participate in an exchange with
Agent v, the quantity (5) describes the realized value of the
exchange(s) with the highest value less transaction costs. In
this paper, we are interested in the equilibrium condition

d
max
j=1
{[Xu]j + [Au,v]i,j} =

d
max
j=1
{[Xv]j + [Av,u]i,j}∀i ∈ X ,

which we call the value equation. In matrix form, the value
equation can be rewritten as

Au,v ⊞Xu = Av,u ⊞Xv. (6)

As noted in the introduction, the intuition behind the
equilibrium condition is deceptively simple—it is not possible
to make any additional voluntary exchanges, because every
feasible exchange would make at least one participant worse
off.

Problem 1 (Effective Value Equilibrium): In a decentral-
ized trading system, determine a value of every alternative
for every agent such that the effective value equation (6)
is satisfied for every alternative and every pair of trading
partners.

The equilibrium condition (6), mathematically, is always
feasible, i.e. x = y = [−∞ −∞· · · − ∞]⊤ is a solution
to the two sided equation A⊞ x = B⊞ y. However, finite
solutions are not guaranteed [39]. Thus, we relax the value
equation (6) to

∥Au,v ⊞Xu −Av,u ⊞Xv∥∞ ⩽ ϵ. (7)

Problem 2 (Approximate Value Equilibrium): In a decen-
tralized trading system, determine a value of every alternative
for every agent such that the approximate value equation (7)
is satisfied for every pair of trading partners.

IV. DECENTRALIZED SOLUTION

We model economic relationships between agents by an
undirected graph G = (V, E). The edges in this trade network
are pairs of agents (u, v) ∈ E such that Agent u can propose
a trade with Agent v. We assume that the possibility of trade
between two agents is a symmetric relationship. We also
define the (graph) neighborhood Nu = {v ∈ V | (u, v) ∈ E}
of Agent u ∈ V as the set of all possible trading partners of
Agent u.

We introduce two (edge) weightings on G, a scalar
weighting and a matrix weighting: W : V × V → Rmin

so that (u, v) 7→ [W]u,v, where W ∈ RN×N
min , and A :

V×V → Rd×d
max so that (u, v) 7→ Au,v . We make the following

assumptions concerning weights.
Assumption 1: The matrix W is symmetric, and has the

sparsity pattern of G = (V, E), i.e. [W]u,v <∞ if (u, v) ∈ E ,
otherwise [W]u,v =∞.

Assumption 2: For all (u, v) ∈ E , the matrices Au,v ∈
Rd×d

max and Av,u ∈ Rd×d
max are doubly G-astic.

A. The tropical Tarski Laplacian

Given the data G = (V, E ,W,A), we introduce an operator
on global value vectors which we call the tropical Tarski
Laplacian. Without the scalar weighting term, the definition
of the tropical Tarski Laplacian below is a specialization of
the Tarski Laplacian defined in previous works [28], [33],
[34].

Definition 2 (Tropical Tarski Laplacian): Suppose G =

(V, E ,W,A), and suppose X ∈
(
Rd

max

)N
. The tropical



Tarski Laplacian is an operator L :
(
Rd

max

)N −→ (
Rd

max

)N
defined block-wise

L(X)u =
∧

v∈Nu

[W]u,v +
′ A♯

u,v ⊞
′ (Av,u ⊞Xv) . (8)

Proposition 1: Suppose Agent u has neighbors with value-
vectors {Xv}v∈Nu

. Then, L(X)u is the optimal solution to
the following bi-level optimization problem∧

v∈Nu

[W]u,v +
′ Zv

subject to

Zv ∈ argmax{Y ∈ Rd
max | Au,v ⊞Y ≼ Av,u ⊞Xv}.

The tropical Tarski Laplacian, thus, is a aggregation mecha-
nism for values trading partners assign to alternatives.

B. The Heat Equation

Given the data G = (V, E ,W,A) and initial condition
X(0) ∈

(
Rd

max

)N
, we define a discrete-time time-invariant

dynamical system called the heat equation as

X(t+ 1) = L (X(t)) ∧X(t). (9)

Locally, trajectories of the heat equation consist of the
following steps (Algorithm 1): a bidder communicates their
effective supply values to a seller who performs a residuation
(Line 6), the seller re-scales the effective supply values by
[W]u,v (Line 7), the seller aggregates the resulting values by
computing a meet (Line 10), and the seller updates her supply
value by computing the meet of the resulting value and her
prior value, Xu (Line 12). Finally, we impose a stopping
condition (Line 2)

∥Au,v ⊞Xu −Av,u ⊞Xv∥∞ ⩽ [W]u,v ∀(u, v) ∈ E ,

which we enforce using the following loss function

ℓ(X) = max
(u,v)∈E

∥Av,u ⊞Xv −Au,v ⊞Xu∥∞. (10)

In Section IV, we analyze the convergence of Algorithm
1. While convergence is not guaranteed a priori, provided
the algorithm terminates, the algorithm returns a solution to
Problem 2 because ℓ(X) ⩽ ϵ if and only if (7) is satisfied.

V. CONVERGENCE ANALYSIS AND EQUILIBRIA

In this section, we
1) Analyze the convergence of Algorithm 1;

2) Supply an algebraic characterization of the time-
invariant solutions of the heat equation,

S = {X ∈
(
Rd

max

)N | L(X) ∧X = X}; (11)

3) Show that the solutions of the heat equation are
solutions of the global approximate value equation

∥Au,v ⊞Xu −Av,u ⊞Xv∥∞ ⩽ ϵ ∀(u, v) ∈ E .
(12)

Algorithm 1: RRAggU

Data: G = (V, E ,A,W); ϵ > 0; X ∈ RN ·d
max

Result: X ∈ RN ·d
max

1 loss =∞
2 while loss > ϵ do
3 for u ∈ V do in parallel
4 z← [∞ ∞ · · · ∞]⊤

5 for v ∈ Nu do
6 Residuate(u, v)← A♯

u,v ⊞
′ (Av,u ⊞Xv)

7 Rescale(u, v)← [W]u,v+
′Residuate(u, v)

8 z← z ∧ Rescale(u, v)
9 end

10 Aggregate(Nu)← z
11 Update(u)← Xu ∧ Aggregate(Nu)
12 Xu ← Update(u)
13 end
14 loss← ℓ(X)
15 end

A. Convergence of the heat equation

We show the updates of the heat equation exhibit contract-
ing behavior, in the limit. For this analysis, we review a few
standard definitions [40], [41]. A map F : Rn → Rn is

1) Monotonic if x ≼ y implies F(x) ≼ F(y),
2) Additively homogeneous if F(x+ α) = F(x) + α for

all x ∈ Rn, α ∈ R,
3) Non-expansive if ∥F(x)− F(y)∥∞ ≼ ∥x− y∥∞ for

all x,y ∈ Rn.

For the following, assume G =
(
V, E ,W,A

)
satisfies

Assumptions 1 and 2, and Xu(0) is finite for every u ∈
{1, 2, . . . , N}.

Proposition 2: Suppose F :
(
Rd

)N −→ (
Rd

)N
is defined

F(X) = L(X) ∧X. Then, under the above assumptions, F
is non-expansive.

Proof: See Appendix.
Let X(t) be a trajectory of the heat equation with initial

condition X(0). Then, using Proposition 2 we can show the
following result.

Theorem 1: There exists a scalar α ⩾ 0 so that

lim
t→∞

∥X(t)−X(t+ 1)∥∞ = α.

Proof: See Appendix.
Note that if α > 0, then X(t) does not converge. In

this case, Theorem 1 says that the ℓ∞-distance between
consecutive iterates of the heat equation asymptotically
approaches a fixed value α > 0, which depends on the data
G =

(
V, E ,W,A

)
and X(0). This case has an interesting

economic interpretation, which we discuss in Section VI. On
the other hand, if α = 0, then ∥X(t+ 1)−X(t)∥∞ → 0 as
t→∞. It follows the value of every alternative determined by
each agent converges point-wise, giving rise to the following
result, whose proof is trivial.

Corollary 1: Suppose ∥X(t+1)−X(t)∥∞ → 0 as t→∞.



Then,

lim
t→∞

[Xu(t+ 1)]i − [Xu(t)]i = 0

for all u ∈ V, i ∈ X .

B. Algebraic structure of equilibria

In this section, we characterize the stable manifold and set
of solutions of the heat equation. Specifically, we define the
stable manifold as follows.

Definition 3 (Stable Manifold): Given α ⩾ 0, and the data
G = (V, E ,W,A), X(0), the stable manifold of the heat
equation (9) is the following subset: Stabα

(
G
)
= {X ∈

(Rd)N | ∥F(X)−X∥∞ ⩽ α}.
As discussed above, if α = 0, the heat equation converges

to a time-invariant solution. The following result algebraically
characterizes the set S of solutions.

Theorem 2: S forms a subsemimodule of
(
Rd

max

)N
.

Proof: See Appendix.
Theorem 2 implies that max-plus linear combinations of

solutions remain solutions solutions. As we can always find
an α ∈ Rmax such that X + α is positive, we can always
produce a positive solution from an arbitrary solution by
re-scaling. Theorem 2 also implies, if X,Y ∈ S, then the
join X ∨Y reflects a solution with the values of each agent
being the alternative-wise maximum of the corresponding
values in X and Y.

C. Effective value equilibrium

In this section, we show that the set of solutions S satisfies
the effective value equilibrium condition (7). Specifically,
suppose G = (V, E ,W,A) and X ∈ S . Then, the ℓ∞-distance
between the effective values for each pair (u, v) ∈ E of agents
is bounded by [W]u,v . As a corollary, if ϵ = maxuv∈E [W]u,v ,
then time-invariant solutions of the heat equation are solutions
to Problem 2.

Theorem 3: Suppose X ∈ S. Then,

∥Au,v ⊞Xu −Av,u ⊞Xv∥∞ ⩽ [W]u,v ∀(u, v) ∈ E .
Proof: See Appendix.

Corollary 2: Suppose X ∈ S. Then,

∥Au,v ⊞Xu −Av,u ⊞Xv∥∞ ⩽ ϵ ∀(u, v) ∈ E .

VI. NUMERICAL EXPERIMENTS

We perform several simulations to affirm our theoretical
findings as well as visualize the behavior of the heat equation
dynamics (9). In the following experiments, we generate a
fixed Erdős-Rényi graph with N = 20 nodes and probability
p = 0.2 of drawing an edge between nodes u, v ∈ V .
Selecting d = 10 alternatives, we, then, generate (max-
plus) matrices Au,v ∈ Rd×d whenever (u, v) ∈ E by
selecting entries uniformly at random in [−1, 1]. Next, we
generate (min-plus) scalar edge weights by selecting entries
of W ∈ RN×N uniformly at random in [0, 1] if (u, v) ∈ E ,
otherwise, setting [W]u,v = ∞. In a series of ntrials = 20

trials, we generate X(0) ∈
(
Rd

)N
uniformly at random

(again from [−1, 1]) and apply Algorithm 1 to each initial

condition for t = 0, 1, . . . , 10 steps (ignoring the stopping
condition). For each trajectory, we calculate the loss

ℓ
(
X(t)

)
= max

(u,v)∈E
∥Au,v ⊞Xu −Av,u ⊞Xv∥∞,

and the discrete gradient, α(t) = ∥X(t+ 1)−X(t)∥∞.

(a) Gradients of trajectories α(t); in sample trajectory (α > 0), red
nodes do not converge.

(b) Loss of trajectories ℓ(X).

Fig. 1: Convergence analysis for ntrials = 20 initial condi-
tions; G is an random graph with N = 20 nodes; d = 10
alternatives; A and W random.

A. Results

Fig. 1a shows that α(t) converges to some α ⩾ 0, as
expected from Theorem 1. Specifically, in all but four of
the trials, α(t) converges to 0, which means that X(t) also
converges with these initial conditions; see Corollary 1. For
the same set of trials, Fig. 1b shows that the loss of X(t)
converges for every trial to a value less than ϵ, defined ϵ =
max(u,v)∈E [W]u,v. By Theorem 3, this is expected when
α(t)→ 0. It is interesting that, at least for this set of trials,
the loss ℓ(X(t)) also converges when α(t) converges to an
α > 0, and the value to which it converges is also less than
ϵ. This means that it is possible that a negotiation continues
indefinitely, even if the effective equilibrium condition has
been satisfied.

To further investigate what happens in these situations, we
focus on one of the four trajectories for which α(t) converges



Fig. 2: Execution time of tropical Tarski Laplacian in the
number of agents, N , and the number of alternatives, d.

to some α > 0 and take a closer look at the evolution of the
value vectors Xu(t) of each agent; see network in Fig. 1a.
We observe that the value vectors of all but three agents
converge; the value vectors of the remaining agents decrease
(point-wise) to negative-infinity. The non-converging agents
u ∈ {4, 9, 14} form a connected subgraph of G.

B. Scalability

In Algorithm 1, agents update their values in parallel.
We investigated the relationship between the execution time
of a single update of the heat equation (9) (i.e. Algorithm
1, Lines 3-13), and the number of agents, as well as the
number of alternatives. By inspection of our results (see
Fig. 2), we believe the time complexity is linear in the
number of agents, but further analysis is required to confirm
a potential computational advantage of our algorithm over
centralized constraint satisfaction algorithms, e.g. model-
checking [42]. We remark that we are able to call the tropical
Tarski Laplacian function in just over 8 minutes for a multi-
agent system with around 800 agents who are evaluating 20
alternatives.
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APPENDIX

Proof of Proposition 2: We first recall a lemma (see
references [40], [43]) relating the three axioms: monotonicity,
homogeneity, and non-expansiveness.

Lemma 3 ( [43, Proposition 2], [40, Proposition 1.1]):
Suppose F : Rn → Rn satisfies monotonicity and additive
homogeneity. Then,

∥F(x)−F(y)∥∞ ⩽ ∥x− y∥∞

for all x,y ∈ Rn.
We argue that F satisfies homogeneity and monotonicity. It
suffices to show L satisfies these two properties. Suppose
α ∈ R. Then, by repeated application of Lemma 1-2,

L(X+ α)u =
∧

v∈Nu

[W]u,v +A♯
u,v ⊞

′ (Av,u ⊞ (Xv + α))

= α+
∧

v∈Nu

[W]u,v +A♯
u,v ⊞

′ (Av,u ⊞Xv) .

For monotonicity, suppose X ≼ Y. Then, by applying
Lemma 1-3, it follows Av,u ⊞ Xv ≼ Av,u ⊞ Yv, which
implies A♯

u,v ⊞
′ (Av,u ⊞Xv) ≼ A♯

u,v ⊞
′ (Av,u ⊞Yv), and

so forth.
Proof of Theorem 1: Suppose X(t) is a trajectory of

the heat equation. By Proposition 2,

∥X(t+ 2)−X(t+ 1)∥∞ ⩽ ∥X(t+ 1)−X(t)∥∞.

Hence, α(t) = ∥X(t + 1) − X(t)∥ is a monotonically
decreasing sequence bounded below, implying α(t) → α
for some α ⩾ 0.

Proof of Theorem 2: Suppose X ∈ S and α ∈ Rmax.
Then, by the proof of Proposition 2,

L(X+ α) = L(X) + α ⩾ X+ α

Therefore, X+α ∈ S . Suppose X,Y ∈ S . Then, by Lemma
1-1, L(X ∨Y)u =∧

v∈Nu

[W]u,v +
′ Au,v

♯ ⊞′ (Av,u ⊞Xv ∨Av,u ⊞Yv) .

By assumption,∧
v∈Nu

[W]u,v +
′ A♯

u,v ⊞
′ (Av,u ⊞Xv) ≽ Xu,∧

v∈Nu

[W]u,v +
′ A♯

u,v ⊞
′ (Av,u ⊞Yv) ≽ Yu,

which implies (Lemma 2)

Av,u ⊞Xv ≽ Au,v ⊞ (Xu − [W]u,v) ,

Au,v ⊞Xu ≽ Av,u ⊞ (Xv − [W]v,u) .

Hence (preceding argument, monotonicity of L, Lemma 1-1),∧
v∈Nu

[W]u,v +′ A♯
u,v ⊞′ (Av,u ⊞Xv ∨Av,u ⊞Yv) ≽

∧
v∈Nu

[W]u,v +′ A♯
u,v ⊞′

(
Au,v ⊞

(
Xu − [W]u,v

)
∨ Au,v ⊞

(
Yu − [W]u,v

))
=

∧
v∈Nu

A♯
u,v ⊞′ (Au,v ⊞ (Xu ∨Yu)) .

By Lemma 2, A♯
u,v ⊞′ (Au,v ⊞ (Xu ∨Yu)) ≽ Xu ∨ Yu.

Hence,

L(X ∨Y)u ≽
∧

v∈Nu

A♯
u,v ⊞

′ (Au,v ⊞ (Xu ∨Yu))

≽ Xu ∨Yu.

Therefore, X ∨Y ∈ S.
Proof of Theorem 3: X ∈ S is equivalent to∧

v∈Nu

[W]u,v +
′ A♯

u,v ⊞
′ (Av,u ⊞Xv) ≽ Xu ∀u ∈ V.

It follows by the greatest lower bound property

[W]u,v +
′ A♯

u,v ⊞
′ (Av,u ⊞Xv) ≽ Xv (13)

holds for all (u, v). If (u, v) /∈ E , then [W]u,v =∞ and (13)
automatically holds. If (u, v) ∈ E , then, by symmetry,

[W]u,v +
′ A♯

u,v ⊞
′ (Av,u ⊞Xv) ≽ Xu,

[W]v,u +′ A♯
v,u ⊞′ (Au,v ⊞Xu) ≽ Xv,

for all (u, v) ∈ E . Hence,

A♯
u,v ⊞

′ (Av,u ⊞Xv) ≽ Xu − [W]u,v,

A♯
v,u ⊞′ (Au,v ⊞Xu) ≽ Xv − [W]v,u.

By Lemma 2,

Av,u ⊞Xv ≽ Au,v ⊞ (Xu − [W]u,v) ,

Au,v ⊞Xu ≽ Av,u ⊞ (Xv − [W]v,u) .

Rearranging terms and Lemma 1-2 implies

−[W]u,v ≼ Av,u ⊞Xv −Au,v ⊞Xu ≼ [W]v,u.

By Assumption 1,∣∣Av,u ⊞Xv −Au,v ⊞Xu

∣∣ ⩽ [W]u,v ∀(u, v) ∈ E ,

implying

∥Av,u ⊞Xv −Au,v ⊞Xu∥∞ ⩽ [W]u,v ∀(u, v) ∈ E .


