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Abstract— This paper studies an N–agent cost-coupled game
where the agents are connected via an unreliable capacity
constrained network. Each agent receives state information
over that network which loses packets with probability p. A
Base station (BS) actively schedules agent communications over
the network by minimizing a weighted Age of Information
(WAoI) based cost function under a capacity limit C < N
on the number of transmission attempts at each instant.
Under a standard information structure, we show that the
problem can be decoupled into a scheduling problem for the
BS and a game problem for the N agents. Since the scheduling
problem is an NP hard combinatorics problem, we propose an
approximately optimal solution which approaches the optimal
solution as N → ∞. In the process, we also provide some
insights on the case without channel erasure. Next, to solve the
large population game problem, we use the mean-field game
framework to compute an approximate decentralized Nash
equilibrium. Finally, we validate the theoretical results using
a numerical example.

I. INTRODUCTION

With the phenomenal expansion in data-traffic galvanized

by the growing number of connected devices, Internet-of-

Things (IoT) finds applications in diverse areas such as smart

grids, autonomous vehicles, and monitoring systems [1]–[3],

to name a few. A commonality among all of the above is the

presence of distributed sensing and actuating devices com-

municating via a wireless network. While distributed systems

can efficiently handle the growing network size compared to

their centralized counterparts, they come with added chal-

lenges, such as limited channel capacities, network unrelia-

bility, and scalability concerns. These constraints might cause

end-to-end latency or in a worse case, missing information

at the end-user, which can lead to compromised reliability

in safety-critical applications. Thus, there is an urgent need

for the development of dependable and timeliness-aware

communication technologies with the potential to mitigate

the above posed concerns. In this work, we aim to propose

strategies to mitigate the deleterious effects of unreliable

capacity-constrained communication in networks involving

a large number of decision-making agents.

Specifically, we consider a large population setting where

N rational agents aim to form consensus while communi-

cating intermittently over a network. This intermittency is

caused by i) a capacity-constrained downlink connecting the

BS to the decoders, and ii) the possibility of erasure amidst
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transmission, after information is relayed by the BS. This

results in an unreliable capacity-constrained network. As a

result, the agents must maintain an estimate of their state

to consequently compute control actions that can achieve

consensus. Meanwhile, the BS, which is tasked with the

scheduling of information, must carefully design policies

to account for the heterogeneity in agent dynamics whilst

also dealing with the possibility of erasure of the scheduled

information. We formulate the BS’s problem by proposing

a Weighted Age of Information (WAoI) based cost function

which is monotonically increasing in the average estimation

error of the agents, thereby extending the setting of our

earlier work [4] to erasure channels. Further, we improve

upon the convergence guarantees in [4] for the case where

the network is erasure free by proposing a novel scheduling

policy. Finally, we employ this policy to construct an approx-

imate Nash solution for the finite-agent consensus problem.

In literature, the early works [5], [6] have dealt with an

optimal control problem with unreliable communication, al-

beit, for a single agent system and an unconstrained network

under the TCP and the UDP communication protocols. The

work [7] extends the setting to multi-agent games; however,

the considered network is unconstrained. In order to measure

timeliness in communication networks, age of information

(AoI) has been introduced as a potential metric. In the con-

text of networked feedback systems, the AoI-based policies

have been proposed for solving resource allocation and end-

user uncertainty reduction problems as in [8]. Recently, age

of incorrect information (AoII) is proposed for solving multi-

agent remote state estimation problems [9]. Age-optimal

scheduling policies have been considered with Markovian

error-prone channel state in [10], [11], with unknown erasure

probabilities in [12], and over erroneous broadcast channels

in [13]. A more detailed literature review on age-optimal

scheduling policies can be found in [14].

To appropriately handle the concerns of increasing net-

work interactions, one of the most relevant framework is

that of mean-field games (MFGs) [15], [16]. It leads one to

circumvent the issues posed by scalability, by allowing for a

representative agent to play against the population, although,

at the cost of entailing an approximate equilibrium solution to

the finite-agent consensus problem. It has been well-studied

in the regime of linear-quadratic systems [17]–[19] and

holds great potential to solve problems involving ultradense

networks or massive machine-type communication [20], [21].

For additional literature on large multi-agent systems with

networked communication, we refer the reader to [4].

We list below the main contributions of this paper. We
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Fig. 1: A prototypical networked control system constituting a BS
and N game playing agents. The BS, decoders, and controllers are
active decision makers. Dashed lines denote an erasure-free wireless
transfer, dotted-dashed lines denote erasure-prone one, and bold
lines denote wired information transfer.

extend the setting of our previous works [4], [22] to the case

of unreliable downlink communication. Since the scheduling

problem belongs to the class of restless multi-armed bandits,

for which an optimal policy is hard to compute, we propose

a novel suboptimal maximum age-based tie-breaking proto-

col (MATB-P) to solve the capacity-constrained scheduling

problem of the BS (which is also different from the uniform

sampling-based policy considered in [4]). We prove that

this policy approaches optimality (exponentially fast) as N
grows large, in contrast to the O(N−0.5) rate proposed in

[4]. Further, we also provide high-probability guarantees on

the tail of the AoI, which, in turn, provides guarantees on

the freshness of information under high traffic. Additionally,

in the special case with no channel erasure, we relax the

assumption on the A matrix in the work [4] by proving a

uniform upper bound on the AoI of all agents under MATB-P.

Finally, using the policy constructed above, we solve the N–

agent consensus problem by leveraging the MFG paradigm

and getting ǫ–Nash policies for the agents where ǫ
N→∞−−−−→ 0.

The rest of the paper is organized as follows. We formulate

the (N + 1)–player game problem in Sec. II. In Sec.III,

we solve the BS-level scheduling problem, and provide its

analysis in Sec. IV. Then, we solve the agent-level game

problem in Sec. V, and provide a numerical example in Sec.

VI. The paper is concluded in Sec. VII with some major

highlights, followed by four appendices, providing detailed

derivations and proofs.

Notations: We let [N ] := {1, 2, · · · , N} and tr(·) denote

the trace of its argument matrix. The Euclidean 2-norm and

the Frobenius norm are denoted by ‖·‖ and ‖·‖F , respecively.

All the empty summations are set to 0. For a vector x and a

positive semi-definite matrix Q, ‖x‖2Q := x⊤Qx. We define

the limit superior of a real sequence as lim := lim sup.

Finally, 1A denotes the indicator function of the argument.

II. PROBLEM FORMULATION

In this section, we set up the two sub-problems in the (N+
1)–player game, namely, a) the agent-level game problem,

and b) the BS-level scheduling problem.

Consider a multi-agent system consisting of N cost-

coupled agents receiving information over an unreliable

network. Each agent i constitutes a plant, a decoder and a

controller, labeled as a tuple (Pi, Di, Ci) as shown in Fig.

1. Dynamics of Pi evolve in discrete-time as

X i
k+1 = A(φi)X

i
k +B(φi)U

i
k +W i

k, k ≥ 0, (1)

where X i
k ∈ R

n is the state and U i
k ∈ R

m is the control

input, both for agent i. The exogeneous noise W i
k ∈ R

n is

zero mean with covariance CW (θi) > 0. The initial state

X i
0 of agent i is assumed to have symmetric density with

mean xφi,0 and covariance Σx > 0. Further, it is assumed

to be independent of the noise process for all timesteps k.

The system matrices A(φi), B(φi) are time-invariant with

suitable dimensions. Further, they are chosen according to

an empirical function P
N (φ = φi), where φ ∈ Φ denotes the

type of an agent chosen from a finite set Φ := {φ1, · · · , φp}.

We assume that |PN (φ)−P(φ)| = O(1/N), ∀φ, where P(φ)
denotes the limiting distribution.

The state of plant Pi is relayed to the decoder Di via an

ideal uplink to the BS, which then regulates agent commu-

nications over the downlink. The downlink is constrained

by a capacity limit of C < N units on the number of

transmissions and serves as a bottleneck from the plant to

the decoder. Further, it is unreliable in the sense that a packet

communicated over it may be lost according to a Bernoulli

distributed signal βk ∼ Ber(p), with p being the erasure

probability. The decoder receives the information signal:

zik := X i
k1Ei

k
+ ∅1(Ei

k
)c , (2)

where the event Ei
k denotes that state information is suc-

cessfully transmitted. Further, the event
(
Ei

k

)c
denotes no

transmission (or ∅), which can be either due to no transmis-

sion by the BS or a packet drop over the channel. Let us

denote the instants of information reception by the decoder

as ℘i
k := ζikβk. Then, the information history of the decoder

is defined as IDi

k := {zi0:k, ℘i
0:k, U

i
0:k−1}, based on which

it computes the minimum mean-squared (MMS) estimate

(E[X i
k | IDi

k ]) of the state X i
k. We adopt the convention

that zi−1 = Zi
−1 = U i

−1 = 0, and W i
−1 = X i

0 −Zi
0, for all i.

Next, each controller Ci receives the estimate from Di

and aims to minimize the average cost function

Ji(πc) := lim
T→∞

1

T
E

[
T−1∑

k=0

‖X i
k−µN

k ‖Q(φi)+‖U i
k‖R(φi)

]

, (3)

where Q(φi) ≥ 0, R(φi) > 0, and µN
k := 1

N

∑N
j=1 X

j
k

represents the coupling between agents. Due to this coupling,

the cost Ji depends on the strategy πc := {π1
c , · · · , πN

c }
of the entire population. In the sequel, we will denote the

policy of the population excluding that of agent i as π−i
c .

Further, πi
c ∈ Πi := {πi

c | πi
c is adapted to σ(ICi

s , s =
0, · · · , k)}, ∀i, where ICi

k := {U j
0:k−1, Z

j
0:k}j∈[N ] denotes

the information history of Ci, and σ(·) denotes the sigma-

algebra generated by its argument. We assume that the pair

(A(φi), B(φi)) is controllable and the pair (A(φi),
√

Q(φi))
is observable [23]. Due to the difficulty in computing Nash

equilibrium for the game (1)-(3), we will resort to the MFG

framework (later in Section V) to compute decentralized ǫ-
Nash policies where only local information will be required



for decision-making and ǫ → 0 as N → ∞. Next, we

describe the BS-level problem, where the objective is to

compute an optimal scheduling policy of the BS.

The aim of the BS is to efficiently transmit information

over the downlink. To this end, consider the most recent

timestep when information was received by the ith controller,

which is defined as ℓik := supℓ≤k{ℓ ≥ 0 | ziℓ 6= ∅}. Then,

the AoI at the controller, which is the time elapsed since the

generation of the most recent packet at the plant, is defined

as τ ik := k − ℓik. Further, its evolution is given as τ ik+1 =
(τ ik + 1)1{℘i

k
=0}, i.e., the AoI drops to zero only when a

transmission is attempted by the BS and the packet is not

dropped by the network. With the above AoI evolution, we

formally define the capacity-constrained scheduling problem

at the BS as follows:

Problem 1.

inf
γ∈Γ

JBS(γ) := limT→∞
1

T
E

[

1

N

T−1∑

k=0

N∑

i=1

wi
kτ

i
k

]

s.t.

N∑

i=1

ζik ≤ C, ∀k,

where γ := {γ1, · · · , γN} and Γ := {γ | γ is adapted to

σ(IBS
s ), s = 0, · · · , k} is the space of admissible scheduling

policies with IBS
k := {τ i0:k, ζi0:k−1, ℘

i
0:k−1}i∈[N ] being the

information history of the BS. Moreover, wi
k := E[‖eik‖2]

denote the importance weights associated to each agent

and are functions of the estimation error eik := X i
k − Zi

k

at the controller. Finally, the expectation is taken over the

probabilistic scheduling due to the erasure-prone downlink

and (possible) randomization in the scheduling policy.

We note here that the information history of the BS

includes the information reception instants of the agent

decoders. This can be easily facilitated by a TCP-like pro-

tocol [5], where the decoder sends a one-bit ACK/NACK

information to acknowledge whether or not the transmitted

information was received by it. Further, Problem 1 involves

a hard-limit on the number of transmissions, which makes it

a combinatorics problem. It belongs to the class of restless

multi-armed bandit problems, computing an optimal policy

for which is quite difficult. Thus, in the sequel, we first

reformulate the problem using the AoIs of each agent and

then solve a relaxed problem involving a time-averaged

constraint. The solution to the latter problem will then lead

to a sub-optimal policy for Problem 1, which we will finally

show to approach the optimal policy as N increases.

To this end, we start by defining the shorthands Ai :=
A(φi), Bi := B(φi) and CW i := CW (φi). Then, we

construct the decoder’s MMS estimate as

Zi
k = X i

k1[℘i
k
=1] + E[X i

k | IDi

k ]1[℘i
k
=0], (4)

which upon using (1), yields

Zi
k = X i

k1[℘i
k
=1]+(AiZ

i
k−1+BiU

i
k−1+Ec[W

i
k−1])1[℘i

k
=0],

where Ec[·] := E[· | ζik = 0]. Then, using similar arguments

as in [4], we can show that the term Ec[W
i
k−1] = 0 under

the assumption of symmetric densities of X i
0 and W i

0 . Hence,

the estimate at the decoder can be easily computed as:

Zi
k = X i

k1[℘i
k
=1] + (AiZ

i
k−1 +BiU

i
k−1)1[℘i

k
=0]. (5)

With the above estimate, we can re-express the term wi
k in

Problem 1 using Lemma 1 from [4] as:

wi
k := wi

k(τ
i
k, Ai, CW i) =

τ i
k∑

ℓ=1

tr
(

Aℓ−1
i

⊤
Aℓ−1

i CW i

)

. (6)

Now, let us define the running cost c(τ ik, Ai, CW i) := wi
kτ

i
k.

Then, since the capacity constraint in Problem 1 makes the

optimal policy difficult to compute, we relax the problem to

one with an average constraint:

Problem 2.

inf
γ∈Γ

JBS(γ) := limT→∞
1

T
E

[

1

N

T−1∑

k=0

N∑

i=1

c(τ ik, Ai, CW i)

]

s.t. limT→∞
1

T
E

[
T−1∑

k=0

N∑

i=1

ζik

]

≤ C.

We note that the constraint in the the above problem entails

that more than C agents can be connected over the downlink

at any given timestep as long as the capacity constraint is

satisfied in the long run. This is clearly a weaker constraint

than the one in Problem 1 since the latter requires the

capacity constraint to be satisfied at all timesteps k. Hence,

it is indeed a relaxation of Problem 1. The objective now is

to compute an optimal solution to Problem 2 and then utilize

the solution to come up with an asymptotically optimal

solution to Problem 1. To this end, we start by constructing

the Lagrangian of Problem 2 (with λ ≥ 0 the Lagrange

multiplier):

L (γ, λ)= lim
T→∞

1

T
E

[

1

N

T−1∑

k=0

N∑

i=1

c(τ ik, Ai, CW i)+λ

(

ζik−
C
N

)]

,

where λ can be thought of as a price on the downlink

utilization. Thus, given a fixed λ, we decouple the N–agent

scheduling problem into N decoupled single-agent problems:

Problem 3. For all i ∈ [N ],

inf
γi∈Γi

V i(γ) := limT→∞
1

T
E

[
T−1∑

k=0

c(τ ik, Ai, CW i) + λζik

]

.

In the next section, we will first solve Problem 3, for which

we will cast the evolution of the AoI in an MDP framework

and then construct a suboptimal policy for Problem 1.

Additionally, we will also suppress the superscript i.

III. SOLUTION TO THE BS-LEVEL PROBLEM

We compute an optimal policy for Problem 3 by first

defining it as a discrete-time MDP M := (S,A,P,C). The

state space S is the space of non-negative integers. The

action set A = {0, 1}. An action a = 0 denotes that a

transmission is not attempted while a = 1 denotes that

it is. The probability transition function P describes the



evolution of the AoI, i.e., P(τk+1 = 0 | τk) = ak(1 − p)
and P(τk+1 = τk + 1 | τk) = 1 − ak + akp. Finally,

with the per stage cost defined to be C(τ, a) := c(·) + λa,

the MDP objective is to infimize the function V (γ) :=
limT→∞

1
T E
[∑T−1

k=0 C(τk, ak)
]

for which we compute an

optimal policy next.

A. Solution to Problem 2

We start by stating the following theorem, which character-

izes an optimal policy solving Problem 3.

Theorem 1. Given λ ≥ 0, there exists a stationary policy γs
solving the above MDP with an optimal cost of σ∗, which is

independent of τ . Moreover, the optimal policy is given as

a := 1[τ≥κ], for integer κ := κ(A,CW , λ).

The proof follows in a similar manner as the proof of

[4, Theorem 1]. The theorem says that the optimal policy

for Problem 3 is a threshold policy. Next, we compute the

threshold parameter κ by invoking the following condition,

which links the erasure probability p and the instability in

the agent’s dynamics.

Assumption 1. We have that ‖A‖2Fp < 1.

Notice that the above assumption is standard in the litera-

ture on unreliable communication [5]–[7] and formalizes the

fact that a higher erasure probability restricts our ability to

stabilize highly unstable agents. In the extreme case when

no communication is possible (i.e., p = 1) it requires that all

agents must be stable. The detailed derivation for computing

κ is provided in Appendix I. Now, with the deterministic

single-agent policy as provided above, we proceed toward

constructing an optimal policy for Problem 2 which, as we

will see, will be a randomized policy since the optimal policy

for such a constrained optimization problem may not, in

general, lie in the class of stationary deterministic policies

[24]. Henceforth, we resume the use of superscript i to

denote the ith agent.

We start by computing an optimal value of λ. To this end,

consider the threshold parameter κi(λ) := κi(Ai, CW i , λ)
as in Theorem 1. Then, the expected return time of agent i
starting from τ ik = 0 can be found by Ri

0 = [
∑∞

r=0(κ
i+ r+

1)(1− p)r+1pr]−1 and is equal to:

Ri
0=

((1− p)p− 1)2

(1− p)((p− 1)p(κi + 1)+(1− p)p+κi+1)
. (7)

Then, under the average constraint in Problem 2, we have

R(λ) :=
∑N

i=1 R
i
0 ≤ C. Consequently, we can use the

iterative Bisection search algorithm, as given in [4], [9],

starting with the initial parameters λ(0) = 0, and λ
(0)

= 1.

The algorithm terminates when |λ(m) − λ(m)| ≤ ǫ, for an

iterating index m and a suitably chosen ǫ > 0. Next, let

us define λ∗ = λ(m) and λ
∗
= λ

(m)
as obtained above,

and the corresponding deterministic policies as γi
s1 and γi

s2 ,

which are obtained from Theorem 1. More precisely, we

have that λ∗ 7→ κ(λ∗) :={κ1(λ∗), · · · , κN (λ∗)}⊤ and λ
∗ 7→

κ(λ
∗
) :={κ1(λ

∗
), · · · , κN (λ

∗
)}⊤. Also, let C and C be the

total capacities used corresponding to the multipliers λ
∗

and

λ∗
, respectively. Then, we define the deterministic policies:

γi
s1(τ

i) := 1[τ i≥κi(·,·,λ∗)], γi
s2(τ

i) := 1[τ i≥κi(·,·,λ∗
)], (8)

for all i using which we can construct a randomized policy
γR := [γ1

R, · · · , γN
R ]⊤ for the relaxed Problem 2 as:

γ
i
R = qγ

i
s1

+ (1− q)γi
s2
, ∀i, (9)

where q := (C − C)/(C − C) is the probability of random-

ization. Next, in the following proposition, we state that the

randomized policy obtained is indeed optimal for Problem 2.

Proposition 1. [4] Under Assumption 1, the policy (8)-(9)

is optimal for the relaxed minimization Problem 2.

With the solution to Problem 2, in the next subsection, we

propose a novel asymptotically optimal policy for Problem 1.

B. Solution to Problem 1

In this subsection, we provide a sub-optimal solution to

Problem 1, using the solution to Problem 2, which is shown

to be asymptotically optimal as N → ∞. We refer to this

policy as the maximum-age-first tie-breaking protocol (or

MATB-P for short). Consider the solution γi
R to Problem 2 as

computed in the previous subsection and let aik = γi
R(I

BS
k )

be the scheduling action at timestep k. Define Λk := {j ∈
[N ] | ajk = 1} as the set of agents scheduled to be transmitted

at instant k and its cardinality to be nλ
k . Then, the scheduling

decision ζik under MATB-P (γi) is given as:

• If nλ
k ≤ C, then ζik = aik

• If nλ
k > C, then ζik = 1 for a subset Λmax

k ⊂ Λk of the

agents, where the cardinality of Λmax
k is C for all k, and

it constitutes the agents with the maximum values of τk.

The agents in the set Λk \ Λmax
k remain unselected.

In the next section, we provide a tail-bound analysis of the

constructed MATB policy, first, for the special case with no

channel erasure, and then, for the general case.

IV. TAIL-BOUND ANALYSIS & ε-OPTIMALITY

In this section, we show that the costs under γR and γ
approach each other as N → ∞. To this end, we first prove

Proposition 2 for the case of an ideal downlink with p = 0,

where we show that the maximum AoI is uniformly bounded

independent of N , and then Theorem 3 for the general non-

ideal downlink case, where we provide a high confidence

bound on the maximum AoI, again, independent of N . Then,

we finally show (using Theorems 2 and 4) that γ approaches

the optimal policy as N → ∞ in both cases.

To this end, consider the Markov chain induced by the

relaxed policy γi
R for the ith agent as

τ ik+1=







τ ik + 1, w.p. 1, τ ik < κi(λ∗),
{

τ ik + 1, w.p. (1− q)p,
0, w.p. 1− (1− q)p,

τ ik=κi(λ∗),
{

τ ik + 1, w.p. p,
0, w.p. 1− p,

τ ik ≥ κi(λ
∗
).

Then, since each state in the set S is reachable from

every other state, the above Markov chain is irreducible, and



hence admits a unique stationary distribution πi. Now, we

provide the following proposition which shows that the AoI

under MATB-P for a deterministic channel (with p = 0) is

uniformly bounded, independent of N .

Proposition 2. Under a fixed α=C/N and p = 0, the AoI τ ik
of any agent i ∈ [N ] under MATB-P is bounded by O(α−1).

The proof can be found in Appendix II. As a result of

the above proposition, we next prove that MATB-P and the

relaxed policy approach each other as N → ∞, which

would then (as a result of (11)) imply that MATB-P is

asymptotically optimal for Problem 1. To this end, we define

an auxiliary policy γ̂, under which the AoI sample paths are

the same as those under the relaxed policy γR, but for each

additional agent that is not supposed to be transmitted by

MATB-P, it adds a penalty to the cost as:

ω(y,A,CW ) =c(∆̄, A, CW )× 1{(1− C

nλ
k

)>0}1{τ≥y}. (10)

Further, we let {τ̃ ik}∞k=1 and {τ ik}∞k=1 to be the sequences

of AoIs of the ith agent under MATB-P and γi
R (or

equivalently γ̂i), respectively. Then, it is easy to see that

ω(τ̃ i(t), Ai, CW i) dominates c(τ̃ i(t), Ai, CW i), ∀i, k. As a

consequence, it follows that

JBS(γR) ≤ JBS(γ∗) ≤ JBS(γ) ≤ JBS(γ̂), (11)

where γ∗ is any optimal policy that solves Problem 1. Then,

we have the following result.

Theorem 2. Let α be fixed and suppose that Assumption

1 holds. Then, the difference in the scheduling cost under

MATB-P and γR converges to 0 exponentially fast as a

function of N . Consequently, as N → ∞, MATB-P becomes

asymptotically optimal for Problem 1.

The proof of Theorem 2 is provided in Appendix III. Next,

we provide a remark on Proposition 2 and Theorem 2.

Remark 1. As a consequence of Proposition 2, in the case

of deterministic channel, no assumptions are needed on the

system parameters to prove the asymptotic optimality of the

MATB protocol. This is thus a significant relaxation of the

result given in [4], where an upper bound on ‖A(θ)‖F
was required. Second, we note that Theorem 2 proposes

an exponential order of convergence of MATB-P toward

optimality as N → ∞, which is sharper than the O(1/
√
N)

convergence bound obtained in [4].

Next, we proceed to the general case with p > 0. The

following theorem shows that under MATB-P, the AoI takes

large values with arbitrarily small probability.

Theorem 3. Let α be fixed and p > 0. Then, given δ ∈ (0, 1),
the upper confidence bound on AoI τ ik = O(log(1/δ)), ∀i,
∀k with probability at least 1− δ.

The proof of the theorem can be found in Appendix IV.

Further, it shows that the AoI has a vanishing tail under

MATB-P, which can be used to give high-probability guaran-

tees on the freshness of information under high traffic. Next,

to prove asymptotic optimality of MATB-P under the case

with erasure-prone channel, we again consider an auxiliary

policy γ̌, which transmits agents according to γR, except

that, for each agent which is not supposed to be transmitted

by MATB-P, it adds an additional penalty to the cost, which

(by a slight abuse of notation) is defined as:

ω(y,A,CW ) =

∞∑

ℓ=1

p
ℓ
c(τ + ℓ, A,CW )× 1{(1− C

nλ
k

)>0}1{τ≥y},

such that ω(τ̃ ik, Ai, CW i) dominates the expected WAoI

c(τ̃ ik, Ai, CW i), for all i, k. Further, ω(y,A,CW ) < ∞ as a

consequence of Assumption 1. Thus, using similar arguments

as for Theorem 2, we can prove the following main result.

Theorem 4. Let α be fixed and 0 < p < 1. Then,

MATB-P approaches the optimal policy γ∗ for Problem 1

exponentially fast as the number of agents grows.

Remark 2. We note here that in most literature such as

[8], [25], [26], the authors rely on truncating the AoI

state space to a sufficiently large value and consequently

working with a finite space to derive the corresponding

scheduling policies. Here, however, we do not require any

such truncation on the state space. This is more natural since

in communication systems with non-zero erasure probability,

the AoI can always exceed the truncation value, even if the

probability of the same tends to 0.

The solution to the original capacity-constrained problem

is thus completely characterized, and we next proceed to

solving the finite-agent game problem.

V. SOLUTION TO AGENT-LEVEL GAME PROBLEM

In this section, we solve the agent-level game problem

by using the BS’s scheduling policy as constructed in the

previous section. Typically, networked problems involve a

large number of users, and thus, belong to the class of large

population games. Characterizing Nash equilibria based on a

centralized information structure introduced in Section II in

such a setting is therefore unrealistic. Thus, the objective here

is to characterize decentralized Nash policies for each agent.

For that purpose, we first consider a limiting game (or the

MFG) with a countably infinite number of players. Then, we

characterize the equilibrium of the MFG (called the MFE)

by utilizing the Nash certainty equivalence principle [15].

As a result of the latter, each agent’s effect on the aggregate

behavior becomes negligible, which gives rise to the notion

of a representative agent solving a decentralized stochastic

optimal control problem using only local information, by

playing against the aggregate distribution. Consequently, we

also show that the MFG solution provides an approximate

Nash solution for the finite-agent game.

A. Decentralized Stochastic Optimal Tracking Problem

Consider a generic agent of type φ from the infinite

population, whose plant dynamics evolve as



Xk+1 = A(φi)Xk +B(φi)Uk +Wk, k ≥ 0, (12)

where Xk ∈ R
n and Uk ∈ R

m denote the state and control

input of the generic agent, respectively. Wk ∈ R
n is an i.i.d

zero mean Gaussian noise with positive definite covariance

CW (φ). The initial state X0 has symmetric density with

mean xφ,0 and covariance Σx > 0. The decoder and the

controller information structures are same as in subsection

II, except with the superscript i removed. The objective of

the controller is to minimize the function

J(ξ, µ) := lim
T→∞

1

T
E

[
T−1∑

k=0

‖Xk − µk‖2Q(φ)+‖Uk‖2R(φ)

]

, (13)

where the policy ξ ∈ Ξ is adapted to the decentral-

ized information structure Id,con0 := Z0, Id,conk :=
{U0:k−1, Z0:k}, ∀k ≥ 1 being the decentralized information

structure of the generic agent. Note that this is different

from the centralized information structure, which involves

the information of all the other agents as well. Further, µ =
(µk)k≥0 ∈ M := {µk ∈ R

n | ‖µ‖∞ := supk≥0 ‖µk‖ ≤
∞}, also called the MF trajectory, denotes the infinite agent

approximation to the consensus term (µN
k )k≥0 in (3). This

term leads to decoupling between the otherwise cost-coupled

agents in the finite-agent game, and the resulting problem

becomes a linear-quadratic tracking (LQT) problem, for

which the optimal policy is well known (and is provided

in Proposition 3).

Next, we introduce the operator Ψ : M → Ξ which

defines the mapping µ 7→ ξ and the operator Θ : Ξ →
M, which defines the mapping ξ 7→ µ. While the former

generates an optimal policy given a MF trajectory µ, the

latter computes a trajectory from a given control policy.

The MFE can then be defined as the pair (ξ∗, µ∗) such that

µ∗ is the fixed point of the composite operator Θ ◦ Ψ, i.e.,

µ∗ = Θ ◦ Ψ(µ∗). Now, we state the following proposition

which characterizes the optimal control policy for the LQT

problem of the generic agent.

Proposition 3. Suppose that the Assumption 1 holds and

consider the dynamics (12) with cost (13). Then, the follow-

ing are true:

1) The optimal control action of the generic agent is:

U∗
k = −K1(φ)Zk −K2(φ)gk+1 (14)

where K2(φ) = (R(φ)+B(φ)⊤K1(φ)B(φ))−1B(φ)⊤,

K1(φ) = K2(φ)K(φ)A(φ), and K(φ) > 0 is the

unique solution to

K(φ)=A(φ)⊤[K(φ)A(φ)−K(φ)⊤B(φ)K1(φ)]+Q(φ).

Further, the trajectory gk satisfies the backward dynam-

ics gk = Acl(φ)
⊤gk+1Q(φ)µk, with the initial condi-

tion g0 = −∑∞
j=0 (Acl(φ)

j)⊤ Q(φ)µj and Acl(φ) =
A(φ) − B(φ)K1(φ) being Hurwitz. In addition, the

dynamics for gk has a unique solution in M, which

can be given as gk = −∑∞
j=k (Acl(φ)

j−k)
⊤
Q(φ)µj .

2) The optimal cost is bounded above as:

J(ξ, µ∗)≤ tr(K(φ)CW (φ))+ lim
T→∞

1

T

T−1∑

k=0

ξ⊤kQ(φ)ξk

− g⊤k+1B(φ)K2(φ)gk+1+‖A(φ)⊤K(φ)⊤B(φ)K1(φ)‖

×
(

κ̂∑

m=1

m∑

r=1

tr(A(φ)r−1⊤

A(φ)r−1CW (φ))

+
‖CW (φ)‖F
‖A(φ)‖2F −1

×
[

‖A(φ)‖2κ̂+2
F p

1− ‖A(φ)‖2F p
− p

1− p

])

. (15)

Proof. The proof of 1) follows from [4]. For the proof of 2),

we substitute (14) in (13), to arrive at

J(ξ, µ∗)≤ tr(K(φ)CW (φ))+ lim
T→∞

1

T

T−1∑

k=0

ξ⊤kQ(φ)ξk

− g⊤k+1B(φ)K2(φ)gk+1

+ lim
T→∞

1

T

T−1∑

k=0

‖A(φ)⊤K(φ)⊤B(φ)K1(φ)‖E
[
‖ek‖2

]
. (16)

Consider the following:

E
[
‖ek‖2

]
=

∞∑

m=1

m∑

r=1

tr(A(φ)r−1⊤

A(φ)r−1CW (φ))P(τk = m)

≤
κ̂∑

m=1

m∑

r=1

tr(A(φ)r−1⊤

A(φ)r−1CW (φ))

+

∞∑

m=κ̂+1

m∑

r=1

tr(A(φ)r−1⊤

A(φ)r−1CW (φ))pm−τu

≤
κ̂∑

m=1

m∑

r=1

tr(A(φ)r−1⊤

A(φ)r−1CW (φ))

+
‖CW (φ)‖F
‖A(φ)‖2F −1

×
[

‖A(φ)‖2κ̂+2
F p

1− ‖A(φ)‖2F p
− p

1− p

]

, (17)

where κ̂ := κφ(λ
∗
) and the last inequality follows using the

scheduling policy of Section III-B, Assumption 1, and the

fact that ‖AB‖F ≤ ‖A‖F ‖B‖F . Then, combining (16) and

(17), we arrive at (15). This completes the proof.

Remark 3. We remark here that the boundedness of the

cost in the special case of deterministic channels is similarly

implied by the uniform bound on the AoI from Proposition

2. This reiterates the advantage of the MATB-P over the

uniformly randomized policy in [4], where an assumption

on ‖A‖F was required to entail the boundedness of the cost.

B. ǫ–Nash Equilibrium

Now, that we have computed the optimal policy of the

generic agent of type φ, we will henceforth prove the

existence of a unique MFE. To this end, we use the policy γ
from Section III-B to arrive at the closed-loop system (CLS)

in (5) under the policy (14) as

Zk+1 = (Acl(φ)Zk −B(φ)K2(φ)gk+1 +Wk+1)1[℘k+1=1]

+ (Acl(φ)Zk −B(φ)K2(φ)gk+1)1[℘k+1=0], (18)



which on taking expectation and using Proposition 3 yields

µφ
k :=E[Xk] := Acl(φ)

kxφ,0 +
k−1∑

j=0

Acl(φ)
k−j−1B(φ)K2(φ)

×
∞∑

r=j+1

(Acl(φ)
r−j−1)⊤Q(φ)µr . (19)

Define the MF operator as

{MF(µ)}k :=
∑

φ∈Φ

µφ
kP(φ), k ≥ 0. (20)

Also, we invoke the following assumption on model param-

eters.

Assumption 2. ‖Acl(φ)‖+
∑

φ∈Φ ‖Q(φ)‖‖B(φ)K2(φ)‖(1−
‖Acl(φ)‖)−2

P(φ) < 1, ∀φ ∈ Φ.

We next prove the following lemma and state the main

theorem showing the ǫ–Nash property of the MFG solution.

Lemma 1. Suppose that Assumptions 1-2 hold. Then, the

following are true:

1) (MFE Uniqueness): There exists a unique µ∗ such that

µ∗ = MF(µ
∗) with the property that ∃K∗

3 ∈ K :=
{K3 ∈ R

n×n | ‖K3‖ < 1, µ∗
k+1 = K3µ

∗
k}, and µ∗

0 =
∑

φ∈Φ xφ,0P(φ).
2) (CLS stability): The CLS (1) under (14) is mean-

squared stable, i.e., supN≥1 max1≤j≤N limT→∞
1
T

∑T−1
k=0 E[‖µ∗

k‖2] < ∞.

3) (MFE Approximation): We have that µN,∗
k

m.s.−−−−−→
N → ∞

µ∗
k

at a rate of O(1/minφ Nφ), where Nφ denotes the

cardinality of agents of type φ, and µN,∗
k is the empirical

state average under (14).

Proof. The proof of parts 1) and 3) follow in a similar

manner as Theorem 3 and Proposition 6 in [4]. For part 2),

consider the following, with the superscript ∗ dropped for

ease of notation. Substituting (14) in (12), we arrive at the

closed-loop system as

X i
k+1 =Acl(φi)X

i
k +B(φi)K1(φi)e

i
k

−B(φi)K2(φi)g
i
k+1 +W i

k. (21)

Then, from (21) we have that

E
[
‖X i

k‖2
]
≤ 4E

[∥
∥Acl(φi)

kX i
0

∥
∥
2
]

+ 4E





∥
∥
∥
∥
∥

k−1∑

r=0

Acl(φi)
k−r−1B(φi)K1(φi)e

i
r

∥
∥
∥
∥
∥

2




+ 4E





∥
∥
∥
∥
∥

k−1∑

r=0

Acl(φi)
k−r−1B(φi)K2(φi)g

i
r+1

∥
∥
∥
∥
∥

2




+ 4E





∥
∥
∥
∥
∥

k−1∑

r=0

Acl(φi)
k−r−1W i

r

∥
∥
∥
∥
∥

2


 , (22)

where we used the fact that ‖∑k
i=1 xi‖2 ≤ k

∑k
i=1 ‖xi‖2.

We note that since Acl(φ) are Hurwitz (as a result of propo-

sition 3), using [27, Theorem 3.9], we can bound the first

term in (22) by ι(φi)tr(Σx+xφi,0x
⊤
φi,0

)/(1−ς(φi)), and the

fourth term in (22) by ι(φi) sup1≤j≤p CW (φi)/(1 − ς(φi))
for constants ι(φi) ≥ 1 and 0 < ς(φi) < 1. Similarly, using

the fact that ‖gi‖∞ < ∞ (from Proposition 3), the third

term in (22) can be bounded by
2ι(φi)‖B(φi)K2(φi)‖2‖gi‖2

∞

(1−
√

ς(φi))(1−ς(φi))
.

Finally, using similar arguments as for the third term, we can

show that the second term (call it T2) can be bounded as

T2 ≤
k−1∑

r=0

ι(φi)ς(φi)
k−r−1‖B(φi)K1(φi)‖2E

[
‖er‖2

]

+

k−1∑

r,s=0,
r 6=s

ι(φi)ς(φi)
k− r

2
−1− s

2 ‖B(φi)K1(φi)‖2
√

E [‖er‖2]E [‖es‖2]

≤ β(φi)ι(φi)‖B(φi)K1(φi)‖2
[

1

1− ς(φi)
+

1

(1−
√

ς(φi))2

]

,

where β(φi)=
∑κ̄

m=1

∑m
r=1 tr(A(φi)

r−1⊤A(φi)
r−1CW (φi))+

‖CW (φi)‖F

‖A(φi)‖2
F
−1×[

‖A(φi)‖2κ̄φi+2

F
p

1−‖A(φi)‖2
F
p
− p

1−p ]. Finally, summing up all

the bounds and noting that Φ is a finite set, we have the

desired result. The proof is thus complete.

We next state the following definition below.

Definition 1 (Approximate Nash equilibrium). Given ǫ > 0,

the set of control policies {ξj}j∈[N ] constitutes an ǫ–Nash

equilibrium for the cost functions {Jj}i∈[N ], if

Ji(ξ
∗,i, ξ∗,−i) ≤ inf

πi
c∈Πi

Ji(π
i
c, µ

∗,−i) + ǫ, ∀i ∈ [N ]. (23)

Then, we present the main result of this section stating

that the MFE control laws constitute an ǫ-Nash equilibrium

for the finite-population case.

Theorem 5. Suppose that Assumptions 1-2 hold. Then the

sequence of decentralized control policies {ξj}j∈[N ], con-

stitutes an ǫ–Nash equilibrium for the N–agent capacity-

constrained LQ-mean field game. In particular, we have that

Ji(ξ
∗,i,ξ∗,−i)≤ inf

πi
c∈Πi

Ji(π
i
c, µ

∗,−i)+O
(

1
√
minφ∈ΦNφ

)

. (24)

Proof. The proof follows from Lemma 1 using techniques

similar to those in [7], [18], and hence is omitted.

VI. AN ILLUSTRATIVE EXAMPLE

In this section, we validate the theoretical results using

a numerical example. We first demonstrate the asymptotic

optimality of MATB-P. For this purpose, we consider values

for N from 5 till 100, a time horizon of 5000 seconds, a low

capacity C = 0.25N , and an erasure probability p = 0.2. We

plot the average weighted AoI of the system as a function

of N in Fig. 2, for both the relaxed policy and MATB-P.

We can see that the difference in the average cost under the

above decays to 0, which shows the asymptotic optimality

of the MATB policy.

Next, we simulate the behavior of a 900–agent sys-

tem, with 3 types of (scalar) agents, namely, with A =
0.5, 1.0, 1.15, under the MATB scheduling protocol and the
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Fig. 2: Plot shows the performance of the relaxed policy (γR)

and the MATB policy, converging to each other.

MFE policy ξ∗. We take B = 0.1269, CW = 5, Q = R = 2,

and a horizon of 500 seconds. In Fig. 3, in the left plot, we

show the variation of the average cost per agent as a function

of the available capacity for a fixed erasure probability

p = 0.2. Next, in the right, we show the variation of the

average cost per agent as a function of the channel erasure

for a fixed capacity ratio α = 0.45. The figures show a box

plot depicting the median (red line) and spread (box) of the

average cost per agent over 100 runs for each value of α, and

p, respectively. We can easily see that the average cost varies

inversely with the available downlink capacity and in direct

proportion to the erasure probability, aligned with intuition.
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Fig. 3: Plots show the variation of aggregate cost per agent

with (a) capacity ratio α, and (b) erasure probability p.

VII. CONCLUSION

In this paper, we have formulated a large population game

problem involving information transmission over unreliable

networks, thereby extending the setting of [4] and improving

the guarantees in the special case of [4]. The network

is regulated by a BS, for which we have constructed an

asymptotically optimal scheduling policy. We have provided

a tail analysis of the AoI under the same, first, for the

case when the channel is free of any erasure and then for

the case with erasure. Next, by using this policy, we have

solved the consensus problem between the non-cooperative

agents using the MFG framework by proving the existence

of a unique equilibrium and consequently showing its ǫ–
Nash property to the finite-agent game problem. Finally, we

have simulated a numerical example, which corroborates the

theoretical developments.
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[7] J. Moon and T. Başar, “Discrete-time LQG mean field games with
unreliable communication,” in IEEE CDC, Dec. 2014, pp. 2697–2702.

[8] O. Ayan, M. Vilgelm, and W. Kellerer, “Optimal scheduling for
discounted age penalty minimization in multi-loop networked control,”
in IEEE CCNC, January 2020, pp. 1–7.

[9] A. Maatouk, S. Kriouile, M. Assaad, and A. Ephremides, “The age of
incorrect information: A new performance metric for status updates,”
IEEE/ACM Trans. on Networking, vol. 28, no. 5, pp. 2215–2228, 2020.

[10] Y. Chen, H. Tang, J. Wang, and J. Song, “Optimizing age penalty in
time-varying networks with Markovian and error-prone channel state,”
Entropy, vol. 23, no. 1, p. 91, January 2021.

[11] B. Sombabu, B. Dedhia, and S. Moharir, “Whittle index based age-
of-information aware scheduling for Markovian channels,” Computer

Networks and Comm., vol. 1, no. 1, pp. 59–84, December 2022.

[12] S. Wu, X. Ren, Q.-S. Jia, K. H. Johansson, and L. Shi, “Towards
efficient dynamic uplink scheduling over multiple unknown channels,”
arXiv:2212.06633, December 2022.

[13] I. Kadota, A. Sinha, E. Uysal-Biyikoglu, R. Singh, and E. Modiano,
“Scheduling policies for minimizing age of information in broadcast
wireless networks,” IEEE/ACM Transactions on Networking, vol. 26,
no. 6, pp. 2637–2650, December 2018.

[14] R. D. Yates, Y. Sun, D. R. Brown, S. K. Kaul, E. Modiano, and
S. Ulukus, “Age of information: An introduction and survey,” IEEE

Jrnl. on Selec. Areas in Comm., vol. 39, no. 5, pp. 1183–1210, 2021.

[15] M. Huang, P. E. Caines, and R. P. Malhamé, “Large-population
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field games with communication constraints,” in IEEE ACC, June
2022, pp. 1323–1329.

[19] A. Bensoussan, K. Sung, S. C. P. Yam, and S.-P. Yung, “Linear-
quadratic mean field games,” Journal of Optimization Theory and

Applications, vol. 169, no. 2, pp. 496–529, 2016.

[20] H. Zhang, Y. Kang, L. Song, Z. Han, and H. V. Poor, “Age of informa-
tion minimization for grant-free non-orthogonal massive access using
mean-field games,” IEEE Transactions on Communications, vol. 69,
no. 11, pp. 7806–7820, 2021.

[21] M. Bennis, M. Debbah, and H. V. Poor, “Ultrareliable and low-latency
wireless communication: Tail, risk, and scale,” Proceedings of the
IEEE, vol. 106, no. 10, pp. 1834–1853, 2018.

[22] S. Aggarwal, M. A. uz Zaman, M. Bastopcu, and T. Başar, “Large
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APPENDIX I

COMPUTATION OF κ

Consider the finite state-space S′ = {0, 1, · · · , κ}. Then,

the Bellman equation for Problem 3 can be written as

V (τ) + σ∗ = min{C(τ, 0) + V (τ + 1),C(τ, 1)

+ pV (τ + 1) + (1− p)V (0)}. (25)

Then, by using (25), for τ ≥ κ, we have that

V (τ) = c(τ) + λ+ pV (τ + 1) + (1− p)V (0)− σ∗

=

n−1∑

r=0

(c(τ + r)+λ+ (1 − p)V (0)−σ∗)pr+pnV (τ + n).

Taking the limit as n → ∞, we get

V (τ)=
λ+(1−p)V (0)−σ∗

1−p
+ lim

n→∞

n−1∑

r=0

c(τ + r)pr

︸ ︷︷ ︸

f(τ)

, (26)

where we define c(x) := c(x,A,CW ) =
∑x

r=1 tr((A
r−1)⊤

Ar−1CW )x =
∑x

r=1 tr
((
Ar−1xC0.5

W

)⊤
Ar−1C0.5

W

)

x =
∑x

r=1 ‖Ar−1C0.5
W ‖2Fx.

Next, in order to give a closed-form equation to compute

κ, we consider a scalar system (with n = 1 in (1)) for the

computation of the function f(·), which can be given as

f(x)=







CW

1−A2

[

x( 1
1−p− A2x

1−A2p )+
p

(1−p2)−
A2x+2p

(1−A2p)2

]

, A 6= 1,

CWx2

1−p + 2CWxp
(1−p)2 + CW p(1+p)

(1−p)3 , A = 1.

(27)

We note that the calculation of f(·) involves an infinite sum

which is finite under Assumption 1. Further, we observe that

V (κ) ≤ λ/(1 − p) + V (0) ≤ V (κ+ 1). Hence, there exists

η ∈ [0, 1] such that V (κ+η) = λ/(1−p)+V (0). Combining

this with (26), we get that σ∗ = (1 − p)f(κ+ η). Next, for

τ < κ, we have from (25) that V (τ)+σ∗ = V (τ+1)+c(τ).
Combining this with (26), evaluated at τ = κ, we arrive at

(1 + κ(1− p))f(κ+ η) =
λ

(1− p)
+f(κ)+

κ−1∑

i=1

c(i). (28)

The above is an implicit equation in κ and η, for a given

tuple (A,CW , p, λ), and can be solved in conjunction with

(28) to compute κ.

APPENDIX II

PROOF OF PROPOSITION 2

Let us start by defining the sets S̄k and Sγ
k for k ≥ 0:

S̄k := {i ∈ [N ]|τ ik > κ̄ := max(max
φ∈Φ

κφ(λ̄∗), ⌈α−1⌉)},

Sγ
k := {i ∈ [N ]|ζik = 1, t0 ≤ k ≤ t0 + ⌈α−1⌉, t0 ≥ 0}.

The set S̄k is the set of agents whose AoIs exceed κ̄,

and hence the subset of agents which are supposed to be

scheduled for transmission. The set Sγ
k is the subset of agents

which are scheduled at time k using MATB-P. Let us also

define the quantity τmax,k as:

τmax,k :=

{
max{τ ik|i ∈ S̄k}, if |S̄k| > 0,

κ̄, if |S̄k| = 0.

This quantity is the upper bound on τ ik by definition. Now,

we first investigate some properties of the sets S̄k and Sγ
k .

By definition, it holds that |S̄0| = 0. Define t0 as the first

timestep when the cardinality of S̄k exceeds C, i.e.,

t0 := min
k≥0

{k | |S̄k| > C}

If t0 = ∞, then τ ik can be trivially bounded by κ̄. Hence,

we assume t0 < ∞. Let m ≥ 0 be the timesteps it takes for

the cardinality of S̄k to drop below C + 1. More formally,

we have that

|S̄k| > C, t0 ≤ k ≤ t0 +m and |S̄t0+m+1| ≤ C.
First, we notice that for any k such that t0 ≤ k ≤ t0 +m,

Sγ
k ⊂ S̄k. (29)

This is due to the fact that for k ∈ [t0, t0+m], we have that

|S̄k| > C, and thus, the number of agents to be scheduled is

larger than C. As a result, the scheduling policy breaks the

tie using MATB-P and since the agents with the highest AoIs

reside in S̄k for t0 ≤ k ≤ t0 + m, they will be scheduled.

This also means that

|Sγd

k | = C, and t0 ≤ k ≤ t0 +m. (30)

Next, we notice that if an agent with index i ∈ S̄k ∩ Sγ
k for

t0 ≤ k ≤ t0 +m, then

i /∈ S̄k′ , k < k′ ≤ t0 +min(m, ⌈α−1⌉). (31)

This is due to the fact that if i ∈ Sγ
k for any i ∈ [N ] and

k ≥ 0, then τ i(k′) ≤ ⌈α−1⌉ for k < k′ ≤ k + ⌈α−1⌉,

and thus, i /∈ S̄k′ , for k < k′ ≤ k + ⌈α−1⌉. Further, (31)

follows since t0+min(m, ⌈α−1⌉) ≤ k+ ⌈α−1⌉. Combining

(29) and (31), we can deduce that if i ∈ Sγ
k , t0 ≤ k ≤

t0 + min(m, ⌈α−1⌉), then i /∈ Sγ(k′), k < k′ ≤ t0 +
min(m, ⌈α−1⌉). This means that if an agent is scheduled

in the interval [t0, t0 +min(m, ⌈α−1⌉)], then it will not be

scheduled again in this interval. Hence,

Sγ
k ∩ Sγ

k′ =∅, k, k′∈ [t0, t0 +min(m, ⌈α−1⌉)], k 6= k′. (32)

Using this result, we will prove that the cardinality of the set

S̄k cannot be higher than C for more than ⌈α−1⌉ timesteps.



Let us assume by contradiction that m > ⌈α−1⌉. Using (30)

and (32) for T ∈ [0, ⌈α−1⌉], we get:
∣
∣
∣
∣
∣

t0+T⋃

k=t0

Sγ
k

∣
∣
∣
∣
∣
=

t0+T∑

k=t0

|Sγ
k | = (T + 1)C,

Fixing T = ⌈α−1⌉, we obtain

∣
∣
∣
∣
∣

t0+⌈k⌉
⋃

k=t0

Sγ(t)

∣
∣
∣
∣
∣
= (⌈α−1⌉+ 1)C ≥ N + C > N.

Now, since the union takes care of duplications and the total

number of agents in the game is N for T ′ ≥ 0,

∣
∣
∣
∣
∣

t0+T ′

⋃

k=t0

Sγ
k

∣
∣
∣
∣
∣
≤ N,

which leads to a contradiction. Thus, our assumption of

m > ⌈α−1⌉ was incorrect to begin with, and we have finally

proved that m ≤ ⌈α−1⌉.

Next, we prove that τmax,k = O(⌈α−1⌉). For k /∈
[t0, t0 +m], it is easy to see that τmax,k+1 ≤ κ̄. Moreover,

for k ∈ [t0, t0 + m], τmax,k+1 ≤ τmax,k + 1. Now, since

m ≤ ⌈α−1⌉ ≤ κ̄, τmax,k ≤ 2κ̄ for any k ≥ 0. Hence, the

statement of the theorem follows, which completes the proof.

APPENDIX III

PROOF OF THEOREM 2

Consider the following.

JBS
γ̂ − JBS

γR
= lim

T→∞

1

NT
E

[
T−1∑

k=0

N∑

i=1

c(∆̄, Ai, CW i)

×1{1≥C/nλ
k}1{τ̃ i

k
≥κi}

]

≤ lim
T→∞

U

NT
E

[
T−1∑

k=0

N∑

i=1

1{nλ
k
>C}1{τ̃ i

k
≥κi}

]

≤ lim
T→∞

U

T

T−1∑

k=0

E

[

1{nλ
k
>C}

]

= lim
T→∞

U

T

T−1∑

k=0

P(nλ
k > C)

≤ lim
T→∞

U

T

T−1∑

k=0

P(eθn
λ
k ≥ eθC), θ > 0

≤ lim
T→∞

U

T

T−1∑

k=0

inf
θ>0

E[eθn
λ
k ]

eθC

= lim
T→∞

U

T

T−1∑

k=0

inf
θ≥0

(E[eθa
i
k ])N

eθC
≤ U

T−1∑

k=0

e−D(α||q)N , (33)

where JBS
γ̂ and JBS

γR
are the costs under policies γ̂ and γR,

respectively, and U := maxi∈[N ] c(∆̄, Ai, CW i). The first

equality follows since the sample paths of the AoI under

γ̂ coincide with those under the policy γR by definition.

The first inequality follows as a result of Proposition 2.

The third inequality follows by the monotonic nature of the

exponential function and second-to-last inequality follows

using Markov’s inequality. Finally, the last equality follows

because aik’s are i.i.d. random variables (independent since

they were computed using a decoupling procedure, and iden-

tically distributed since the probability of randomization q is

common for all agents for any given k). Finally, in the last

inequality D(x||y) := x ln x/y + (1− x) ln (1− x)/(1− y)
denotes the Kullback-Liebler divergence between indepen-

dent Bernoulli distributed random variables distributed with

parameters x and y. Next, we observe that D(x||y) = 0 if

and only if x = y. For our case, this would then imply that

α = q, which can happen if and only if C̄ = 0, which is

not possible as a result of the constraint on R(λ). Hence,

D(x||y) > 0. Finally, by (11) and (33), it follows that

JBS
γ − JBS

γR
≤ JBS

γ̂ − JBS
γR

→ 0, exponentially fast, which

completes the proof.

APPENDIX IV

PROOF OF THEOREM 3

Let us start by defining two events Ẽ(·) and Ê(·). The

event Ẽ(x) is when any agent takes longer than x time steps

to re-enter the set Sγ (which is the set of agents that need

to be transmitted). The event Ê(x) is when any agent takes

longer than x timesteps to be transmitted while in the set Sγ .

Now, let us define the event Ē(x) when any agent’s AoI is

larger than x at any time instant. Then, we can deduce that

Ē
c
(x) ⊇

(
Ẽ
c
(x/2) ∩ Ê

c
(x/2)

)
,⇔

Ē(x) ⊂
(
Ẽ(x/2) ∪ Ê(x/2)

)
,

using which we deduce

P(Ē(x)) ≤ P
(
Ẽ(x/2) ∪ Ê(x/2)

)

≤ P(Ẽ(x/2)) + P(Ê(x/2)). (34)

First analyze the event Ẽ(x). The probability P(Ẽ(x)) can

be upper bounded as

P(Ẽ(x)) ≤ P

( x−1∑

k=0

|Sγ
suc,k| ≤ N − C − 1

)

, (35)

where Sγ
suc,k denotes the set of agents that are in Sγ

k ,

and their updates are successfully transmitted at time k.

In the worst case scenario, when k ∈ [x], the number of

agents whose updates are successfully transmitted is less than

N − C − 1 so that in the xth time, the ith agent is still not

present in the set Sγ
x . We note that |Sγ

suc,k| is a Binomially

distributed random variable with number of trials C, and

success probability 1− p, i.e., |Sγ
suc,k| ∼ Bin(C, 1− p), and

P(|Sγ
suc,k| = ℓ) =

(C
ℓ

)
(1 − p)ℓpC−ℓ, for ℓ ∈ [C]. Next, by

using the fact that the sum of independent binomial distribu-

tions with the same success probabilities is also a Binomial

distribution, we have that
∑x−1

k=0 |S
γ
suc,k| ∼ Bin(xC, 1− p).

The probability of P(
∑x−1

k=0 |S
γ
suc,k| ≤ N − C − 1) can then

be rewritten as

P

(∑x−1
x=0 |Sγ

suc,k| − xC(1 − p)
√

xCp(1− p)
≤ cx,N

)

, (36)



where

cx,N =

√
N(1− (1 + x(1 − p))α)

√

xαp(1 − p)
− 1
√

xαNp(1 − p)
.

Next, given x >
(

2
α(1−p)

)2
, we can obtain an upper bound

on cx,N as:

cx,N ≤
√
N((1− α)− α(1− p)x)

√

xαp(1 − p)

=

√

N

αp(1− p)

(
1− α√

x
− α(1 − p)

√
x

)

≤
√

N

αp(1− p)

(
(1− α)α(1 − p)

2
− 2

)

≤ −
√

N

αp(1− p)
=: c̄N . (37)

Then, by using the central limit theorem, the distribution

of

∑x−1

k=0
|Sγ

suc,k
|−xC(1−p)√

xCp(1−p)
converges to the standard Gaussian

distribution, as the number xC gets large. Thus, by using the

Berry–Esseen theorem [28], we have that
∣
∣
∣
∣
∣
P

(∑x−1
k=0 |S

γ
suc,k| − xC(1− p)

√

xCp(1− p)
≤ cx,N

)

−Φ(ck,N )

∣
∣
∣
∣
∣
≤ ǫ1,

(38)

where Φ(cx,N ) = 1√
2π

∫ cx,N

−∞ e−
z2

2 dz is the CDF of the

standard Gaussian distribution and ǫ1 ≤ 0.33554 1−p+0.415√
xC

[28, Theorem 2]. Now, let us define two random variables:

ZN(x) =

∑x−1
k=0 |S

γ
suc,k| − xC(1− p)

√

xCp(1− p)
, and

Z∞(x) = lim
N→∞

ZN (x).

Then, we know that the CDF of Z∞(x) is given by Φ(·).
Using (35) and the definitions of ZN (x) and Z∞(x), we get

P(Ẽ(x)) ≤ P(ZN (x) ≤ cx,N)

≤
∣
∣P(ZN (x) ≤ cx,N )− P(Z∞(x) ≤ cx,N)

∣
∣

+ P(Z∞(x) ≤ cx,N)

≤ 0.33554
1− p+ 0.415√

xαN
+Φ(cx,N )

≤ 0.3354
1− p+ 0.415√

αN
+Φ(c̄N ),

where the third inequality follows from (38) and the fourth

inequality follows from the fact that if x >
(

2
α(1−p)

)2
then

cx,N < c̄N using (37), which implies that Φ(cx,N) < Φ(c̄N )
due to the monotonically increasing nature of Φ(·). Let us

choose N such that 0.3354 1−p+0.415√
αN

≤ δ/4 and Φ(c̄N ) ≤
δ/4. Then,

P(Ẽ(x)) ≤ δ/2. (39)

Notice that the conditions on N suggest a lower bound on

x which is independent of N but dependent on δ.

Next, we determine P(Ê
i
(x)), where Ê

i
(x) is the event

that agent i takes longer than x timesteps to be transmitted

while in the set Sγ . The former can be computed as:

P(Ê
i
(x)) = (1− p)

∞∑

s=x

ps = (1− p)

(
px

1− p

)

= px.

Hence, if we choose x ≥ log(2/δ)/ log(1/p), then

P(Ê
i
(x)) ≤ δ/2, (40)

Combining (34), (39) and (40) we get

P(Ē
i
(x)) ≤ δ

for agent i, given that N is chosen such that

0.3354 1−p+0.415√
αN

≤ δ/4 and Φ(c̄N ) ≤ δ/4 and

x = O(log(1/δ)). This then completes the proof of

the theorem.
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