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Abstract— This paper extends the Finite Elements with
Switch Detection (FESD) method [19] to optimal control
problems with nonsmooth systems involving set-valued step
functions. Logical relations and common nonsmooth functions
within a dynamical system can be expressed using linear and
nonlinear expressions involving step functions. A prominent
subclass of these systems are Filippov systems. The set-valued
step function can be expressed by the solution map of a
linear program, and using its KKT conditions allows one
to transform the initial system into an equivalent dynamic
complementarity system (DCS). Standard Runge-Kutta (RK)
methods applied to DCS have only first-order accuracy. The
FESD discretization makes the step sizes degrees of freedom
and adds further constraints that ensure exact switch detection
to recover the high-accuracy properties that RK methods have
for smooth ODEs. We use the novel FESD method for the
direct transcription of optimal control problems. All methods
and examples in this paper are implemented in the open-source
software package NOSNOC.

I. INTRODUCTION

In this paper, we introduce a high-accuracy method for dis-
cretizing and solving nonsmooth Optimal Control Problems
(OCPs) of the following form:

min
x(·),u(·)

∫ T

0

L(x(t), u(t))dt+R(x(T )) (1a)

s.t. x0 = s0, (1b)
ẋ(t)∈ F (x(t), u(t),Γ(c(x(t)))), a.a. t ∈ [0, T ], (1c)

0 ≥ Gp(x(t), u(t)), t ∈ [0, T ], (1d)
0 ≥ Gt(x(T )), (1e)

where L : Rnx × Rnu → R is the running cost and R :
Rnx → R is the terminal cost, s0 ∈ Rnx is a given initial
value. The right-hand side of the Differential Inclusion (DI)
in Eq. (1c) is the set-valued mapping F : Rnx×Rnu×Rnc →
P(Rnx). The path and terminal constraints are defined by the
functions Gp : Rnx × Rnu → Rnp and Gt : Rnx → Rnt ,
respectively.

The OCP is nonsmooth due to the DI in Eq. (1c). The
function c(x) ∈ Rnc contains nc switching functions. The
set-valued function Γ : Rnc → P(Rnc) is defined as the
concatenation of scalar step functions, i.e., for y ∈ Rnc we
have Γ(y) = [γ(y1), . . . , γ(ync

)]⊤ ∈ Rnc , where γ : R →
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P(R) is defined as:

γ(yi) =





{1}, yi > 0,

[0, 1], yi = 0,

{0}, yi < 0.

(2)

Note that there are no particular restrictions on how the
components Γ(c(x)) enter the r.h.s. of the DI (1c). This
DI is an instance of so-called Aizerman–Pyatnitskii DIs.,
cf. [8, page 55, Definition c]. A prominent and well-studied
subclass of these DIs, on which we focus in the sequel, are
Filippov DIs.

Set-valued step functions provide an intuitive way to
model logical if-else and and-or relations in dynamical
systems. In addition, several other common nonsmooth func-
tions, such as sign,min, and max, can be easily expressed
via step functions. Smoothed versions of the step function are
often used in the numerical simulation of Piecewise Smooth
Systems (PSS) [9], [12]. Step functions are often used in
the modeling of gene regulatory networks [2], [12]. Another
application is to express Filippov sets in sliding modes on
surfaces with co-dimension higher than one [7]. Moreover,
several classes of systems with state jumps can be reformu-
lated into PSS via the time-freezing reformulation [13], [18],
[15], [11]. Thus, the formulation (1) covers a wide class of
practical problems.

The OCP (1) is difficult to solve numerically for sev-
eral reasons. Direct methods first discretize the infinite-
dimensional OCP (1) and solve then a finite-dimensional
Nonlinear Program (NLP). However, the discretization of a
DI (1c) presents several pitfalls. First, standard time-stepping
methods for DIs have only first-order accuracy [1]. Stewart
and Anitescu [23] have shown that the numerical sensitivities
obtained from standard time-stepping are incorrect regardless
of the integrator step size. Moreover, the sensitivities of
smoothed approximations of (1c) are correct only under the
very restrictive assumption that the step size is sufficiently
smaller than the smoothing parameter. Smoothing and wrong
sensitivities can lead to artificial local minima and jeop-
ardize the progress of NLP solvers [14]. Furthermore, the
discretized OCPs are nonsmooth NLPs. In summary, even
for moderate accuracy, many optimization variables and a
huge computational load are required.

Some of these drawbacks are overcome by the recently
introduced Finite Elements with Switch Detection (FESD)
method [19]. FESD was originally developed for Filippov
DIs, which are transformed into equivalent Dynamic Com-
plementarity System (DCS) via Stewart’s reformulation [22].
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This method starts with a standard Runge-Kutta (RK) dis-
cretization of the DCS and, inspired by [5], allows the
integrator step sizes to be degrees of freedom. Additional
constraints ensure exact switch detection (and thus higher-
order accuracy) and correct computation of numerical sensi-
tivities (and avoid convergence to spurious solutions). This
overcomes the aforementioned fundamental limitations of
standard time-stepping discretization methods.

Contributions: In this paper, we extend the FESD
method to DIs (and the associated OCP (1)) governed by
set-valued step functions. Our approach is to express the
step function as the solution map of a linear program,
and using its KKT conditions, we write the DI into an
equivalent DCS. The DCS is discretized with a standard
RK method. However, we let the step sizes be degrees of
freedom and introduce additional equations that ensure exact
switch detection. This recovers the high-accuracy properties
that RK methods have for smooth ODEs. FESD results in
Mathematical Programs with Complementarity Constraints
(MPCC), which can be efficiently solved in a homotopy loop
with off-the-shelf NLP solvers [21], [4]. We illustrate the
efficacy of the new formulation on numerical simulation and
OCP examples. All methods and examples of this paper are
implemented in the open-source package NOSNOC [16]1.

Notation: The complementary conditions for two vec-
tors x, y ∈ Rn read as 0 ≤ x ⊥ y ≥ 0, where x ⊥ y
means x⊤y = 0. For two scalar variables a, b the so-
called C-functions have the property ϕ(a, b) = 0 ⇐⇒
a ≥ 0, b ≥ 0, ab = 0. A famous example is the Fischer-
Burmeister function ϕFB(a, b) = a+ b−

√
a2 + b2. If x, y ∈

Rn, we use ϕ(·) component-wise and define Φ(x, y) =
(ϕ(x1, y1), . . . , ϕ(xn, yn)). The concatenation of two col-
umn vectors x ∈ Rn, y ∈ Rm is denoted by (x, y) :=
[x⊤, y⊤]⊤. Given a matrix S ∈ Rn×m, its i-th row is denoted
by Si,• and its j-th column is denoted by S•,j .

II. FILIPPOV SYSTEMS AND THE EQUIVALENT DYNAMIC
COMPLEMENTARITY SYSTEM

In this section, we show how the Filippov convexification
of a PSS can be expressed via step functions, and how to
transform this system into an equivalent DCS.

A. Filippov systems via step functions

We focus on the PSS systems and their Filippov convex-
ification as the most prominent representative of DIs with
set-valued step functions. Most developments are straight-
forwardly generalized. A controlled PSS is defined as

ẋ(t) = fi(x(t), u(t)), if x(t) ∈ Ri ⊂ Rnx , i ∈ J , (3)

where Ri are disjoint, connected, and open sets, and J :=
{1, . . . , nf}. The sets Ri are assumed to be nonempty and
to have piecewise-smooth boundaries ∂Ri. It is assumed that⋃
i∈J

Ri = Rnx , and that Rnx \ ⋃
i∈J

Ri is a set of measure

zero. The functions fi(·) are assumed to be Lipschitz and at

1MATLAB: https://github.com/nurkanovic/nosnoc,
Python: https://github.com/FreyJo/nosnoc_py

least twice continuously differentiable functions on an open
neighborhood of Ri. Here, u(t) is a sufficiently regular ex-
ternally chosen control function, e.g., obtained as a solution
to an Optimal Control Problem (OCP).

The event of x(t) reaching or leaving some boundary ∂Ri

is called a switch. In this paper, we consider systems with a
finite number of switches on finite time intervals, i.e., Zeno
trajectories are excluded. The ODE (3) is not defined on the
region boundaries ∂Ri, and classical notions of solutions [6]
are not sufficient to treat the rich behavior that emerges in
a PSS. For example, during sliding modes x(t) must evolve
on ∂Ri [6], [8]. A sufficiently regular and practical notion is
given by the Filippov extension for (3). The special structure
of the PSS allows the definition of a finite number of convex
multipliers θi and the Filippov DI reads as [8], [22]:

ẋ ∈ FF(x, u) =
{∑

i∈J
fi(x, u) θi |

∑

i∈J
θi = 1, θi ≥ 0,

θi = 0 if x /∈ Ri,∀i ∈ J
}
.

(4)

Let the regions Ri be defined by smooth switching func-
tions cj(x), j ∈ C := {1, . . . , nc}. The definition of some set
Ri does not have to depend on all functions cj(x). Therefore,
with nc scalar functions we define up to nf ≤ 2nc regions.
For example:

R1 = {x ∈ Rnx | c1(x) > 0},
R2 = {x ∈ Rnx | c1(x) < 0, c2(x) > 0},

...
Rnf

= {x ∈ Rnx | c1(x) < 0, c2(x) < 0, . . . , cnc
(x) < 0}.

Note that the boundaries of the regions ∂Ri are subsets of
the zero-level sets of appropriate functions cj(x). We can
compactly express the definitions of the sets Ri via a matrix
S ∈ Rnf×nc , which in our example reads as:

S =




1 0 . . . 0
−1 1 . . . 0

...
... · · ·

...
−1 −1 . . . −1


 . (5)

It is not allowed for S to have a row with all zeros. The
sparsity in the matrix S arises from the geometry of the
regions Ri. Furthermore, for every region Ri, we define an
index set containing the indices of all switching functions
relevant to its definition, i.e.,

Ci = {j ∈ C | Si,j ̸= 0}, for all i ∈ J .

Now, the matrix S enables us to compactly express the
definitions of the regions Ri as:

Ri = {x ∈ Rnx | Si,jcj(x) > 0, j ∈ Ci}. (6)

The next question to be answered is: Given the definitions of
Ri via the switching functions c(x), how can we compute the
Filippov multipliers θ in (4)? To derive such expressions, we
make use of the set-valued step functions and the definition

https://github.com/nurkanovic/nosnoc
https://github.com/FreyJo/nosnoc_py


of the regions Ri via the switching functions cj(x). Let us
first illustrate the development so far with an example.

Example 1. We regard three regions defined via the switch-
ing functions c1(x) and c2(x): R1 = {x ∈ Rnx | c1(x) >
0}, R2 = {x ∈ Rnx | c1(x) < 0, c2(x) > 0} and
R3 = {x ∈ Rnx | c1(x) < 0, c2(x) < 0}, and the associated
vector fields fi(x), i = 1, 2, 3. By using (6) these sets can be
compactly defined via the matrix

S =




1 0
−1 1
−1 −1




Next, let α ∈ Γ(c(x)) ∈ R2. A selection of the Filippov set
(4) and the associated ODE reads as:

ẋ = α1f1(x)+(1− α1)α2f2(x)+(1− α1)(1− α2)f3(x).

By inspection, we conclude that θ1 = α1, θ2 = (1 − α1)α2

and θ3 = (1− α1)(1− α2). Since α1, α2 ∈ [0, 1] it is clear
that θi ∈ [0, 1], i = 1, 2, 3. Similarly, by direct calculation,
we verify that θ1 + θ2 + θ3 = 1. Observe that the entries
of Si,j determine how αj enters the expression for θi. For
Si,j = 1 we have αj , for Si,j = −1 we have (1 − αj) and
for Si,j = 0, αj does not appear in the expression for θi.

We generalize the patterns observed in our example and
define the set

FS(x) :=
{ nf∑

i=1

∏

j∈Ci

(1− Si,j

2
+Si,jαi

)
fi(x) | α∈Γ(c(x))

}
.

(7)

Note that we have

1− Si,j

2
+ Si,jαi =

{
αi, if Si,j = 1,

1− αi, if Si,j = −1.

Similar definitions of the set FS(x) can be found in [7,
Section 4.2] and [9, Section 2.1]. However, they are restricted
to fully dense matrices S and do not focus on developing
high-accuracy discretization methods for such systems. Next
we show that FS(x) is indeed the same set as FF(x), i.e.,
the set in the r.h.s. of (4).

Lemma 1 (Lemma 1.5 in [7]). Let a1, a2, . . . am ∈ R.
Consider the 2m non-repeated products of the form pi =
(1±a1)(1±a2) · · · (1±am), then it holds that

∑2m

i pi = 2m.

Proposition 2. Let

θi =
∏

j∈Ci

(1− Si,j

2
+ Si,jαj

)
, (8)

for all i ∈ J = {1, . . . , nf}, then it holds that FF(x) =
FS(x).

Proof. We only need to show that θi ≥ 0 for all i ∈ J and∑
i∈J θi = 1. It is easy to see that θi ∈ [0, 1] as it consists of

a product of terms that takes value in [0, 1]. Next we show

that
∑

i∈J θi = 1. We introduce the change of variables:
1+bj
2 = αj ,

1−bj
2 = 1− αj . Then all θi are of the form

θi = 2−|Ci|
∏

j∈Ci

(1± bj).

If the matrix S is dense we have that Ci = C for all i ∈ J
and nf = 2nc . By applying Lemma 1 we conclude that∑

i∈J θi = 1 and the proof is complete. On the other hand,
if the matrix S has zero entries, we have that nf < 2nc . We
extend sequence {θi}nf

i=1 to {θ̃l}2
nc

l=1, where the terms θ̃l are
defined as follows. If Ci = C, then θ̃i = θi. Now let Ci ⊂ C
and C \ Ci = {k}, i.e., only one Si,k in Si,• is zero. We can
use the simple identity θi = θi

(1+bk)
2 +θi

(1−bk)
2 , and let two

additional θ̃l be the two terms in the extended sum above.
Applying this procedure inductively we obtain for all i where
Ci ⊂ C terms θ̃l of the form (1±b1)

2 · · · (1±bnc )
2 . Now we can

apply Lemma 1 and conclude that
∑nf

i=1 θi =
∑2nc

l=1 θ̃l = 1.

B. The equivalent dynamic complementarity system

Next, we pass from the abstract definition of the Filippov
systems via set-valued step functions to the computationally
more practical formulation of a DCS. The complementarity
conditions encode all the combinatorial structure and nons-
moothness in the system but can still be efficiently treated
via derivative-based optimization methods [21], [4].

To perform this transition, we express the set-valued step
function Γ(c(x)) as the solution map of a linear program
parametric in x [1], [2]:

Γ(c(x)) = arg min
α∈Rnc

− c(x)⊤α (9a)

s.t. 0 ≤ αi ≤ 1, i = 1, . . . , nc. (9b)

Let λn, λp ∈ Rnc be the Lagrange multipliers for the
lower and upper bound on α in (9b), respectively. The KKT
conditions of (9) read as

c(x) = λp − λn, (10a)
0 ≤ λn ⊥ α ≥ 0, (10b)
0 ≤ λp ⊥ e− α ≥ 0. (10c)

We look closer at a single component αj and the associated
function cj(x). From the LP (9) and its KKT conditions,
one can see that for cj(x) > 0, we have αj = 1. From
(10a) and the complementarity condition (10b) it follows that
λp,j = cj(x) > 0. The lower bound is inactive, thus, λnj = 0.
Similarly, for cj(x) < 0, if follows that αj = 0, λpj = 0 and
λnj = −cj(x) > 0. Lastly, cj(x) = 0 implies that αj ∈ [0, 1]
and λpj = λnj = 0. From these discussions, it is clear that
c(x), λn and λp are related by following expressions:

λp = max(c(x), 0), λn = −min(c(x), 0). (11)

That is, λp collects the positive parts of c(x) and λn the
absolute value of the negative parts of c(x). From the
continuity of c(x(t)), it follows that the functions λp(t) and
λn(t) are continuous in t as well.



TABLE I: Expressions of θi for different definitions of Ri.

Definition Ri Expression θi
Ri = A θi = α1

Ri = A ∪B θi = α1 + α2

Ri = A ∩B θi = α1α2

Ri = int(Rnx \A) = {x | c1(x) < 0} θi = 1− α1

Ri = A \B θi = α1 − α2

Using KKT systems (10) and combining this with the
definition of the Filippov set in (7) and the expression for θi
in (8), we obtain the following DCS:

ẋ = F (x, u) θ, (12a)

θi =
∏

j∈Ci

1− Si,j

2
+ Si,jαj , for all i ∈ J , (12b)

c(x) = λp − λn, (12c)
0 ≤ λn ⊥ α ≥ 0, (12d)
0 ≤ λp ⊥ e− α ≥ 0, (12e)

where F (x) = [f1(x, u), . . . , fnf
(x, u)] ∈ Rnx×nf , θ =

(θ1, . . . , θnf
) ∈ Rnf and λp, λn, α ∈ Rnc . We group all

algebraic equations into a single function and use a C-
function Ψ(·, ·) for the complementarity condition to obtain
a more compact expression:

G(x, θ, α, λp, λn) :=




θ1 −
∏

j∈C1

1−S1,j

2 + S1,jαj

...

θnf
−∏

j∈Cnf

1−Snf ,j

2 + Snf ,jαj

c(x)− λp + λn

Ψ(λn, α)
Ψ(λp, e− α)




.

Finally, we obtain a compact representation of (12) in the
form of a nonsmooth DAE:

ẋ = F (x, u)θ, (13a)
0 = G(x, θ, α, λp, λn). (13b)

In Table I we summarize the elementary algebraic expres-
sions for the multipliers θi depending on the geometric
definition of the regions Ri. Thereby, we regard the two sets
A = {x ∈ Rnx | c1(x) > 0} and B = {x ∈ Rnx | c2(x) >
0}. All other more complicated expressions can be obtained
by combining these elementary operations.

III. FINITE ELEMENTS WITH SWITCH DETECTION

A. Standard Runge-Kutta discretization

As a starting point for our analysis, we regard a standard
RK discretization for the nonsmooth DAE formulation of
the DCS (13). We remind the reader that (13b) collects
all algebraic equations including the complementarity condi-
tions (12d)-(12e). For ease of exposition, we regard a single
control interval [0, T ] with a fixed control input q ∈ Rnu , i.e.,
we set u(t) = q for t ∈ [0, T ]. In Section III-E, we will treat
the discretization of OCPs with multiple control intervals. Let
x(0) = s0 be the initial value. The control interval [0, T ] is
divided into into NFE finite elements (integration intervals)
[tn, tn+1] via the grid points 0 = t0 < t1 < . . . < tNFE

= T .

In each finite elements we regard an ns-stage RK method
which is characterized by the Butcher tableau entries ai,j , bi
and ci with i, j ∈ {1, . . . , ns} [10]. The step sizes are
denoted by hn = tn+1 − tn, n = 0, . . . , NFE − 1. The
approximation of the differential state at the grid points tn
is denoted by xn ≈ x(tn).

We regard the differential representation of the RK
method. Hence, the derivatives of states at the stage points
tn,i := tn + cihn, i = 1, . . . , ns, are degrees of freedom.
For a single finite element, we group them in the vector
Vn := (vn,1, . . . , vn,ns

) ∈ Rnsnx . Similarly, the stage values
for the algebraic variables are collected in the vectors: Θn :=
(θn,1, . . . , θn,ns) ∈ Rns·nf , An := (αn,1, . . . , αn,ns) ∈
Rns·nc , Λp

n := (λpn,1, . . . , λ
p
n,ns

) ∈ Rns·nc and Λn
n :=

(λnn,1, . . . , λ
n
n,ns

) ∈ Rns·nc . We collect all internal variables
in the vector Zn = (xn,Θn, An,Λ

p
n,Λ

n
n, Vn).

The vector xnextn denotes the value at tn+1, which is
obtained after a single integration step. Now, we can state
the RK equations for the DCS (13) for a single finite element
as

0 = Grk(x
next
n , Zn, hn, q) := (14)




vn,1−F (xn + hn
∑ns

j=1 a1,jvn,j , q)θn,1
...

vn,ns−F (xn + hn
∑ns

j=1 ans,jvn,j , q)θn,ns

G(xn + hn
∑ns

j=1 a1,jvn,j , θn,1, αn,1, λ
p
n,1, λ

n
n,1)

...
G(xn+hn

∑ns

j=1ans,jvn,j , θn,ns
, αn,ns

, λpn,ns
, λnn,ns

)

xnextn − xn − hn
∑ns

i=1 bivn,i




.

Next, we summarize the equations for all NFE finite elements
over the entire interval [0, T ] in a discrete-time system
format. To simplify the statement, we need additional short-
hand notation to collect all variables, on all finite elements,
within the regarded control interval: x = (x0, . . . , xNFE

) ∈
R(NFE+1)nx , V = (V0, . . . , VNFE−1) ∈ RNFEnsnx and
h := (h0, . . . , hNFE−1) ∈ RNFE . Recall that the simple
continuity condition xn+1 = xnextn holds. We collect the
stage values of the Filippov multipliers in the vector Θ =
(Θ0, . . . ,ΘNFE−1) ∈ Rnθ and nθ = NFEnsnf . Similarly,
we collect the stage values of the algebraic variables specific
to the step representation in vectors A,Λp,Λn ∈ Rnα ,
where nα = NFEnsnc. Finally, we collect all internal
variables in the vector Z = (x,V,Θ,A,Λp,Λn) ∈ RnZ ,
where nZ = (NFE + 1)nx +NFEnsnx + nθ + 3nα.

All computations over a single control interval of the
standard RK discretization are summarized in:

s1=Fstd(Z), (15a)
0=Gstd(Z,h, s0, q), (15b)



where s1 ∈ Rnx is the approximation of x(T ) and

Fstd(Z) = xNFE
,

Gstd(Z,h, s0, q) :=




x0 − s0
Grk(x1, Z0, h0, q)

...
Grk(xNFE

, ZNFE−1, hNFE−1, q)


 .

In (15), h is a given parameter and implicitly fixes the
discretization grid. We proceed by letting h be degrees of
freedom and introduce the cross complementarity conditions.

B. Cross complementarity

For brevity, we regard in this paper only RK methods with
cns

= 1, which already covers many schemes, e.g., Radau
IIA and several Lobatto methods [10]. This means that the
right boundary point of a finite element is a stage point since
tn+1 = tn + cnshn. We will provide extensions for cns ̸= 1
in future work.

As in any event based method, we assume that there is a
finite number of switches. To be able to detect all switches,
we assume that NFE is greater then total the number of
switches. Our goal is to derive additional constraints that
will allow active-set changes only at the boundary of a finite
element. Moreover, in this case, the step size hn should adapt
such that all switches are detected exactly. Note that in the
standard discretization, at every RK-stage point, we have for
n = 1, . . . , NFE, the complementarity conditions:

0 ≤λnn,m ⊥ αn,m ≥ 0, m = 1, . . . , ns, (16a)

0 ≤λpn,m ⊥ e− αn,m ≥ 0, m = 1, . . . , ns. (16b)

As a first step, we exploit the continuity of the Lagrange
multipliers λp and λn. For this purpose, we regard the
boundary values of the approximation of λp and λn on
an interval [tn, tn+1], which are denoted by λpn,0, λnn,0
at tn and λpn,ns

, λnn,ns
at tn+1. We impose a continuity

condition for the discrete-time versions of λp and λn for
n = 0, . . . , NFE − 1:

λpn,ns
= λpn+1,0, λ

n
n,ns

= λnn+1,0, (17)

In the sequel, we use only the right boundary points λpn,ns

and λnn,ns
, which are for cns = 1, already variables in the

RK equations (15).

Remark 3. It is important to note that λp0,0 and λn0,0 are
not defined via Eq. (17), as we do not have a preceding
finite element for n = 0. However, they are crucial for
determining the active set in the first finite element. They
are not degrees of freedom but can be pre-computed for a
given x0. Using equation (11) we have λp0,0 = max(c(x0), 0)
and λn0,0 = −min(c(x0), 0).

At a switch of the PSS, i.e., at an active-set change in
the DCS (12), we have ci(x) = 0. From Eq. (17) and, due
to continuity, it follows that λpi (t) and λni (t) must be zero
at an active-set change, as well. Moreover, on an interval
t ∈ (tn, tn+1) with a fixed active set, the components of these
multipliers are either zero or positive on the whole interval.

We must now impose that their discrete-time counterparts,
i.e., the stage values λpn,m and λnn,m, have similar properties.
We achieve this with the cross complementarity conditions,
which read for n = 0, . . . , NFE−1, m = 1, . . . , ns, m

′ =
0, . . . , ns, and m ̸= m′ as:

0 = diag(λnn,m′)αn,m, (18a)

0 = diag(λpn,m′)(e− αn,m), (18b)

In contrast to Eq. (16), we have conditions relating variables
corresponding to different RK stages within a finite element.

We formalize the claims about the constraints (18) in the
next lemma. Recall that in our notation, αn,m,j is the j-th
component of the vector αn,m.

Lemma 4. Regard a fixed n ∈ {0, . . . , NFE−1} and a fixed
j ∈ C. If any αn,m,j with m ∈ {1, . . . , ns} is positive, then
all λnn,m′,j with m′ ∈ {0, . . . , ns} must be zero. Conversely,
if any λnn,m′,j is positive, then all αn,m,j are zero.

Proof. Let αn,m,i be positive, and suppose λnn,j,i = 0
and λnn,k,i > 0 for some k, j ∈ {0, . . . , ns}, k ̸= j, then
αn,m,iλ

n
n,k,i > 0 which violates (18), thus all λnn,m′,i =

0, m′ ∈ {0, . . . , ns}. The converse is proven similarly.
An analogous statement holds for λpn,m and (e − αn,m).

For the switch detection, it is crucial to include the boundary
points of the previous finite element in the cross complemen-
tarity conditions (18), namely λpn+1,0 = λpn,0 and λnn+1,0 =
λnn,0. A consequence of Lemma 4 is that, if the active-set
changes in the j-th component between the n-th and n+1-st
finite element, then it must hold that λpn,ns,j

= λpn+1,0,j = 0
and λnn,ns,j

= λnn+1,0,j = 0. Since xnextn = xn+1, we have
from (10a) and (14) the condition

cj(xn+1) = 0,

which defines the switching surface between two regions.
Therefore, we have implicitly a constraint that forces hn to
adapt such that the switch is detected exactly.

For clarity, the conditions (18) are given in their sparsest
form. However, the nonnegativity of αn,m, λ

p
n,m and λnn,m

allows many equivalent and more compact forms. For in-
stance, we can use inner products instead of component-
wise products, or we can even summarize all constraints for
a finite element or all finite elements in a single equation, cf.
[19], [16] for a similar discussion. We collect the conditions
(18) into the equation Gcross(A,Λ

p,Λn) = 0.

C. Step equilibration

To complete the derivation of the FESD method for
(12), we need to derive the step equilibration conditions.
If no active-set changes happen, the cross complementarity
constraints (18) are implied by the standard complementarity
conditions (16). Therefore, we end up with a system of
equations with more degrees of freedom than conditions. The
step equilibration constraints aim to remove the degrees of
freedom in the appropriate hn if no switches happen. We



achieve the goals outlined above via the equation:

0 = Geq(h,A,Λ
p,Λn) :=


(h1 − h0)η1(A,Λ

p,Λn)
...

(hNFE−1 − hNFE−2)ηNFE−1(A,Λ
p,Λn)


 ,

(19)

where ηn is an indicator function that is zero only if a switch
occurs, otherwise its value is strictly positive. In other words,
if a switch happens, the n-th condition in (19) is trivially
satisfied. Otherwise, it provides a condition that removes the
spurious degrees of freedom. For brevity, we omit to derive
the expressions for ηn. They can be obtained by similar
reasoning as in [19, Section 3.2.3].

D. Summary of the FESD discretization
We have now introduced all extensions needed to pass

from a standard RK (15) to the FESD discretization. With a
slight abuse of notation, we collect all equations in a discrete-
time system form:

s1=Ffesd(Z), (20a)
0=Gfesd(Z,h, s0, q, T ), (20b)

where Ffesd(x) = xNFE
is the state transition map and

Gfesd(x,h,Z, q, T ) collects all other internal computations
including all RK steps within the regarded time interval:

Gfesd(Z,h, s0, q, T ) :=




Gstd(Z,h, s0, q, T )
Gcross(A,Λ

p,Λn)
Geq(h,A,Λ

p,Λn)∑NFE−1
n=0 hn − T


 . (21)

Here, the control variable q, horizon length T , and initial
value s0 are given parameters, but h are degrees of freedom.

E. Direct optimal control with FESD
Next, we discretize this OCP using the FESD method.

The discretization process is fully automated within
NOSNOC [16]. Consider N ≥ 1 control intervals of equal
length, indexed by k. We take piecewise constant control
discretization, where the control variables are collected q =
(q0, . . . , qN−1) ∈ RNnu . All considerations can be easily
extended to different control parametrizations. We add the
index k to all internal variables. On each control interval k,
we use the FESD discretization (20) with NFE internal finite
elements. The state values at the control interval boundaries
are grouped in the vector s = (s0, . . . , sN ) ∈ R(N+1)nx .
In Z = (Z0, . . . ,ZN−1) all internal variables, and in H =
(h0, . . . ,hN−1) we collect all step sizes.

The discrete-time variant of (1) read as:

min
s,q,Z,H

N−1∑

k=0

L̂(sk,xk, qk) +R(sN ) (22a)

s.t. s0 = x̄0, (22b)
sk+1 = Ffesd(xk), k = 0, . . . , N−1, (22c)
0 = Gfesd(xk,Zk, qk), k = 0, . . . , N−1, (22d)
0 ≥ Gp(sk, qk), k = 0, . . . , N − 1, (22e)
0 ≥ Gt(sN ), (22f)
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Fig. 1: Accuracy vs. step size: Simulation of example (23)
with different RK schemes and step sizes. The number next
to the method’s name is the order of the underlying RK
method.

where L̂ : Rnx×R(NFE+1)nsnx×Rnu → R is the discretized
running costs. Due to the complementarity constraints in the
FESD discretization, (22) is an MPCC. In practice, MPCCs
can usually be solved efficiently by solving a sequence of
related and relaxed NLPs within a homotopy approach. Such
an approach, with some of the standard reformulations [21],
[4], is implemented in NOSNOC. The underlying NLPs are
solved via IPOPT [24] called via its CasADi interface [3].

IV. NUMERICAL EXAMPLES

We show on a numerical simulation example that FESD
recovers the order of accuracy that RK methods have for
smooth ODEs. We further use a hopping robot OCP example
modeled as a system with state jumps in order to show that
the step reformulation can outperform Stewart’s reformula-
tion used in [19].

A. Integration order experiment

We compare the standard RK time-stepping method for
DCS from Eq. (15) to FESD (20) on a simulation example
from [19]. Regard the PSS:

ẋ = fi(x), if x ∈ Ri, (23)

with f1(x) = A1x, f2(x) = A2x, c(x) = ∥x∥22 − 1, R1 =
{x | c(x) < 0}, R2 = {x | c(x) > 0}. The system matrices
are

A1 =

[
1 2π

−2π 1

]
, A2 =

[
1 −2π
2π 1

]
.

The initial value is x(0) = (e−1, 0) and we regard an the in-
terval t ∈ [0, T ] with T = π

2 . It can be shown that the switch
happens at ts = 1 and that x(T ) = (exp (T−ts) cos(ω(T−
ts)),− exp (T−ts) sin(ω(T−ts))), for T > ts. Thus, given a
numerical approximation x̂(t), we can determine the global
integration error E(T ) = ∥x(T ) − x̂(T )∥ and observe the
accuracy order of the integrator for a varying step size h.

Figure 1 shows the results of our experiment for the Radau
IIA methods. In all cases, the standard RK time-stepping (15)
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has, as expected, only first-order accuracy, i.e., O(h). The
FESD method (20) detects the switch and recovers the high
integration order properties of the underlying RK method,
i.e., O(hp) with p = 2ns − 1.

B. Optimal control example with state jumps

We regard the example of a planar hopper with state jumps
and friction. Using the time-freezing reformulation, we can
transform the system with state jumps into a PSS of the
form of (3) [18]. The system is inspired by a reaction wheel
and force-controlled single leg as described by [20]. It is
assumed that the inertia matrix is a constant diagonal matrix
M = diag(mb +ml,mb +ml, Ib + Il,ml), where mb = 1
is the mass of the body, ml = 0.25 is the mass of the link,
Ib = 0.25 the inertia of the body, and Il = 0.025 the inertia
of the link.

The configuration q = (q1, q2, ψ, l) consists of the 2D
position, orientation, and leg length, respectively. The re-
sulting PSS state consists of the position q(τ), velocity v(τ)
and clock state t(τ) (needed for time-freezing, cf. [18]),
i.e., x = (q, v, t) ∈ R9. The robot makes contact with
the ground with the tip of its leg, and the gap function
is given by fc(q) = q2 − l cos(ψ). We also make use
of the contact normal Jn(q) = (0, 1, l sin(ψ),− cos(ψ)),
and tangent Jt(q) = (0, 1, l cos(ψ), sin(ψ)). For the time-
freezing reformulation, we regard three switching functions:
the gap function, as well as the normal and tangential contact
velocities:

c(x) = (fc(q), Jn(q)
⊤v, Jt(q)

⊤v).

They define the three regions:

R1 = {x ∈ Rnx | fc(q) > 0}
∪ {x ∈ Rnx | fc(q) < 0, Jn(q)

⊤v > 0},
R2 = {x ∈ Rnx | fc(q) < 0, Jn(q)

⊤v < 0, Jt(q)
⊤v > 0},

R3 = {x ∈ Rnx | fc(q) < 0, Jn(q)
⊤v < 0, Jt(q)

⊤v < 0}.
In region R1, we define the unconstrained (free flight)
dynamics of the robot, and in regions R2 and R3, auxiliary
dynamics that mimic state jumps in normal and tangential
directions due to frictional impacts, cf. [18]:

f1(x, u) = (q,M−1fv(q, u), 1),

f2(x) = (04,1,M
−1(Jn(q)− Jt(q)µ)an, 0),

f3(x) = (04,1,M
−1(Jn(q) + Jt(q)µ)an, 0),

with fv(q, u) = (− sin(ψ)u2, (mb+ml)g+cos(ψ)u2, u1, u2)
summarizing all forces acting on the robot, u = (u1, u2) ∈
R2 are the controls, µ = 0.45 is the coefficient of friction,
g = 9.81 the gravitational acceleration constant, and an =
100 is the auxiliary dynamics constant [18]. Note that the
clock state dynamics are dt

dτ = 1 in R1, and dt
dτ = 0 in

R2 and R3. Solution trajectories of the PSS are continuous
in time. However, by taking the pieces of the trajectory
where dt

dτ > 0, we recover the solution of the original
system, cf. [18]. To demonstrate the efficiency gained via
the step function approach, we run an experiment in which
the hopper attempts to cross 5 meters with a given reference
trajectory of 5 jumps in T = 5 seconds. The initial value is
x(0) = (0.1, 0.5, 0, 0.5, 0, 0, 0, 0). Given a reference xref(t),
we define the least-squares objective with the running and
terminal costs:

L(x(τ), u(τ)) = (x(τ)− xref(τ))⊤Q(x(τ)− xref(τ))

+ ρuu(τ)
⊤u(τ),

R(x(T )) = (x(T )− xref(T )⊤QT (x(T )− xref(T )),

Q = diag(100, 100, 20, 20, 0.1, 0.1, 0.1, 0.1, 0) ρu = 0.01,
and QT = diag(300, 300, 300, 300, 0.1, 0.1, 0.1, 0.1, 0). We
define the path constraints:

xlb ≤ x ≤ xub, (24a)
ulb ≤ u(t) ≤ uub, (24b)

Jt(q)
⊤v(1− α1)(1− α2) = 0, (24c)

where xub = (5.1, 1.5, π, 0.5, 10, 10, 5, 5,∞), xlb =
(0, 0,−π, 0.1,−10,−10,−5,−5,−∞), uub = (50, 50), and
ulb = −uub. The last equality constraint (24c) models the
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Fig. 4: The total CPU time of the homotopy loop for different
N (left plot) and the CPU time per NLP solver iteration (right
plot).

following: If the normal contact force, which is proportional
to (1−α1)(1−α2), is nonnegative (cf. [18]), then Jt(q)⊤v =
0. This prevents the optimizer from choosing controls that
lead to a lot of slipping when the robot is on the ground.
Collecting all the above, we can formulate an OCP of the
form of (1), which we discretized with the FESD Radau IIA
scheme of order 3 (ns = 2), with NFE = 3 finite elements
on every control interval. The OCP is discretized and solved
with nosnoc py in a homotopy loop with IPOPT [24].

Several frames of an example solution (N = 100) can be
seen in Figure 2. Figure 3 shows the normal and tangential
velocity of the foot tip, and optimal controls. Next, we
solve this OCP for 10 different values N (number of control
intervals) from 50 to 100 in increments of 5 and compare
it to the FESD derived for Stewart’s reformulation [19]. We
plot the CPU time per NLP iteration and total CPU time
for both approaches in Figure 4. The step reformulation
leads to faster NLP iterations than the Stewart reformulation,
since it needs less variables. The overall computation time
is governed by many factors (homotopy loop, initialization,
NLP solver performance, etc.) and as such shows a less clear
trend. However, we see that in most cases the step approach
is still faster by up to 50%.

V. CONCLUSION AND OUTLOOK

This paper introduced an extension of the Finite Ele-
ments with Switch Detection (FESD) [19] to optimal control
and simulation problems with nonsmooth systems with set-
valued step functions. This formulation covers a broad spec-
trum of practical problems. We show in numerical examples
that depending on the switching functions and geometry of
the underlying piecewise smooth system it can be computa-
tionally more efficient than the formulation in [19]. Several
extensions, more numerical benchmarks and a theoretical
analysis of the proposed method is available in the journal
version of this paper [17].
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