
Robust decentralised proof-of-position algorithms for smart city applications

Aida Manzano Kharman amm3117@ic.ac.uk1, Pietro Ferraro1, Anthony Quinn1,2, and Robert Shorten1

1Imperial College London, Dyson School of Design Engineering
2Trinity College Dublin, Electronic and Electrical Engineering

Abstract— We present a decentralised class of algorithms
called Tree-Proof-of-Position (T-PoP). T-PoP algorithms rely on
the web of interconnected devices in a smart city to establish
how likely it is that an agent is in the position they claim to
be. T-PoP operates under adversarial assumptions, by which
some agents are incentivised to be dishonest. We present a
theoretical formulation for T-PoP and its security properties,
and we validate this model through a large number of Monte-
Carlo simulations. We specifically focus on two instances of T-
PoP and analyse their security and reliability properties under
a range of adversarial conditions. Use-cases and applications
are discussed towards the end of this paper.

I. INTRODUCTION

A basic problem across a range of application areas is
the need for decentralised agents to be able to certify their
position in a trustworthy and certifiable manner. For example,
in crowd-sourcing applications arising in the context of smart
cities, the need for agents to certify their position in a
trustworthy manner is essential; one such use-case arises
when vehicle cameras are used to identify parking spot
locations or vacant or available electric charge points [1].
Other examples of this nature are emerging in the context
Smart Mobility applications when vehicles need to prove
their location to avail of certain services; for example, in
the case of hybrid vehicles using their electric engine mode
in a city to avoid an environmental charge (as in London);
when making use of a fast or slow lane on a highway and
paying the associated charge; or when infotainment services
are offered to vehicles when adopting certain positions.

Our objective in this paper is to propose a suite of
algorithms whereby agents may certify their position collab-
oratively, but in a decentralised manner. Our algorithms are
designed to be robust in the sense that they do not require
the use of centralised infrastructure, and in the sense that
they are designed to operate successfully in an adversarial
environment (in the presence of agents that are interested in
coercing the system for their own personal objectives). The
need to be independent of a centralised authority is funda-
mental to our work, as such authorities may be compromised
or a subject to data and privacy leaks [2]. While our original
motivation arises from automotive applications, the work
presented here is relevant and may find application in other
disciplines and applications, and may also help to encode
basic elements of fairness, social justice and civil rights.
More specifically, in an era characterised by fake news,
and deep fake technology, the ability to associate sensing
information with a verifiable geographic position, is not only

essential in establishing the veracity of sensed information,
but also in developing robust decision making analytics based
on this data. Currently across many such applications, sensed
information is assumed more trustworthy if a number of
people agree on it. In scenarios where we cannot verify
ourselves what happened, we search for ‘truth’ by listening
to our peers and believing what a majority claims [3].
So our research question becomes: how can we provide
agents with the ability to claim that they are at a given
place in time, without hinging the security of our protocol
on the honesty of a centralised power? While we are not
the first to attempt to address the aforementioned research
question, upon exploring existing solutions, we found that
none addressed the requirements of applications in smart city
contexts. Namely, the solution must be truly decentralised,
and it must be robust to attacks whilst preserving user
privacy.

Our work is motivated by recent developments in dis-
tributed ledger technologies (DLT); in particular, in the
design of distributed acyclic graph based distributed ledgers.
However, while the design of such ledgers is concerned with
architectures that can provide peer-to-peer trustworthy record
keeping, we are interested in realising DAG-based algorithms
that encode reliable position information.

A. Related Work

Several papers been published on the topic of proof-of-
position; see for example [4], [5], [6], [7], [8]. Most of these
papers are unsuitable for the type of applications that we
are interested in due to unrealistic trust assumptions and de
facto centralisation in the systems that they propose. In the
remainder of this section we give a snapshot of some of this
prior work.

An early example of a decentralised proof-of-location
scheme, termed APPLAUS, was presented in [9]. The AP-
PLAUS scheme makes a number of valuable contributions;
namely it looks to address collusion attacks using graph
clustering and computing a ‘betweeness’ metric. In [10],
nodes in the graph that are weakly connected are considered
less trustworthy. They also present a weight function that
decays with time, and compute the trustworthiness of a node
by calculating a node’s ratio of approvals to neighbours.
These contributions serve as a starting point to the work
here presented. However, in their work, users must register
their public/private keys with a trusted Certificate Authority,
thereby breaking an assumption of being truely decentralised.

ar
X

iv
:2

30
4.

13
54

3v
1

 [
cs

.D
C

]
 3

1
M

ar
 2

02
3

A focal point of our work is that we do not assume a trusted
centralized authority, and indeed we argue that introducing
this assumption makes a system de-facto centralised and
poses security and privacy risks. Another algorithm known
as SHARP is introduced in [11]. Here, the authors present a
private proximity test that does not require a user to reveal
their actual location to a server, and furthermore, they present
a secure handshake method wherein users do not need to
have a pre-shared secret. A noteable contribution in this work
is that a witness1 may only extract the session key if they are
indeed in the vicinity of the prover 2. The security metric in
this work is to ensure that the location tags are unforgeable,
thus implying that the protocol is robust towards location
cheating. A weakness of the protocol is that a user in a
given location can generate a valid proof and they could then
relay this valid proof to a malicious agent that is not in the
same location as them. Another algorithm known as Vouch +
is presented in [12]. This is another decentralised approach
to prove location, with a focus on addressing high speed
and platooning scenarios. The major disadvantage of the
work presented is that its security relies on selecting a proof
provider that is honest. This assumption, in our opinion, is
too strong. We aim to develop a protocol wherein the prover
could lie, and the system would still have a probabilistic
guarantee of detecting this. As another example, SPARSE,
the protocol presented in [4] does not allow the prover
to pick their own witnesses, making collusion significantly
harder. Furthermore, SPARSE does address necessary secu-
rity concerns, and achieves integrity, unforgeability and very
importantly: non-transferability. However, similarly to [12],
the prover is assumed to be a trusted entity which supposedly
does not publish users’ identity and data.

B. Contributions

We present a generalised model for a class of decen-
tralised, proof-of-position algorithms. We also present a
mathematical model to describe the operation of this class of
algorithm and to facilitate further analysis. Simulations are
also presented that validate our mathematical model, and we
present a framework for users to tailor the operating condi-
tions of the algorithm to satisfy their security and reliability
requirements. We also provide probabilistic guarantees of
detecting dishonest provers and collusion attacks.

Comment: The algorithm can also be implemented in a
privacy preserving manner given that T-PoP does not require
the agent running the algorithm to actually reveal their true
position, but rather a cryptographic commitment [13] to one’s
position suffices. Depending on the security requirements
of the application, T-PoP users can pick a commitment
scheme with varying binding and hiding, as long as the
commitment scheme supports the computation of Euclidean
distance between two points.

Finally, we do not constrain the freedom of adversarial
agents to misbehave. We consider not only the possibility

1An agent that will verify to seeing another agent wishing to prover their
position.

2An agent that wishes to prove their position.

of them being dishonest about their own position, but also
colluding to lie about other agents’ position.

C. Structure of the paper

Our paper is structured as follows: first we introduce the
T-PoP protocol and explain its functioning in section II,
next we present a theoretical model for the T-PoP class of
algorithms in section III and finally we simulate T-PoP in
a more realistic scenario in section IV, thus validating our
theoretical model too.

II. TREE - PROOF OF POSITION PROTOCOL

We begin by providing a high level explanation of how
the protocol operates. Subsequently, we will provide the
necessary definitions for each stage of and explain them
in a detailed manner. We assume that agents willing to
participate in the protocol are situated in a two dimensional
area T ⊆ R2 (the protocol can be seamlessly extended to a
three-dimensional space). Each agent ai is characterised by
their true position si = (xi, yi) ∈ T and by their claimed
position ŝi = (x̂i, ŷi) ∈ T while the set of all agents is
denoted by A. Notice that it is possible that ŝi 6= si (in the
event an agent is lying). An agent, aj , is (allegedly) ai’s
neighbour if ||ŝi − ŝj || < ri, where ri > 0 is each agent’s
range-of-sight. T-PoP is performed in three steps, as depicted
in Figure 1:
• Commit: At the beginning of T-PoP, each agent, ai ∈
A, commits to their claimed position, ŝi nd publishes
ŝi on a distributed ledger (DL). This ensures that the
agent’s commitment3 cannot be changed later.

• Tree Construction: Each agent, ai, then constructs a
tree of depth d ∈ N+, incorporating the committed
positions of agents, called witnesses, at levels l ∈
{0, . . . , d}. A specific ai—which we denote as g—is
the root of the resulting tree. These g ∈ A-indexed trees
are also committed to the DL as they are part of the
proof-of-position protocol. For every prover, g, the tree
is constructed as follows:

– g is is the root node at level 0.
– For each l ∈ {1, ..., d}, each node at level l−1 will

name wl witnesses. A witness at level l is an agent,
aj , that is a neighbour (see above) of a witness,
ai ∈ Wl−1, at level l − 1 (note that if ŝi 6= si and
ai is lying about their position it is possible that ai
and aj might not actually be true neighbours). ai
is called the parent of witness aj . The set of all
witnesses at level l is called Wl, with |Wl| ≡ nl.

3The only necessary requirement for our protocol is that the commitment
is binding [13] To ensure user privacy, we favour schemes that allow for
the computation of the Euclidean distance between two points which can
be achieved by leveraging encryption schemes that are fully homomorphic.
It is also necessary to achieve non-repudiation, which can be done through
the use of digital signatures. Frequently used examples include [14] and
[15]. This ensures an agent cannot later deny having claimed to be in a
given position [16]. Finally, non-transferability is needed to ensure that if an
honest prover generated a valid location proof through T-PoP, they cannot
then transfer their honest proof to a malicious actor. A user’s identity is
unique upon being issued, and should this be in the form of a private key,
we introduce the assumption that users do not share it.

Fig. 1: High-level Overview of the T-PoP protocol

– If aj , was named a witness at some point in the
tree, it should not be named again by another
agent. Otherwise, if this happens, the prover will
be considered dishonest.

In practice, the root node g, names w1 witnesses who
in turn would each name w2 witnesses and so on, until
we reach depth d. The number of witnesses per level,
nl, can therefore be computed recursively:

nl = wlnl−1, l = 1, . . . , d, (1)

with n0 ≡ 1. Figure 2 depicts the operation of this
process.

• Verification: The agent wishing to prove their position
runs the verification stage with the tree as an input,
initialized with l = d.

1 Each witness at level l states whether their parent
at level l−1 is their neighbour or not. If the answer
is yes, and the witness has not yet been named in
the tree, this witness becomes a confirmed level
l witness. The total number of confirmed level l
witnesses is denoted as Ml ≤ nl, and the total
number of witnesses that confirm parent b at any
level, l, is denoted by Kb ≤ wl. It follows that

Ml =
∑
b∈Wl

Kb ≤ nl (2)

2 If Kb < t·wl, t ∈ (0, 1], parent b is eliminated from
the tree. Here, t is a parameter of T-PoP, called the
threshold, which is used to regulate the Security
and Reliability properties of the algorithm, defined
in Section III.

3 If Ml < t · nl then the algorithm interrupts and
outputs that root g is lying about their position.
Otherwise we move on to level l−1 and we repeat
this process. Note that any parent removed by the
previous step will not be included in this next
iteration of T-PoP.

T-PoP is therefore an algorithm depending on a set of
parameters, θ ≡ {t, d, w1, ..., wd}. The influence of these
parameters on the performance of the algorithm will be
explored in Section IV, via two examples. The pseudo-
code for the Tree Construction and Verification stages of the
protocol can be found in Algorithms 1 and 2 respectively.

Example: Consider the T-PoP example in Figure 3, in
which θ = {t = 0.5, d = 2, w1 = 2, w2 = 2}, and so n1 = 2
and n2 = 4 (1). Solid arrows mean that a witness approves

Fig. 2: Tree building examples. Agent ai commits their
alleged position ŝi to a distributed ledger. The panel on the
top right shows the construction of a tree for d = 1 and
w1 = 4, while the panel on the bottom right shows the
construction of a tree for d = 2, w1 = 2, w2 = 2.

their parent and dotted lines mean that a witness does not
approve their parent. Agents a5 and a6 are dishonest agents,
so that their committed positions, ŝ5 and ŝ6, are different
from their true positions. However, agent a2 does not know
this, it saw those cars next to it and it picked a5 and a6
as witnesses. So, a5 and a6 do not confirm that a2 is a
neighbour of theirs, whereas a3 and a4 confirm that a1 is
a neighbour of theirs. In line with point 2 of Verification
(above), agent a1 has enough confirmed witnesses (Ka1

=
2 ≥ t × w2 = 0.5 × 2) and stays in the tree, while agent
a2 does not have enough confirmed witnesses (Ka2 = 0 <
0.5×2), and so a2 is removed from the tree. However, since
the total number of confirmed witnesses at level 2 is M2 =
2 ≥ t×n2 = 0.5×4, T-PoP does not stop for g (Verification,
point 3), and we move to level 1. At level 1, a2 has been
removed but a1 confirms that g is its neighbour. As per points
2 and 3 of Verification, the final output of T-PoP is that g
is truthful about their position. t is critical in determining
the output of T-PoP. For instance, if t = 1, then M2 = 2 <
t × n2 = 1 × 4 = 4, causing T-PoP to stop at point 3 of
Verification, and returning an output of untruthful for g.

A. Possible Adversarial Behaviours

In order to analyse the properties of T-PoP, we introduce
two qualities that each agent, ai ∈ A, will exhibit:

Definition 1 (Honest and Dishonest agents). Every ai ∈ A
is either honest or dishonest. The set of honest agents is
denoted by H ⊆ A, and the set of dishonest agents is denoted
by H . A dishonest agent will always commit a position ŝi 6=
si. A honest agent on the other hand will always commit a
position ŝi = si.

Definition 2 (Coerced and Non-Coerced Agents). Every ai ∈
A is either coerced or non-coerced. The set of coerced agents
is denoted by C ⊆ A, and the set of non-coerced agents by
C. A coerced agent will claim to see agents that are not
actually in its vicinity, if the latter are dishonest.

(a) We start by evaluating the outer level of the tree and we
evaluate the witnesses in W2. Agents a5 and a6 while a2 is a
honest agent. Therefore a5 and a6 will not confirm that they
see agent a2. This leads to agent a2 being eliminated from the
tree.

(b) We go down one level and now we evaluate the witnesses
in W1. a2 has been eliminated by the tree (shown in grey in
this image) and all the is left is a1.

Fig. 3: Example of T-PoP algorithm with d = 2, w1 =
2, w2 = 2.

ai will interact with its neighbours in different ways—as
defined next—depending on which of the four possible states
it falls into with respect to the two 2-state classes above.

Definition 3 (Neighbour-adding logic). Every agent, ai ∈ A,
adds neighbours, aj , according to the following logic:
• If ai ∈ H , it can add aj as a neighbour if aj’s position,

is within the range-of-sight ri, of ai’s fake position,
ŝi 6= si. This implies that ai checks who is in the ri-
neighbour of the fake position that they committed.

• If ai ∈ H , it can add aj as a neighbour if aj’s
committed position is within the range-of-sight, ri, of
ai’s true position, si.

• If ai ∈ C, it can only add aj’s true position, sj , if this
is within ai’s range-of-sight, ri.

• If ai ∈ C, it can add aj’s true position, sj , if aj is
honest, and its fake position, ŝj , if aj is dishonest.

III. THEORETICAL ANALYSIS

The stochastic nature of T-PoP is modelled via the prob-
abilistic graphical model in Figure 4, for the case where
d = 2, w1 = 2, w2 = 2. We assume that the Honesty
and Coercion states of each agent are independently and
identically distributed (iid) Bernoulli trials. Formally, for
each agent, we define two independent random variables,
h ∼ B(ph) and c ∼ B(pc), where ph ∈ [0, 1] and pc ∈ [0, 1]
are the probabilities of any agent being honest and coerced,
respectively (and it follows that 1 − ph and 1 − pc are the
probabilities of an agent being respectively dishonest and

Algorithm 1 Tree Construction

Require: Prover ai, Depth d, Number of witnesses
w1, ..., wl

1: Initialise ai as the root of the tree G and as a witness
of level 0

2: for l = 0, 1, ..., d− 1 do
3: for Each witness a at level l do
4: a names wl+1 witnesses among its neighbours
5: All the named neighbours are added as nodes

of G at level l + 1, with a as parent node
6: end for
7: end for
8: return G

Algorithm 2 Verification

Require: Tree G, Threshold t
1: Initialise M0,M1, ...,Ml−1 to 0
2: for l = d− 1, d− 2, ..., 0 do
3: for Each witness a at level l do
4: Set C = 0
5: for Each b that has been named by a do
6: if b confirms a and b unique in G then
7: C ←− C + 1
8: Ml ←−Ml + 1
9: end if

10: end for
11: if C < twl+1 then
12: Remove b from G
13: end if
14: end for
15: if Ml < #{witnesses at level l + 1}t then
16: return False
17: end if
18: end for
19: return True

non-coerced). Depending on the outcome of these trials for
a witness at level l, it will then deterministically confirm that
the witness at level l−1, which named them, is its neighbour
or not (note that agents might be lying about whether
another agent is their true neighbour or not). The outcome
of this interaction has been described in definition 3, and is
summarized in the truth table (Table I). If agent, ai, verifies
agent aj’s position, the outcome is 1, and 0 otherwise. In
this model, we assume that the density of agents in T is
very high. This means that while provers construct their
tree following Algorithm 1, they are always able to find
wl witnesses at each level and that each witness is always
unique. While this assumption might sound unrealistic, as
in many cases agents might be alone and not have enough
witnesses around them, we believe that studying the outcome
of the model in this high-density scenario provides a good
assessment of the qualities of T-PoP. Indeed, we argue that
if an agent is honest but does not have sufficient witnesses,
it is fair to consider them less trustworthy. Once the tree has

Fig. 4: Probability Model of T-PoP with parameters d =
2, w1 = 2, w2 = 2. The red lines indicate that those variables
influence the output of a specific node.

ai

aj
h and c h and c h and c h and c

h and c 1 1 1 1

h and c 1 1 0 0

h and c 1 0 1 0

h and c 1 0 0 1

TABLE I: A truth table showing confirmation (1) or rejection
(0) of a parent’s (ai) position by a witness (aj), depending on
the honesty (h) and coercion (c) states of each agent. Notice
that the relationship between ai and aj is symmetrical.

been created, the Verification step can be used to provide
the outcome of the algorithm, which can be either 0 (if the
algorithm deems the prover dishonest) or 1 (if the algorithm
deems the prover honest). Given a prover, g (the root of the
tree), we define a random variable, C(g) ∈ {0, 1}, whose
outcome depends on the ensemble of iid random variables,
h, c, in its constructed tree, and on T-PoP parameters, θ ≡
{t, d, w1, ..., wd}. In order to analyse T-PoP’s performance,
we consider two metrics: reliability and security.

Definition 4. Security, S, is a conditional probability quan-
tifying the ability of the algorithm to detect malicious agents.
Specifically, it is the true-negative conditional probability,
which, under stationarity assumptions, is independent of
i ∈ {1, . . . , |A|}:

S ≡ Pr[C(g) = 0|ai ∈ H]

Definition 5. Reliability, R, is a conditional probability
quantifying the ability for the algorithm to detect honest
agents. Specifically, it is the true-positive conditional prob-
ability. Once again, under stationarity assumptions:

R ≡ Pr[C(g) = 1|ai ∈ H]

In Figure 5, we display empirically evaluated R and
S for two sets of parameters, respectively θ1 = {t =

1, d = 1, w1 = 6} and θ2 = {t = 1, d = 2, w1 =
2, w2 = 2}, varying ph and pc in their ranges, [0, 1], with
steps of 0.02. To emphasize the functional dependence of
these probabilistic performance metrics on the honesty and
coercion probabilities of the iid agents, we denote these these
metrics by R(ph, pc) and S(ph, pc). The values for R(ph, pc)
and S(ph, pc) are obtained through empirical evaluation via
extensive Monte Carlo simulations (we simulated 5000 trees
for each choice of parameters) of the graphical model.

IV. SIMULATIONS

In this section we present an agent-based simulator, coded
in Python, to replicate a more realistic scenario for T-
PoP and to validate the graphical theoretical model that
we presented in the previous Section. Each agent has a
number of varying attributes such as their range-of-sight,
position, velocity, unique identifier and whether they are
honest or dishonest and coerced or not. Depending on
the latter variables, each agent will commit to their true
position or a fake one, and will add agents to their set of
neighbours as outlined in definition 3. We then create an
environment with a fixed density of agents in it, and place
these randomly and uniformly across the environment. We
allow them to move according to their velocity vector, within
the bounds of the environment. Each time the agents move,
all agents construct a new set of neighbours and discard
the previous one. Next, each agent wishing to claim their
position runs T-PoP; namely, they run the Tree Construction
and the Verification algorithms. Our simulator can be found
in this GitHub Repository.. Preliminary simulations show
that the density of agents in the environment vastly affected
the performance of T-PoP. This was especially noticeable
when the average number of agents per range-of-sight in the
environment was lower than the total number of nodes of the
tree being constructed, which greatly increased the number
of False Negatives, thus making T-PoP unsuitable for low
density environments. Other key variables are the threshold,
depth and number of witnesses used. A greater threshold
increases security, but also reduces reliability. Increasing the
number of witnesses increased both security and reliability,
however, this may not be a suitable measure for sparser
scenarios, or cases where agents are moving at high speed,
and may cause a communication overhead. We advocate
for the users to select the appropriate threshold, depth and
number of witnesses based on the individual needs of their
own application. Lowering the threshold can lower security,
but provides more flexibility in the system. The user can
then select an appropriate number of witnesses based on
the expected density of their network, and use the depth
parameter to find an appropriate trade-off between security
and reliability, and communication overhead and flexibility.

A. Preliminary results

Our objective in this section is twofold. On the one-
hand, we want to show some preliminary results on the
performance of T-PoP for a given choice of operating con-
ditions. On the other hand, we are interested in validating

Fig. 5: T-PoP performance for the graphical probability model (Figure 4). The panels in the left column show reliability,
R, while the panels in the right column show security, S. The first row is associated with model parameters, θ1, while the
second row is associated with model parameters, θ2.

Fig. 6: T-PoP performance for agent-based model. The panels on the left show reliability R, while the panels on the right
show security, S. The first row is associated with model parameters θ1, the second row is associated with model parameters
θ2. Notice the close similarity to Figure 5.

Fig. 7: Jensen-Shannon divergence (JSD) between Rs and Rm (left column) and between Ss and Sm (right column) for θ1
(top row) and θ2 (bottom row).

the results from the probabilistic graphical model presented
in the previous section, with a view to creating an analytical
framework for analysis of the T-PoP class of algorithms. This
gives us confidence that the results obtained for simple model
parameter settings (e.g. d small) still hold in more realistic
scenarios.

The simulations have been set up as follows: we consid-
ered each possible combination of ph and pc in the ranges
[0, 1], with steps of 0.02. For each combination we ran 50
Monte Carlo simulations and we computed empirical esti-
mates of the values of R(ph, pc) and S(ph, pc). Simulations
are set up in such a way that on average each agent has
50 neighbours in their range of sight ri. While this number
might appear very high, we wanted to make sure that the
results obtained were comparable to the ones obtained with
the probabilistic graph model. Moreover, real-life situations
with high density of pedestrians (e.g., the underground during
peak hours) would map well into this scenario. We ran these
simulations for the choice of parameters θ1 and θ2.

The results are shown in Figure 6. While T-PoP with θ1
yields better performance overall (as both R(ph, pc) and
S(ph, pc) are higher for each choice of ph and pc) the
second set of simulations shows that decreasing the number
of witnesses by a third and increasing the depth level by 1
allows us to achieve similar results. This is useful because—
while the total number of nodes in each prover’s tree is the
same for both scenarios—a tree of depth 2 with 2 witnesses
per parent places a smaller communication overhead on the
prover, because it only needs to name 2 witnesses, as opposed

to 6. In this way, the load is shared among the prover and
the witnesses.

Overall, in high density scenarios, the results of both
simulations show that—if ph > 0.9 and pc < 0.2—T-PoP
is capable of achieving S > 0.85% and R > 0.9% for θ1,
and S > 0.7% and R > 0.9% for θ2.

For lower proportions of honest agents and higher pro-
portions of coerced agents (i.e. in the presence of many
colluding, dishonest and coerced agents), the performance
of T-PoP degrades. This is to be expected in a decentralised
system such as T-PoP, since it is virtually impossible to
distinguish between a group of honest agents verifying
each other and a group of dishonest and coerced agents
collaborating to verify each other in a fraudulent manner.
Accordingly, we can observe across all figures that—even
when the percentage of honest agents is low—the security
remains high at the expense of reliability. We observe that—
whilst, indeed, T-PoP can detect true negatives (i.e. be
secure) in highly (and perhaps even unrealistically highly)
adversarial environments—the drawback is that it penalises
honest agents too harshly (i.e. is unreliable). This is a
consequence of the collaborative nature of the algorithm.
When the number of honest agents in the system is low
(i.e. ph ↓ 0), they will—with high probability (w.h.p.)—be
misclassified as dishonest because they will select dishonest
witnesses w.h.p.

B. Validation of the graphical model (Figure 4)

For validation of the graphical probability model, we
make use of the Jensen-Shannon Divergence (JSD) [17] to

quantify the distance between the probability distributions
obtained through the agent-based model (i.e. the T-PoP
implementation) and the graphical model. In what follows,
we refer to the values of R and S obtained from the simulated
agent-based model as Rs and Ss, and the ones obtained
from the graphical model as Rm and Sm. We compute two
JSD-based metrics: (i) the (ph, pc)-indexed (i.e. pointwise)
JSD map between Rm and Rs, and between Sm and Ss,
respectively; and (ii) the global JSD between the normalized
Rm and Rs maps, and the normalized Sm and Ss maps,
respectively. By “normalized”, we mean that each of these
positive maps is divided by its element sum, yielding a
probability mass function (pmf). In case (ii), we can therefore
condense into a single number the difference between the
performance figures (R and S, respectively) for the simulated
T-PoP system and its graphical model (Figure 4).

The results for the point-wise evaluation ((i) above) of the
JSD are shown in Figure 7, while the global evaluation ((ii)
above) is summarised in table II. Note that 0 ≤ JSD ≤ 1,
with lower values achieved when probabilities are close in
value (i.e. in cases of good agreement between the behaviour
of the simulated system and the graphical model). It is clear
that—at least for high density scenarios—the behaviour of
the graphical model closely mirrors that of the implemented
T-PoP system. Nevertheless, the pointwise JSD results reveal
significant discrepancies in the security (S) metric when ph ↑
1(i.e. for high proportions of honest users).

Parameters JSD(Rm, Rs) JSD(Sm, Ss)

θ1 0.139 0.095

θ2 0.174 0.059

TABLE II: Jensen-Shannon divergence (JSD) between the
normalized reliability (R) and security (S) maps for two sets
of model parameters.

V. CONCLUSION

We have presented a proof-of-position class of algorithms
that are fully decentralised. They can be run by any agent
participating in the network and they do not assume trust in a
central authority, nor do they rely on physical infrastructure.
We also considered a range of attack vectors by allowing
agents not only to lie about their own position, but also
about others’ positions. Our algorithm can also be computed
in a privacy-preserving manner, as there is no need for the
true location of an agent to be revealed to the network. We
also developed a theoretical graphical model for this class of
proof-of-position algorithms, and statistically validated the
model via comparative analysis of their respective perfor-
mances. In future work, we will use the theoretical model
to predict the performance of T-PoP as a function of its
operating conditions, θ. Specifically, we will be interested in
characterising the effect of the depth (d), threshold (t) and
number of witnesses (wl) on the security and reliability of
the T-PoP class of algorithms. Developing such a framework
can allow users to select the optimal operating conditions of

the algorithm to meet their needs, based on their expected
density, fault tolerance and proportion of honest and non-
coerced agents in their system. The theoretical model will
also allow performance guarantees to be deduced for T-
PoP. Finally, we intend to explore the suitability of T-PoP
for specific use-cases in the presence of more complex
adversarial scenarios.

Acknowledgments: The authors would like to thank the
IOTA Foundation for funding this research.

REFERENCES

[1] R. Cogill, O. Gallay, W. Griggs, C. Lee, Z. Nabi, R. Ordonez, M. Rufli,
R. Shorten, T. Tchrakian, R. Verago, et al., “Parked cars as a service
delivery platform,” in 2014 International Conference on Connected
Vehicles and Expo (ICCVE), pp. 138–143, IEEE, 2014.

[2] C. Fiesler and B. Hallinan, “” we are the product” public reactions to
online data sharing and privacy controversies in the media,” in Pro-
ceedings of the 2018 CHI conference on human factors in computing
systems, pp. 1–13, 2018.

[3] S. C. Desai, B. Xie, and B. K. Hayes, “Getting to the source of the
illusion of consensus,” Cognition, vol. 223, p. 105023, 2022.

[4] M. R. Nosouhi, S. Yu, M. Grobler, Y. Xiang, and Z. Zhu, “Sparse:
privacy-aware and collusion resistant location proof generation and
verification,” in 2018 IEEE Global Communications Conference
(GLOBECOM), pp. 1–6, IEEE, 2018.

[5] H. Alamleh and A. A. S. AlQahtani, “A cheat-proof system to validate
gps location data,” in 2020 IEEE International Conference on Electro
Information Technology (EIT), pp. 190–193, IEEE, 2020.

[6] C. Javali, G. Revadigar, K. B. Rasmussen, W. Hu, and S. Jha, “I
am alice, i was in wonderland: secure location proof generation and
verification protocol,” in 2016 IEEE 41st conference on local computer
networks (LCN), pp. 477–485, IEEE, 2016.

[7] W. Wu, E. Liu, X. Gong, and R. Wang, “Blockchain based zero-
knowledge proof of location in iot,” in ICC 2020-2020 IEEE Interna-
tional Conference on Communications (ICC), pp. 1–7, IEEE, 2020.

[8] M. Amoretti, G. Brambilla, F. Medioli, and F. Zanichelli, “Blockchain-
based proof of location,” in 2018 IEEE International Conference
on Software Quality, Reliability and Security Companion (QRS-C),
pp. 146–153, IEEE, 2018.

[9] Z. Zhu and G. Cao, “Toward privacy preserving and collusion re-
sistance in a location proof updating system,” IEEE Transactions on
Mobile Computing, vol. 12, no. 1, pp. 51–64, 2011.

[10] Z. Zhu and G. Cao, “Applaus: A privacy-preserving location proof
updating system for location-based services,” in 2011 Proceedings
IEEE INFOCOM, pp. 1889–1897, IEEE, 2011.

[11] Y. Zheng, M. Li, W. Lou, and Y. T. Hou, “Sharp: Private proximity test
and secure handshake with cheat-proof location tags.,” in ESORICS,
pp. 361–378, Springer, 2012.

[12] F. Boeira, M. Asplund, and M. Barcellos, “Decentralized proof of
location in vehicular ad hoc networks,” Computer Communications,
vol. 147, pp. 98–110, 2019.

[13] G. Oded, “Foundations of cryptography basic tools,” 2001.
[14] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, “High-

speed high-security signatures,” in Cryptographic Hardware and Em-
bedded Systems–CHES 2011: 13th International Workshop, Nara,
Japan, September 28–October 1, 2011. Proceedings 13, pp. 124–142,
Springer, 2011.

[15] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digital
signature algorithm (ecdsa),” International journal of information
security, vol. 1, pp. 36–63, 2001.

[16] M. Swanson, J. Hash, and P. Bowen, “Guide for developing security
plans for federal information systems,” tech. rep., National Institute of
Standards and Technology, 2006.

[17] M. Menéndez, J. Pardo, L. Pardo, and M. Pardo, “The jensen-shannon
divergence,” Journal of the Franklin Institute, vol. 334, no. 2, pp. 307–
318, 1997.

	I Introduction
	I-A Related Work
	I-B Contributions
	I-C Structure of the paper

	II Tree - Proof of Position protocol
	II-A Possible Adversarial Behaviours

	III Theoretical Analysis
	IV Simulations
	IV-A Preliminary results
	IV-B Validation of the graphical model (Figure 4)

	V Conclusion
	References

