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Abstract— This paper studies the learning-to-control
problem under process and sensing uncertainties for dy-
namical systems. In our previous work, we developed a
data-based generalization of the iterative linear quadratic
regulator (iLQR) to design closed-loop feedback control for
high-dimensional dynamical systems with partial state ob-
servation. This method required perfect simulation rollouts
which are not realistic in real applications. In this work,
we briefly introduce this method and explore its efficacy
under process and sensing uncertainties. We prove that
in the fully observed case where the system dynamics are
corrupted with noise but the measurements are perfect, it
still converges to the global minimum. However, in the par-
tially observed case where both process and measurement
noise exist in the system, this method converges to a biased
“optimum”. Thus multiple rollouts need to be averaged to
retrieve the true optimum. The analysis is verified in two
nonlinear robotic examples simulated in the above cases.

Index Terms— Learning under noise, partial-state obser-
vation, data-based control, robotic motion planning.

I. INTRODUCTION

The optimal control of a nonlinear dynamical sys-
tem is computationally intractable for complex high-
dimensional systems owing to the “curse of dimensional-
ity” [1] and the problem becomes even more formidable
when the system has no known analytical model and
is under partial state observation. In fact, most real-
world problems are partially observed, which has been
recognized as one of the major gaps that keep controllers
designed in simulation from being applied successfully
to real-world applications [2].

There has been significant work in the field of learning
to control unknown dynamical systems using Reinforce-
ment Learning (RL), with great progress in creating ac-
curate models for complex robots [3]. Despite excellent
performance on several tasks [4], most of the work is
in simulation, and applying RL to real robots remains
challenging [2]. The performance of policies trained in
simulation directly applied to real robots can be poor due
to the “sim-to-real” gap for numerous reasons. First, it
is impossible to capture all the physics with the process
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and sensing uncertainties in a simulation model and the
simulated sensor data can be very different from its
real-world counterpart. Most importantly, as full-state
measurements may not be available in real-world robots,
the policy has to be trained with partial observation,
which poses challenges to the RL algorithms.
Related Work: RL researchers have made progress in
applying RL to the real world in both sim-to-real and
learning on real robot directions. Previous work such
as [5] adopted domain randomization to address uncer-
tainty and latency, which improves the robustness, but
harms the optimality. [6] parallelized the simulations
on multiple agents to decrease total training time and
improve the robustness. Also, adapter networks are used
to make simulated images more similar to their real-
world counterparts [7] or the other way around [8]. With
these improvements, the trained policy can be directly
applied to real robots with comparable performance [9].

In the direction of on-robot training, multiple learning
processes can be run with different hyper-parameters on
the same robot [10], which greatly shorten the tuning
process. To tackle the resetting issue, a controller can
be designed to reset the robot [11] at the end of each
rollout. This method requires expert knowledge to design
the resetting controller, which could be challenging
for complex robots. In fact, on-robot training requires
resetting heavily due to the finite time rollouts needed
by RL algorithms. To take advantage of both simulation
and on-robot training, one can prototype a policy in
simulation and improve it with a relatively small amount
of online training [12].

We proposed a data-based learning-to-control ap-
proach in our previous work [13] for partially ob-
served applications. In this paper, we focus on the
problem of learning to control under uncertainty us-
ing the aforementioned partially observed data-based
iLQR (POD-iLQR) algorithm. POD-iLQR is a data-
based generalization of iLQR for partially observed
problems. It converts partially observed problems to
“fully observed” problems using a suitably defined in-
formation state and achieves high training efficiency
by decoupling the open-loop and feedback design [14].
The information state-based Linear Time-Varying (LTV)
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Autoregressive–Moving-Average (ARMA) system iden-
tification method is used to estimate the “fully observed”
linearized information state model, which allows us to
solve the optimal control problem while the system
model is unknown. We have shown that our generalized
iLQR method tackles the challenge of partial observation
in a highly efficient fashion. In this paper, its perfor-
mance under process and sensing uncertainties will be
studied. The primary contributions of this paper are
as follows. We study the learning under noise problem
with the generalized iLQR method mentioned above. We
analyze its efficacy when the training is carried out under
process and measurement noise. We prove its conver-
gence to the global minimum in the full state observation
case, i.e., when the state is measured perfectly but the
system dynamics are corrupted with noise. We show that
it constructs biased LTV systems and can not converge
to the true optimum in the noisy partially observed case
and that multiple rollouts need to be averaged to recover
global optimality. The reason we use the POD-iLQR is
that we have already shown that the basic fully observed
approach is superior to state-of-the-art RL techniques
[14], while at the same time, there are no generalizations
of typical RL approaches to partially observed problems
[13]. Albeit we test in simulations on relatively simple
systems, nonetheless, this work allows us to clearly
show the challenges of learning under uncertainty in the
partially observed case, which we can only expect to
be aggravated when trying to learn on a real system.
Also, the analysis of the simulation results helps us
further understand the convergence of POD-iLQR under
uncertainty, which could help the development of the
modified POD-iLQR algorithm and its deployment on
real systems eventually.

The rest of the paper is organized as follows: Section
II provides the optimal control problem formulation.
Section III briefly introduces our generalized iLQR
approach. Section IV is the main focus of this paper
and generalizes the POD-iLQR to the fully observed
and partially observed cases under noise. Section V
analyzes the performance of POD-iLQR directly applied
in fully observed and partially observed problems under
uncertainty. Empirical results are shown to support the
results in Section VI.

II. PARTIALLY OBSERVED DATA-BASED ILQR
(POD-ILQR)

Let us start by writing the stochastic nonlinear dy-
namics in discrete time state space form as follows:
xt+1 = f(xt, ut) + ωt, where xt is the state, ut is the
control input of the system and ωt is the process noise.
Let us assume the observation model to be of the form:

zt = h(xt) + vt, where zt is the measurement and vt
is the sensor noise. Let us now define a finite horizon
objective function as:
J(z0) = E

[∑T−1
t=0 c(zt, ut) + cT (zT )

]
, where c(zt, ut)

denotes a running incremental cost and cT (zT ) denotes
a terminal cost function. The POD-iLQR was proposed
to find the control policy to minimize the cost function
above with deterministic system dynamics and measure-
ments, i.e., ωt and zt are zero. The goal of this work is
to apply POD-iLQR under uncertainty and analyze its
efficacy.

In this section, we briefly introduce the main com-
ponents of the POD-iLQR generalization to data-based
partially observed problems and present the algorithm
that we will analyze “under noise” in the next section.
The detailed algorithm and the global optimal solution
analysis can be found in our previous work [13].

A. The Global Optimal Solution for the Partially Ob-
served Problem

Let Zq
t = [zTt−q, z

T
t−q+1, · · · , zTt ]T and Uq

t =
[uT

t−q, u
T
t−q+1, · · · , uT

t−1]
T , where q is the number of

outputs/inputs included in the information state. We
make the following assumption:

Assumption 1: Observability: We assume that there
exists a finite q̄, such that for all q ≥ q̄, equation xt−q =
f̄(Zq

t , U
q
t ) has a unique solution for xt−q , regardless of

(Zq
t , U

q
t ), where f̄ is the system dynamics w.r.t. Zq

t and
Uq
t .

Let us now define the “Information State” Zq
t at time t

as: Zq
t =

[
zTt , z

T
t−1, · · · , zTt−q, u

T
t−1, · · · , uT

t−q

]T
. Un-

der Assumption 1, by taking the special case of a
discrete system that is affine in control dynamics and
transforming it into the information state form, the
original partially observed optimal control problem can
be equivalently posed as the following “fully observed”
optimal control problem in terms of the information
state:

ūt = argmin
ut

T−1∑
t=0

c(zt, ut) + cT (zT ), (1)

s.t. Zq
t+1 = Zq

t + F(Zq
t )∆t+ G(Zq

t )ut∆t,

where the constraint is the system dynamics in the
information state form. The full development can be
found in [13]. Then, we can extend our recent result on
the globally optimal solution for the fully observed case
[15] to the above problem as shown in our companion
work [13].
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B. Open-Loop Optimal Trajectory Design using POD-
ILQR

POD-iLQR takes advantage of iLQR in that the
equations involved are given explicitly in terms of
the LTV dynamics, which can be calculated in the
information state form using a data-based LTV-ARMA
identification method shown below. Let us denote the
nominal state and control trajectory by {x̄t, ūt} and
the deviations from the nominal trajectory as δxt and
δut, the LTV system linearized around the nominal
trajectory can be modeled as: δxt = At−1δxt−1 +
Bt−1δut−1, δzt = Ctδxt. Let us denote the nominal
information state and deviations as Z̄t and δZt =
(δzt, δzt−1, · · · , δzt−q+1, δut−1, · · · , δut−q+1), where
δzt = zt − z̄t is the deviations from the nominal
observation at time t. Then we can show the following
result:

Proposition 2.1: An ARMA model of the order q
given by: δzt = αt−1δzt−1 + · · · + αt−qδzt−q +
βt−1δut−1 + · · · + βt−qδut−q, exactly fits the LTV
system given in Eq. (II-B) if matrix Oq =[
AT

t−q...A
T
t−2C

T
t−1, · · · , AT

t−qC
T
t−q+1, CT

t−q

]T
is

full column rank. The exact ARMA parameters that
match the LTV system can then be written as:
[αt−1 | αt−2 | · · · | αt−q] = CtAt−1...At−qO

q+ ,

[βt−1 | βt−2 | · · · | βt−q] = −CtAt−1...At−qO
q+Gq

+
[
CtBt−1CtAt−1Bt−2 · · · CtAt−1...Bt−q

]
.

Thus with a q that satisfies Assumption 1, there always
exists an exact fit for the ARMA model. This allows us
to write linearized models at each step along the nominal
trajectory in terms of the ARMA parameters. The proof
is in [13].

With the above result, iLQR can be generalized into
the proposed POD-iLQR method in the following:
Forward Pass: Given the initial information state Z0

and the nominal control sequence {ut}T−1
t=0 of the current

iteration, the system can be simulated for one rollout to
get the nominal information state trajectory (Z̄t, ūt) of
the current iteration.
LTV System Identification: Next, we can find the local
LTV information state system around the nominal trajec-
tory, which can be written as: δZt+1 = AtδZt+Btδut,
where At and Bt are the linearization of the information
state dynamics as shown in Eq. (4). To estimate At and
Bt, input-output data can be collected from simulated
rollouts with control perturbation about the nominal
trajectory. The LTV system can be written in ARMA
parameters as δz

(j)
t = αt−1δz

(j)
t−1 + · · · + αt−qδz

(j)
t−q +

βt−1δu
(j)
t−1 + · · ·+ βt−qδu

(j)
t−q, where δu

(j)
t ∼ N (0, σI)

is the control perturbation at step t for the jth rollout.
The ARMA parameters can be solved using linear

least squares. Next, At and Bt can be obtained using
the ARMA parameters. Note that the original partially
observed system is transformed into a fully observed
information state system. Please check [16] for more
details.
Backward Pass: Given the LTV system identified
above, POD-iLQR computes a local optimal control
by solving the discrete-time Riccati equation: δut =
R−1BT

t (−vt+1 − Vt+1(AtδZt + Btδut)) − ūt, which
can be written in the linear feedback form δut = −kt−
KtδZt, where kt = (R+BT

t Vt+1Bt)
−1(Rūt+BT

t vt+1)
and Kt = (R+ BT

t Vt+1Bt)
−1BT

t Vt+1At, and

vt = lt,Z +AT
t vt+1 −AT

t Vt+1Bt(R+ BT
t Vt+1Bt)

−1

· (BT
t vt+1 +Rūt) (2)

Vt = lt,ZZ +AT
t (V

−1
t+1 + BtR

−1BT
t )

−1At

= lt,ZZ +AT
t Vt+1At −AT

t Vt+1Bt(R+BT
t Vt+1Bt)

−1

·BT
t Vt+1At. (3)

with the terminal conditions vT (xT ) = ∂cT
∂Z |ZT

=
∂l
∂Z |ZT

and VT (xT ) = ∇2
ZZcT |ZT

. Given the terminal
conditions and (At,Bt), the sequence vt and Vt can be
computed in a backward sweep. Then, the corresponding
gains kt and Kt can be obtained for that trajectory.
Trajectory Update: Given the gains from the backward
pass, we can update the nominal control sequence as
ūk+1
t = ūk

t +αkt+Kt(Zk+1
t −Zk

t ),Zk+1
0 = Zk

0 ,where
α is the line search parameter. By applying the control
update at each step in the forward pass, we can obtain
the updated nominal trajectory.

We iterate the above steps till Rūt+BT
t vt+1 ≈ 0 and

obtain the open-loop optimal trajectory.

III. LEARNING UNDER UNCERTAINTY WITH
POD-ILQR

In our previous work, the POD-iLQR was tested in
simulation without any process noise or measurement
noise. The main focus of this work is to extend POD-
iLQR and solve the partially observed optimal control
problem in the presence of noise and unknown system
dynamics.

A. POD-ILQR Extension for Learning Under Uncer-
tainty

In the following, we study the problem of learning
under uncertainty with POD-iLQR in two distinct cases.
1) Fully Observed Case with Process Noise: We as-
sume that there is process noise in the system dynamics
but the full state measurements are perfect, i.e.,

xt+1 = f(xt, ut) + ωt, zt = xt. (5)
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δzt
δzt−1

δzt−2

...
δzt−q+1

δut−1

δut−2

δut−3

...
δut−q+1


︸ ︷︷ ︸

δZt

=



αt−1 αt−2 · · · αt−q+1 αt−q βt−2 βt−3 · · · βt−q+1 βt−q

1 0 · · · 0 0 0 0 · · · 0 0
0 1 · · · 0 0 0 0 · · · 0 0
...

. . .
...

...
. . .

... 0
0 0 · · · 1 0 0 0 · · · 0 0
0 0 · · · 0 0 0 0 · · · 0 0
0 0 · · · 0 0 1 0 · · · 0 0
0 0 · · · 0 0 0 1 · · · 0 0
...

. . .
...

...
. . .

...
0 0 · · · 0 0 0 0 · · · 1 0


︸ ︷︷ ︸

At−1



δzt−1

δzt−2

...
δzt−q+1

δzt−q

δut−2

δut−3

...
δut−q+1

δut−q


︸ ︷︷ ︸

δZt−1

+



βt−1

0
...
0
0
1
0
...
0
0


︸ ︷︷ ︸
Bt−1

δut−1

(4)

With process noise, the simulation in the system identifi-
cation can deviate from the nominal and adversely affect
the accuracy of the identified model. The inaccurate
model then leads to difficulty in convergence. To keep
the trajectory close to the nominal trajectory, we make
the following modification to POD-iLQR:
LTV System Identification: A feedback term in control
is added using the gain K obtained from the previous
backward pass, i.e., ut = ūt + δut + Kt(δzt), where
δzt = zt − z̄t is the deviated full state measurement
and δut is the input perturbation sampled from a zero-
mean i.i.d. process. The idea is that the feedback should
keep the rollouts close to the nominal to ensure accurate
models.
2) Partially Observed Case: We assume that both the
system dynamics and the sensors are corrupted by noise.
In addition, only a subset of the states is measured, i.e.,

xt+1 = f(xt, ut) + ωt, zt = Ctxt + vt, (6)

where Ct ∈ Rnz×nx , nz < nx and nz is the number of
outputs. In this case, we also need to keep the simulated
trajectories close to the nominal and thus we make the
following modifications to POD-iLQR:
LTV System Identification: A feedback term is added in
the ARMA fitting step using the feedback gain from the
last backward pass, i.e., ut = ūt+δut+Kt(δZt), where
δZt = Zt − Z̄t is the deviated information state vector
as shown in Eq. (4) and δut is the input perturbation
sampled from a zero-mean i.i.d. process.
3) Brute Force Averaging: In the following section, we
will show that even when the feedback term is added
in the partially observed case, the modified POD-iLQR
algorithm still gives a biased result instead of the true
optimum due to the partial observation, the process, and
the measurement noise. To remove this bias, we utilize
the assumption that the process and measurement noise
is zero-mean and make the following modifications to
the POD-iLQR algorithm:

Forward Pass: In each iteration, the forward pass sim-
ulation is run for ns number of rollouts. Then we take
the average trajectory of the rollouts as the updated
nominal trajectory. LTV System Identification: For each
sequence of control perturbation {δut}T−1

t=0 , we run the
simulations for ns number of rollouts and take the
average. Also, a feedback term is added in control to
keep the trajectories close to the nominal trajectory. As
the noise is assumed to be zero mean, the averaged
trajectories are used in the least square to identify the
ARMA model.

B. Convergence Analysis of POD-iLQR under Uncer-
tainty

According to the results in our previous work [13], the
POD-iLQR algorithm in the deterministic environment
is guaranteed to find the unique global minimum of the
open-loop problem in Eq. (1). In this section, we analyze
the convergence and optimality of the modified POD-
iLQR in the two cases described above.

1) Global Convergence of POD-iLQR in the Fully
Observed Case with Process Noise: As mentioned in
Section III-A, in the system simulations of the LTV
system identification step, we implement a feedback
term in control to ensure that the trajectories are close
to the nominal. With this modified POD-iLQR method,
we have the following result:

Lemma 3.1: The ARMA model identified in the fully
observed case using the method described in Section III-
A.1 is unbiased with respect to the true LTV model.

Proof: Due to full state
observation, the matrix Oq =[
AT

t−q...A
T
t−2C

T
t−1, · · · , AT

t−qC
T
t−q+1, CT

t−q

]T
is

full column rank. Thus an ARMA model with q = 1
can exactly fit the LTV system in Eq. (II-B) according
to Proposition 2.1. Then Eq. (II-B) and (5) leads to:
δzt+1 = (At + BtKt)δzt + Btδut + ωt. Notice that
ωt is uncorrelated with δzt and δut. Thus using the
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LTV system identification described in Section II-B,
the noise terms go to zero as the number of rollouts
ns increases and the least square result becomes:[
Ât

... B̂t

]
=

[
At +BtKt

... Bt

]
. As Kt is known

from the last backward pass, it is trivial to recover
At, Bt. Thus the ARMA model equals the true LTV
model in Eq. (II-B).

Theorem 3.1: Let the cost functions l(·), cT (·), the
drift f(·) and the input influence function g(·) be C2,
i.e., twice continuously differentiable. Assume f(·) is
affine in control. The POD-iLQR algorithm started at
a feasible initial information state Z0 converges to the
unique global minimum of the open-loop problem in
Eq. (1) when applied to the fully observed system with
process noise in Eq. (5).

Proof: From Lemma 3.1, we know that the identi-
fied LTV model in the fully observed case is the same as
in the noiseless case for small enough noise. Thus the
results from the backward pass are also identical. Let
us denote the update direction calculated in the forward
pass under process noise as ds,t = [δZ ′

t+1 δZ ′
t δu′

t]
′,

gradient of the system dynamics constraint function as:
∇h(Z̄t+1, Z̄t, ūt) = [I −At −Bt]. Let F t denote the
history of the algorithm till time t. Then, due to the zero
mean noise ωt, it is easy to see that the expected descent
direction conditioned on the history F t: E[ds,t/F t] =
d̄s,t, where d̄s,t denotes the true update direction (with-
out noise). We know from Lemma 2 in [15], that d̄s,t is
a descent direction of the cost function, i.e., d̄′s,t∇J ′

t is
always negative. Thus the expected update direction is a
descent direction. Then using the line search condition of
iLQR, similar to Theorem 1 in [15], it can be shown that:
E[Jt+1/F t] ≤ Jt − β̄t||∇Jt||||d̄s,t||, for some β̄t > 0.
Then, using the Supermartingale Convergence Theorem
[17], it follows that, almost surely:

∑
t β̄t||∇Jt|| < ∞,

which implies that ∇Jt → 0 almost surely, i.e., the
algorithm converges to a stationary point of the cost
function. Next, using Theorem 2 of [15] and Theorem
III.1 of [13], POD-iLQR is guaranteed to converge to the
global minimum of the open-loop problem in Eq. (1).

2) Biased Nature of POD-iLQR in the Partially Ob-
served Case: For the partially observed case, process
noise ωt is added to the system dynamics simulation in
both the forward and backward pass. The measurement
noise vt is added to the measured states as shown in
Eq. (6). According to Section II-A, we need to choose a
large enough q such that matrix Oq is full column rank.
Also, a feedback term is added in the ARMA fitting step
of the backward pass to keep the trajectory close to the
nominal trajectory. The feedback gain Kt is obtained

from the last backward pass. With these modifications,
we have the following negative result:

Lemma 3.2: If directly applied to the partially ob-
served system in Eq. (6), the backward pass shown in
Section II-B generates a biased update direction.

Proof: Starting from Eq. (6), we can write the
output equation for past q timesteps. Assuming that the
q we choose satisfies Assumption 1, we can solve for
the unique solution of δxt−q as: δxt−q = Oq+(δZq

t −
GqδUq

t −Gq
ωΩ

q
t − V q

t ). Now, the system output at time
t can be written as:

δzt = CtAt−1...At−qδxt−q

+
[
CtBt−1 CtAt−1Bt−2 · · · CtAt−1...Bt−q

]
δUq

t ,

+
[
Ct CtAt−1 · · · CtAt−1...At−q+1

]
Ωq

t + vt.
(7)

Let us denote

αt = CtAt−1...At−qO
q+ ,

βt =
[
CtBt−1 CtAt−1Bt−2 · · · CtAt−1...Bt−q

]
− αtG

q,

βD
t =

[
Ct CtAt−1 · · · CtAt−1...At−q+1

]
− αtG

q
ω,

and the unique solution for δxt−q is substituted to get:
δzt = αtδZ

q
t +βtδU

q
t +βD

t Ωq
t−αtV

q
t +vt. By taking ns

number of rollouts and applying the linear least square
as described in Section III-A.2, the estimated ARMA
model parameters can be written as:[
α̂t β̂t

]
=

[
αt βt

]
+ (βD

t

[
Ω

q,(1)
t Ω

q,(2)
t · · · Ω

q,(ns)
t

]
− αt

[
V

q,(1)
t V

q,(2)
t · · · V

q,(ns)
t

]
+

[
v
(1)
t v

(2)
t · · · v

(ns)
t

]
)XT(XXT)−1,

(8)

where in this case,

X =

[
δZ

q,(1)
t δZ

q,(2)
t . . . δZ

q,(ns)
t

δU
q,(1)
t δU

q,(2)
t . . . δU

q,(ns)
t

]
. (9)

As δZq
t is correlated with Ωq

t and V q
t , the second term

on the RHS of Eq. (8) is nonzero. Thus the estimated
ARMA parameters are biased from the true values in[
αt βt

]
. Further, the update direction from Section III-

A is biased.
With the biased update direction, the POD-iLQR

algorithm can no longer converge to the true minimum
although the feedback term is added to the backward
pass. In this case, multiple rollouts have to be averaged
to recover the convergence to the true minimum. In the
next section, we show empirical evidence for Theorem
3.1 and Lemma 3.2.
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IV. EMPIRICAL RESULTS

We use MuJoCo, a physics engine [18], as a blackbox
to collect the data needed for the open-loop nominal
trajectory design and the closed-loop feedback gain. We
verified our results on two nonlinear systems with their
initial configuration shown in Fig. 1. All simulations are
conducted on a machine with the following specifica-
tions: AMD Ryzen 3700X 8-Core CPU@3.59 GHz, with
16 GB RAM, with no multi-threading.

Fig. 1: Models simulated in MuJoCo in their initial
states.

A. Model Description

Here we provide details of the MuJoCo models used
in our simulations [19].
Pendulum: The single pendulum model is a pole
hinged to a fixed point. There are two state variables:
angle and angular rate of the pole. The task is to swing
up and balance the pole in the upright position.
Cart-Pole: The four-dimensional under-actuated cart-
pole model includes a cart moving on the x-axis
and a pole linked to it with a hinge joint. The only
actuation is the force on the cart. The state comprises
the angle of the pole, the cart’s horizontal position,
and their rates. The task is to swing up and balance
the pole in the middle of the rail within a given horizon.

B. POD-iLQR in the Fully Observed Case

As we assume perfect measurements in the fully
observed case, the process noise is the only uncertainty
we add to the dynamics. In addition, we sample the
initial state deviation δx0 from a zero-mean random
process. The standard deviation of the process noise ωt

is 10% w.r.t. the standard deviation of the initial state
deviation δx0. For each system tested, we run POD-
iLQR as is in the noiseless system as well as in the fully
observed system with process noise. Then we run the
POD-iLQR with the modifications proposed in Section
III-A. The number of steps in the horizon is fixed, so
in the data collection step, each rollout takes the same
number of steps. In the cost function, the running cost
l(xt) = x′

tQxt, where xt is the error between the

Fig. 2: Convergence comparison in fully and partially
observed cases.

current state and the target state at time t. The cost
parameter Q remains the same throughout the horizon
except for the terminal step. The termination criterion
is that the convergence rate is lower than a threshold
or it reaches the max iteration number. We compare
the cost convergence curves in the first row of Fig. 2.
The “nominal” curve shows the cost convergence of
applying POD-iLQR on the full state noiseless case. The
curve labeled “POD-iLQR” shows the cost convergence
in the full state case under process noise using the
original POD-iLQR algorithm. The curve labeled “POD-
iLQR Modified” shows the cost convergence in the full
state case under process noise using the modified POD-
iLQR. From the plot, the original POD-iLQR could not
converge to the true optimum and the other two curves
almost overlap each other and converge to the same
result. The “POD-iLQR Modified” curve in the zoomed-
in view has some ups and downs due to the process noise
in the forward pass. This verifies the proof in Theorem
3.1 which shows that the expected update direction, not
the actual update direction is a descending direction.
Thus in the fully observed case, the modified POD-iLQR
is guaranteed to converge to the global minimum. Notice
that the total number of rollouts needed under noise is
larger than in the noiseless case to make sure that the
correlation goes to zero as shown in Lemma 3.1.

C. POD-iLQR in the Partially Observed Case

In the partially observed case, we only measure the
positions, not their rates. For the pendulum, the observed
state is the angle of the pole. In the cartpole, we only
measure the position of the cart and the angle of the
pole. To simulate the measurements in simulation, we
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add sensor noise vt to the measurements. Thus there are
both process and measurement noise in the simulation.
The standard deviations of the process noise ωt and the
measurement noise vt are both 10% w.r.t. the standard
deviation of the initial state deviation δx0. We found
that in this observation setting, q = 2 satisfies the
observability assumption. So in the LTV-ARMA system
identification step, we fit ARMA models with q = 2
for both the pendulum and cartpole. To evaluate the
cost function, we use the measurements instead of the
states. Similar to the full-state observation case, the cost
function is quadratic in the information state and the
control input. Three cost curves are shown in the second
row of Fig. 2. The curve labeled “nominal” shows the
cost convergence of POD-iLQR in the partially observed
but noiseless environment. For the curve labeled “POD-
iLQR”, we directly apply the unmodified POD-iLQR
algorithm and in the “POD-iLQR Modified” case, we
use the modified POD-iLQR. In the case labeled “POD-
iLQR-Avg”, we run multiple rollouts for each set of
control perturbation δut and used the averaged trajectory
in the ARMA model fitting step to average out the noise.
From the plots, it is shown that in both the pendulum
and the cartpole, the cost curves of the averaging method
match the nominal cost curve and they converge to the
same result. The outlier curve is from the experiment
where we applied POD-iLQR or modified POD-iLQR
without averaging. Due to the noise corrupted system
dynamics and measurements, the cost curve has more
oscillation and failed to converge to the true minimum.
Thus if directly implemented on real robots without
averaging, POD-iLQR will generate a biased result even
with the modification proposed in Section III-A. To
make sure the noise is averaged out in the averaging
method, the total number of rollouts needed in the
ARMA model fitting is increased from ns to ns×navg,
where ns is the number of rollouts in one ARMA model
fitting without averaging and navg is the number of
rollouts needed for each control perturbation set. And
the total time taken during training will be much higher
than the case without averaging.

V. CONCLUSIONS

This paper considers an optimal motion planning tra-
jectory design algorithm for partially observed systems
called the POD-iLQR introduced in our prior work. The
main focus of this paper is to analyze its performance
under uncertainty and pave the way for future use on
real-world robots. The algorithm is proved to converge
to the global minimum in the fully observed case with
only process noise. It is shown that the algorithm is
biased and does not converge to the global minimum

for partially observed systems with both process and
measurement noise. In this case, multiple rollouts need
to be averaged to recover optimality and for convergence
in the ARMA model identification step at the expense of
a longer training time. The empirical results are shown
to verify the analysis. In our opinion, this algorithm has
advantages in optimality and training efficiency when
applied to real-world robots. The actual performance on
real systems will be explored in future work.
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