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Data-driven control of nonlinear systems from input-output data*

X. Dai1 and C. De Persis1 and N. Monshizadeh1 and P. Tesi2

Abstract— The design of controllers from data for nonlinear
systems is a challenging problem. In a recent paper, De
Persis, Rotulo and Tesi, “Learning controllers from data via
approximate nonlinearity cancellation,” IEEE Transactions on
Automatic Control, 2023, a method to learn controllers that
make the closed-loop system stable and dominantly linear was
proposed. The approach leads to a simple solution based on
data-dependent semidefinite programs. The method uses input-
state measurements as data, while in a realistic setup it is more
likely that only input-output measurements are available. In this
note we report how the design principle of the above mentioned
paper can be adjusted to deal with input-output data and obtain
dynamic output feedback controllers in a favourable setting.

I. INTRODUCTION

Learning controllers from data is of uttermost importance

and a fascinating topic, with foundations in both control

theory and data science. Several recent approaches have

been proposed for data-driven control, initially focusing,

as is natural, on linear systems, e.g. [1], [2], [3], [4].

For nonlinear systems, some results have appeared as well,

mostly focusing on special classes of nonlinear systems,

bilinear [5], [6], polynomial [7], [8], [9], rational [10] or

with quadratic nonlinearities [11], [12]. Other approaches

consist of approximating general nonlinear control systems

to classes for which data-driven design is possible [13], [14]

or expressing nonlinear systems via a dictionary of known

functions, in which case the design can aim at making the

closed-loop system dominantly linear [15] or prescribing a

desired output signal [16].

The understanding of the topic is far from having reached

a mature phase, even in the case full measurements of the

state are available. Yet, it can be argued that the use of these

data-dependent design schemes in practice very much rely

on the possibility that they work with output measurements

data only, which dispenses the designer from requiring to

know the state of the system – a very restrictive prior in

many cases. In this paper we report on some early results

on using data-driven control techniques in conjunction with

input/output data for discrete-time nonlinear systems.

Related work. Even when a model is known, output

feedback control for nonlinear systems is a challenging open
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problem [17, Section 8.7]. The certainty equivalence princi-

ple, which is valid for linear systems, is hard to extend to

a nonlinear setting. Nonetheless, certain nonlinear discrete-

time versions of the certainty equivalence principle have been

obtained [18]. In [19], the state in a globally stabilizing

state feedback (possibly generated by a finite horizon model

predictive scheme) is replaced by an estimate provided by an

observer under a uniform observability assumption to obtain

a globally stabilizing output feedback controller.

The important uniform observability property [20], [21],

[22] can be explored in different ways in the context of

learning control from data. Since it guarantees the existence

of an injective map from input/output sequences to the

state, deep neural networks can be trained to approximate

such a map and provide estimates of the state to be used

in the given input-to-state stabilizing feedback, obtaining a

locally asymptotically stable closed-loop system [23]. The

injective map can also be used to define the regression

relating the input/output sequences of the system and deep

neural networks can be used to learn such a regression [24].

However, to the best of our knowledge there are very few

other attempts at designing controllers for nonlinear system

from input/output data.

Contribution. The aim of this note is to start the in-

vestigation of feedback design from input/output data for

nonlinear discrete-time systems. We adopt the notion of

uniform observability, which allows us to extend some of

the design procedures introduced in [2]. Namely, we consider

past inputs and outputs as fictitious state variables and obtain

a form of the system for which the data-driven “state”

feedback design techniques for nonlinear systems of [15] can

be used. The implementation of the controller is then carried

out by replacing the past input/output measurements with

the quantities returned by a dead-beat observer of the output

and a chain of integrators driven by the input. A formal

analysis of the stability of the overall closed-loop system is

then presented along with a discussion about the proposed

solution.

In Section II we recall the notion of observability that

we adopt for our analysis and introduce an auxiliary system

that reproduces the input/output behaviour of the system to

control. The auxiliary system is extended in Section III-A

with a chain of integrators that provides the past inputs of

the system to be used in the controller. The design of the

output feedback dynamic controller based on input/output

data is presented in Section III. The analysis of the closed-

loop system to show the convergence of the system’s and

the controller’s state to the origin is the topic of Section IV,

along with a discussion of the result.

http://arxiv.org/abs/2309.09208v1


II. PRELIMINARIES

We consider the single-input single-output nonlinear

discrete-time system

x+ = f(x, u)
y = h(x)

(1)

where x ∈ R
n, u, y ∈ R, f(0, 0) = 0 and h(0) = 0. f, h are

continuous functions of their arguments with domains Rn×R

and R
n. These functions are unknown. The dimension of the

state-space n is not necessarily known.

A. Dataset

A dataset consisting of open-loop input-output measure-

ments

D := {(u(k), y(k))}N+T−1
k=0 (2)

is available, where the positive integers N, T will be spec-

ified later. The samples in the dataset are obtained from

off-line experiment(s) conducted on system (1), hence they

satisfy the equations (1), namely

x(k + 1) = f(x(k), u(k))
y(k) = h(x(k)), ∀k = 0, 1, . . . , N + T − 1

For our purpose of designing an output feedback controller

from D it is not required that all the samples of the dataset

are sequentially obtained in a single experiment. In fact, even

multiple experiments collecting N +T samples suffice. This

is useful especially when dealing with unstable dynamics.

B. Uniform Observability

The problem of interest is to design an output feedback

controller that stabilizes the nonlinear system, based on the

dataset D. To this purpose, we need to infer the behavior

of the state x from input-output measurements, for which

suitable “observability” conditions on the system (1) are

required. Before stating them, we introduce some notation.

We let

F 0(x) := x

F 1(x, v0) := f(x, v0)
F k+1(x, v0, . . . , vk) := f(F k(x, v0, . . . , vk−1), vk), k ≥ 1

(3)

Note that (3) gives x(k) = FN(x(k − N), u[k−N,k−1]).
To reduce the notational complexity, we introduce v[0,k],

which denotes the sequence of values v0, . . . , vk. Hence,

the last identity above is rewritten as F k+1(x, v[0,k]) :=
f(F k(x, v[0,k−1]), vk). In what follows, we will use symbols

like v[0,k] also to denote the vector [ v0 v1 ... vk ]⊤.

The following is the main assumption on system (1).

Assumption 1: Let X ⊂ R
n and U ⊂ R be compact sets

such that X × U contains the origin of R
n+1. There exists

N ∈ Z>0 such that, for any v[0,N−2] ∈ UN−1, the mapping

ΦN (x, v[0,N−2]) =











h ◦ F 0(x)
h ◦ F 1(x, v0)

...

h ◦ FN−1(x, v[0,N−2])











(4)

is injective as a function of x on X . �

Following [22, Definition 1], we refer to the assump-

tion above as a uniform observability on X property. It

is observed in [22] that, if f, h are continuously differen-

tiable functions, uniform observability is not restrictive in

the sense that a nonuniform distinguishability property and

a nonuniform observability rank condition imply uniform

observability. Since for any M ≥ N the mapping ΦM

remains injective, we do not need to know the smallest N

for which Assumption 1 holds.

For any v[0,N−2] ∈ UN−1, the function

ΦN (·, v[0,N−2]) : X → R
N

such that x 7→ w = ΦN (x, v[0,N−2]), is injective on X and

one can define a left inverse

ΨN (·, v[0,N−2]) : ΦN (X , v[0,N−2]) → R
n

such that ΨN (ΦN (x, v[0,N−2]), v[0,N−2]) = x for all x ∈ X .

C. An auxiliary system

We introduce a system equivalent to (1) which is better

suited for control design. By equivalent it is meant that the

new system has the same input-output behavior of system

(1) when properly initialized. We use this auxiliary system

for control design purposes. Later on we show the effect of

the designed controller on the actual system (1).

For any v[0,N−1] ∈ R
N , define the functions

ψ(w, v[0,N−1]) := FN (ΨN (w, v[0,N−2]), v[0,N−1])

h̃(w, v[0,N−1]) := h ◦ ψ(w, v[0,N−1])

f̃(w, v[0,N−1]) := Acw +Bch̃(w, v[0,N−1])

(5)

with the pair (Ac, Bc) ∈ R
N×N×R

N in the Brunovsky form.

The domain of ψ(·, v[0,N−1]), h̃(·, v[0,N−1]), f̃(·, v[0,N−1]) is

ΦN (X , v[0,N−2]). Under the standing assumptions on f, h,

these functions are continuous and zero at (w, v) = (0, 0).

In the result below, for a k ∈ Z, we let u[k−N,k−1] be

an input sequence applied to system (1) and y[k−N,k−1] its

output response from some initial condition x(k −N).
Lemma 1: Let system (1) satisfy Assumption 1. Consider

arbitrary k0 ∈ Z, x(k −N) ∈ X and u[k−N,k−1] ∈ UN for

all k ∈ Z≥k0
. Consider the system

w+ = f̃(w, v)

yw = h̃(w, v)
(6)

with f̃ , h̃ defined in (5). If the input v(k) applied to (6)

satisfies v(k) = u[k−N,k−1] for all k ∈ Z≥k0
and the initial

condition of (6) is set to w(k0) = y[k0−N,k0−1], then

w(k) = y[k−N,k−1], yw(k) = y(k), ∀k ∈ Z≥k0
.

Furthermore, x(k) = ψ(w(k), v(k)), for all k ∈ Z≥k0
. �

Proof. For the sake of completeness, it is given in Ap-

pendix VI-A. �



Example 1: We consider [15, Example 5]

x+1 = x1 + Tsx2 (7a)

x+2 =
Tsg

ℓ
sinx1 +

(

1−
Tsµ

mℓ2

)

x2 +
Ts

mℓ
(cosx1)u , (7b)

with y = x1. We compute

Φ2(x, v) =

[

x1
x1 + Tsx2

]

which is globally invertible (Assumption 1 holds with N =
2.) with

Ψ2(w, v) =

[

w1
w2−w1

Ts

]

Hence ψ(w, v0, v1) = col(ψ1(w, v0, v1), ψ2(w, v0, v1)),
where

ψ1(w, v0, v1) = w2 +
T 2

s
g

ℓ
sinw1 +

(

1− Tsµ
mℓ2

)

(w2 − w1)

+
T 2

s

mℓ
(cosw1)v0

ψ2(w, v0, v1) =
Tsg
ℓ

sinw2 +
(

1− Tsµ
mℓ2

)(

Tsg
ℓ

sinw1

+
(

1− Tsµ
mℓ2

)

w2−w1

Ts

+ Ts

mℓ
(cosw1)v0

)

+ Ts

mℓ
(cosw2)v1

(8)

From which, one computes

h̃(w, v0) = w2 +
T 2

s
g

ℓ
sinw1 +

(

1− Tsµ
mℓ2

)

(w2 − w1)

+
T 2

s

mℓ
(cosw1)v0

=
(

−1 + Tsµ
mℓ2

)

w1 +
(

2− Tsµ
mℓ2

)

w2 +
T 2

s
g

ℓ
sinw1

+
T 2

s

mℓ
(cosw1)v0

Hence the equivalent representation is given by

w+ =

[

w2

h̃(w, v0)

]

, yw = h̃(w, v0)

The original state x is obtainable from the solution of the

system above via the expression

x = ψ(w, v0, v1)

where ψ is as in (8). For this example X = R
2 and U = R.

�

III. DESIGN OF AN OUTPUT FEEDBACK CONTROLLER

FROM DATA

A. A dynamic extension

System (6) is driven by the past N samples of u, which

is the input to (1). These past values are obtained by adding

a chain of integrators to the dynamics (6)

ξ+ = Ac ξ +Bcu (9)

with the interconnection condition

v = ξ

which returns the system

w+ = f̃(w, ξ)
ξ+ = Ac ξ +Bcu

y = h̃(w, ξ)

(10)

Once the system’s state satisfies (w(k), ξ(k)) =
(y[k−n,k−1], u[k−n,k−1]) for some k ∈ Z, the input-

output behavior of this system matches the one of (1) for

all k ≥ k. We will discuss later on the availability of such

initial condition at a time k.

B. Control input design

To obtain u that drives the chain of integrators making

the dynamic controller, we argue as in [2], [15]. We first

introduce the following:

Assumption 2: For any ξ ∈ UN and any w ∈
ΦN (X , ξ[1,N−1]), where ξ[1,N−1] denotes the first N − 1

entries of ξ, it holds that h̃(w, ξ) = αZ(w, ξ), where

Z(w, ξ) ∈ R
S is a vector of known continuous functions

and α ∈ R
1×S is an unknown vector. �

This is a technical assumption due to the need to give

the nonlinearities of (10) a form for which the controller

design is possible. Although it is restrictive, [15, Section

VI.B] bypasses such an assumption by expressing h̃(w, ξ)
as αZ(w, ξ) + d(w, ξ), where the term d(w, ξ) represents

the nonlinearities that were excluded from Z(w, ξ), and then

analyzing the stability of the system in the presence of the

neglected nonlinearity d(w, ξ). This analysis goes beyond the

scope of this paper.

We consider the case in which the function Z(w, ξ)
comprises both a linear part and a nonlinear part Q(w, ξ),
i.e.

Z(w, ξ) =





w

ξ

Q(w, ξ)





The system (10) can then be written as

[

w+

ξ+

]

= A

[

w

ξ

]

+B1u+B2αZ(w, ξ)

y = αZ(w, ξ)
(11)

where

A :=

[

Ac 0
0 Ac

]

, B1 :=

[

0
Bc

]

, B2 :=

[

Bc

0

]

and the pair (Ac, Bc) is in the Brunovsky canonical form.

We focus on the case in which the input u is designed as

a function of Z(w, ξ), i.e.

u = κZ(w, ξ) (12)

where κ ∈ R
1×S is the control gain. Write the closed-loop

system (11)-(12) as

[

w+

ξ+

]

= A

[

w

ξ

]

+B1κZ(w, ξ) +B2αZ(w, ξ)

y = αZ(w, ξ)
(13)

The system is defined for any ξ ∈ UN and any w ∈
ΦN (X , ξ[1,N−1]).



C. Data-dependent representation of the closed-loop system

Preliminary to the design of the controller is a data-

dependent representation of the closed-loop system. We

first introduce some notation. Recall the dataset in (2) and

introduce, for i = 0, . . . , T − 1,

U(i) :=











u(i)
u(i+ 1)

...

u(i+N − 1)











, Y (i) :=











y(i)
y(i+ 1)

...

y(i+N − 1)











We assume that the samples of the dataset evolve in the

domain of definition of (13).

Assumption 3: For any i = 0, . . . , T − 1, U(i) ∈ UN and

Y (i) ∈ ΦN (X , u[i,i+N−2]). �

We let:

Y0 :=
[

Y (0) Y (1) . . . Y (T − 1)
]

V0 :=
[

U(0) U(1) . . . U(T − 1)
]

Y1 :=
[

Y (1) Y (2) . . . Y (T )
]

V1 :=
[

U(1) U(2) . . . U(T )
]

Q0 :=
[

Q(0) Q(1) . . . Q(T − 1)
]

U0 :=
[

u(N) u(N + 1) . . . u(N + T − 1)
]

(14)

In the definition of Q0, we are using the shorthand notation

Q(i) for Q(Y (i), U(i)). Under Assumption 3, bearing in

mind the dynamics (11), the dataset-dependent matrices

introduced in (14) satisfy

[

Y1
V1

]

= A

[

Y0
V0

]

+B1U0 +B2α





Y0
V0
Q0



 (15)

Remark 1: (Multiple experiments) This identity is ob-

tained from the T identities

[

Y (i+ 1)
U(i+ 1)

]

= A

[

Y (i)
U(i)

]

+B1u(i+N) +B2α





Y (i)
U(i)
Q(i)



 ,

i = 0, . . . , T − 1

We note that, for each i, the identity does not require the

quantities Y (i), U(i), Y (i + 1), U(i + 1), u(i) to be related

to the corresponding quantities for i+1. In other words, we

could run T N -long independent experiments and collect the

resulting input-output samples in

Y
j
0 :=











yj(0)
yj(1)

...

yj(N − 1)











, U
j
0 :=











uj(0)
uj(1)

...

uj(N − 1)











,

Y
j
1 :=











yj(1)
yj(2)

...

yj(N)











, U
j
1 :=











uj(1)
uj(2)

...

uj(N)











where j = 0, . . . , T − 1 denotes the number of the exper-

iment, and {uj(k), yj(k)}Nk=0 are the input-output samples

of the experiment j. We could then redefine the matrices in

(14) as

Y0 :=
[

Y 0
0 Y 1

0 . . . Y T−1
0

]

V0 :=
[

U0
0 U1

0 . . . UT−1
0

]

Y1 :=
[

Y 0
1 Y 1

1 . . . Y T−1
1

]

V1 :=
[

U0
1 U1

1 . . . UT−1
1

]

Q0 :=
[

Q0
0 Q1

0 . . . QT−1
0

]

U0 :=
[

u0(N) u1(N) . . . uT−1(N)
]

and the identity (15) would still apply. �

We establish the following:

Lemma 2: Let Assumptions 1, 2 and 3 hold. Consider any

matrices κ ∈ R
1×S , G ∈ R

T×S that satisfy the relation

[

κ

IS

]

=









U0

Y0
V0
Q0









G (16)

and partition G as

G =
[

G1 G2

]

where G1 ∈ R
T×2N , G2 ∈ R

T×(S−2N). Then the closed-

loop system (13) can be written as
[

w+

ξ+

]

=M

[

w

ξ

]

+NQ(w, ξ)

where

M = X1G1, N = X1G2, X1 =

[

Y1
V1

]

. (17)

�

Proof. For any ξ ∈ UN and any w ∈ ΦN (X , ξ[1,N−1]), it

holds

A

[

w

ξ

]

+B1κZ(w, ξ) +B2αZ(w, ξ)

(16)
= A

[

w

ξ

]

+B1U0G1

[

w

ξ

]

+ B1U0G2Q(w, ξ)

+B2α





Y0
V0
Q0



GZ(w, ξ)

(15)
= A

[

w

ξ

]

+B1U0G1

[

w

ξ

]

+ B1U0G2Q(w, ξ)

+

([

Y1
V1

]

−A

[

Y0
V0

]

−B1U0

)

GZ(w, ξ)

=

(

A+

([

Y1
V1

]

−A

[

Y0
V0

])

G1

)[

w

ξ

]

+

([

Y1
V1

]

−A

[

Y0
V0

])

G2Q(w, ξ).

By (16), we obtain that
[

Y0
V0

]

[

G1 G2

]

=
[

I2N 0S−2N

]



Hence,

A+

([

Y1
V1

]

−A

[

Y0
V0

])

G1 = X1G1

([

Y1
V1

]

−A

[

Y0
V0

])

G2 = X1G2.

�

Let the set of real-valued symmetric matrices of dimension

n× n be denoted by S
n×n. This data-dependent representa-

tion leads to the following local stabilization result:

Proposition 1: Let Assumptions 1, 2 and 3 hold. Consider

the following SDP in the decision variables P1 ∈ S
2N×2N ,

Y1 ∈ R
T×2N , and G2 ∈ R

T×(S−2N):

minimizeP1,Y1,G2
‖X1G2‖ (18a)

subject to





Y0
V0
Q0



Y1 =

[

P1

0(S−2N)×2N

]

, (18b)

[

P1 (X1Y1)
⊤

X1Y1 P1

]

≻ 0 , (18c)





Y0
V0
Q0



G2 =

[

02N×(S−2N)

IS−2N

]

. (18d)

Assume that

lim
|(w,ξ)|→0

|Q(w, ξ)|

|(w, ξ)|
= 0 . (19)

If the SDP is feasible then

ξ+ = Acξ +Bcu (20)

with

u = κZ(w, ξ) (21)

and κ as in

κ = U0

[

Y1 G2

]

[

P−1
1 02N×(S−2N)

0(S−2N)×2N IS−2N

]

(22)

renders the origin (w, ξ) = (0, 0) an asymptotically stable

equilibrium of

w+ = f̃(w, ξ)
ξ+ = Acξ +BcκZ(w, ξ)

y = h̃(w, ξ).

(23)

�

Proof. Set G1 = Y1P
−1
1 . Then (18b), (18d) imply

IS =





Y0
V0
Q0





[

G1 G2

]

which along with the definition of κ in (22), namely κ =
U0 [G1 G2 ], implies (16). Hence, the data-dependent repre-

sentation of system (13) given in Lemma 2 holds. By Schur

complement, the constraint (18c) is equivalent to

P1 − (X1Y1)
⊤P−1

1 (X1Y1) ≻ 0 ,

Pre- and post-multiplying by P−1
1 and bearing in mind the

definition of G1 we obtain

P−1
1 − (X1G1)

⊤P−1
1 (X1G1) ≻ 0 ,

which shows that V (w, ξ) =
[

w⊤ ξ⊤
]

P−1
1

[

w

ξ

]

is a

Lyapunov function for the linear part of the closed-loop

system. In particular note that the domain of definition of

the function V (w, ξ) is the same as the one of system (23),

hence, V (w, ξ) is defined at the origin. We have

V (w+, ξ+)− V (w, ξ)

=
[

w⊤ ξ⊤
]

((X1G1)
⊤P−1

1 (X1G1)− P−1
1 )

[

w

ξ

]

+2
[

w⊤ ξ⊤
]

(X1G1)
⊤P−1

1 X1G2Q(w, ξ)
+Q(w, ξ)⊤(X1G2)

⊤P−1
1 X1G2Q(w, ξ)

In view of (19), V (w+, ξ+)−V (w, ξ) < 0 in a neighborhood

of the origin. This shows the claim. �

D. Region of Attraction

Proposition 1 provides a local stabilization result. Fol-

lowing [15], Proposition 1 can be extended to provide an

estimate of the Region of Attraction (ROA) of the system

(23). First we recall the following definitions.

Definition 1: [25, Definition 13.2] Suppose that x = 0 is

an asymptotically stable equilibrium for x+ = f(x). Then

the ROA of x+ = f(x) is given by

A0 = {x0 : lim
k→∞

sk(x0) = 0}

where sk(x0) is the solution to x+ = f(x) at time k ≥ k0
from the initial condition x0. �

Definition 2: [25, Definition 13.4] A set M ⊂ R
n is a

positively invariant set for x+ = f(x) if sk(M) ⊆ M for

all k ≥ k0, where sk(M) = {sk(x0) : x0 ∈ M}. �

Recall the Lyapunov difference

V (w+, ξ+)− V (w, ξ)

=

(

M

[

w

ξ

]

+NQ(w, ξ)

)⊤

P−1
1

(

M

[

w

ξ

]

+NQ(w, ξ)

)

−

[

w

ξ

]⊤

P−1
1

[

w

ξ

]

=: W(w, ξ)

with M,N as in (17).

Corollary 1: Consider the same setting as Proposition 1.

Let1 V := {(w, ξ) : W(w, ξ) < 0}. Any sublevel set Rγ =
{(w, ξ) : V (w, ξ) ≤ γ} contained in V ∪ {0} is positively

invariant for system (23) and defines an estimate of the ROA

of system (23). �

As the function W(w, ξ) is known from the data, the

estimate of the ROA Rγ is computable.

IV. MAIN RESULT

To draw conclusions on the convergence of system (1),

we first observe that the dynamical controller (20) uses its

own state ξ and the state w to generate the control action

u = κZ(ξ, w). At time k the state w(k) contains the past N

output measurements from the process (1), from which we

1Although not indicated explicitly, V is a subset of the domain of
definition of V (w, ξ).



only measure y(k). To make the past measurements in w(k)
available to the controller, we extend it with the dynamics

η+ = Acη +Bcy (24)

Then, for any k0 ∈ Z and any η(k0) ∈ R
N , we have

that η(k) = y[k−N,k−1] = w(k) for all k ≥ k0 + N , that

is, independently of the initialization of (24), its state η(k)
provides the vector w(k) of the past output measurements

from time N onward. Similarly, for any ξ(k0) ∈ R
N , system

(20) is such that ξ(k) = u[k−N,k−1] for all k ≥ k0 +N . See

[19] for the same structure of the controller (20), (24).

Remark 2: System (24) is the so-called deadbeat observer,

since for k ≥ k0 + N , the mapping ψ(η(k), ξ(k)) would

return x(k). If both ψ and a state-feedback stabilizer for

system (1) were known, one could obtain a dynamic output

feedback controller for the system (1). Here we are interested

to the case in which this knowledge is not available and we

design a dynamic output feedback controller under a suitable

assumption on the nonlinearity h̃ (Assumption 2). �

The following statement transfers the result obtained for

the system (23) to the actual closed-loop system that includes

the process (1).

Proposition 2: Let Assumptions 1, 2 and 3 hold. Consider

the SDP (18), assume that it is feasible and let condition

(19) hold. For any (x0, ξ0, η0) ∈ X × R
N × R

N for

which there exists v = (v[0,N−2], vN−1) ∈ UN such that

(ΦN (x0, v[0,N−2]), v) ∈ Rγ , the solution of the system (1)

in closed-loop with the time-varying controller comprised by

(20), (24) and

u(k) =

{

vk−k0
k0 ≤ k ≤ k0 +N − 1

κZ(η(k), ξ(k)) k ≥ k0 +N
(25)

that starts from (x0, ξ0, η0), asymptotically converges to the

origin. �

Proof. First note that, by definition of the mapping ΦN

and since f(0, 0) = 0 and h(0) = 0, each entry of ΦN is

a continuous function of its arguments which is zero when

these are zero, hence there exists a neighbourhood of the

origin (x, v) = (0, 0) such that any point (x, v) in the

neighbourhood satisfies (ΦN (x, v[0,N−2]), v) ∈ Rγ .

By definition of the mapping ΦN in Assumption 1 and

(25), ΦN (x0, v[0,N−2]) = y[k0,k0+N−1], where y denotes the

output response of the closed-loop system from the initial

condition (x0, ξ0, η0).
By the dynamics of the controller (20), (24), we have

η(k) = y[k−N,k−1], ξ(k) = u[k−N,k−1] for all k ≥ k0 + N

and (η(k0 +N), ξ(k0 +N)) = (ΦN (x, v[0,N−2]), v) ∈ Rγ .

Hence, by Lemma 1, the solution of (20), (24) are the same as

those of system (23) intialized at (w(k0+N), ξ(k0+N)) =
(y[k0,k0+N−1], u[k0,k0+N−1]). As (η(k0 +N), ξ(k0 +N)) ∈
Rγ , by Proposition 1 and Corollary 1, (η(k), ξ(k)) converges

to the origin. By Lemma 1, for all k ≥ k0 + N , x(k) =
ψ(η(k), ξ(k)), which implies convergence of x(k) to the

origin by continuity of ψ. �

The particular form of u(k) in (25) is due to the fact that,

during the first N -steps, the controller state does not provide

an accurate value of the past input-output measurements of

the system, hence the choice to apply an open-loop input

sequence. After N time steps, when such past measurements

become available through the controller states η(k), ξ(k),
u(k) is set to the feedback κZ(η(k), ξ(k)).

We also remark that in the result above if the initial

condition x0 is sufficiently close to the origin and the initial

sequence of control values v0, . . . , vn−2, vn−1 does not drive

the output response of (1) outside the set Rγ , then the

designed controller (25) steers the state of the overall closed-

loop system to the origin. Note that Rγ is known thanks to

Corollary 1, hence the designer can check whether the initial

control sequence and the corresponding measured output

response are in Rγ . For the design of the initial control

sequence, the designer could take advantage of some expert

knowledge.

Remark 3: (Prior on input/output measurements) The

controller is designed under the assumption that the in-

put/output measurements collected during the experiment

range over some specified sets – see Assumption 3 – where

the measurements provide meaningful information about the

system’s internal state. These sets are not known, hence, the

feature that the evolution of the system during the experi-

ments remains in the sets of interest must be considered as

one of the priors under which the design is possible.

V. NUMERICAL EXAMPLE

We continue with Example 1 and consider the equations

(7) with output y = x1. The system parameters are Ts = 0.1,

m = 1, ℓ = 1, g = 9.8 and µ = 0.01. The problem is to

learn a controller for (7) from input-output data that renders

the origin of the closed-loop system locally asymptotically

stable.

Following [15, Example 5], we choose

Z(w, ξ) =









w

ξ

sinw1 − w1

ξ1 cosw1 − ξ1









and note that Assumption 2 and (19) hold.

We collect data by running T = 7, N = 2-long exper-

iments with input uniformly distributed in [−0.5, 0.5] and

with an initial state in [−0.5, 0.5]2. For each experiment j =
0, 1, . . . , T − 1, we collect the samples {uj(k), yj(k)}2k=0.

Then we construct data matrices Y1, Y0, V1, V0, U0, Q0, as

detailed in Remark 1. The program (18) is feasible and we

obtain the controller gain with

κ =
[

52.4412 −76.1179 −0.5782 −0.4467 0 0
]

(26)

using the YALMIP toolbox [26], MOSEK solver [27]. To

assess the effectiveness of the designed controller, instead

of computing Rγ , which for this example provides a con-

servative estimate of the ROA, we depict in Fig. 1 the set

of initial conditions x0 for which, choosing vk−k0
= 0 for

k0 ≤ k ≤ k0 + N − 1 in (25), the state (x(k), η(k), ξ(k))
converges to zero. Note that the choice of η0, ξ0 is inessential.

The set is obtained by letting the closed-loop system evolve



for 200 time steps and then checking whether or not the norm

‖(x(k), η(k), ξ(k))‖∞ is smaller than 10−6 on the interval

195 ≤ k ≤ 200.
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Fig. 1. The blue area represents the estimate of the ROA of system (7)
in closed-loop with the controller (20), (24), (25), where vk−k0

= 0 for
k0 ≤ k ≤ k0 +N − 1 and κ is given in (26).

VI. CONCLUSIONS

We have examined a design of dynamic output feedback

controllers for nonlinear systems from input/output data. The

uniform observability property of the system, a prior in the

approach, is instrumental to define a new set of coordinates,

from which a data-driven “state”-feedback design can be

conducted. The result is local and the size of the region

of attraction is limited by the free evolution of the system

during the first N steps during which the dead-beat observer

reconstructs the past input/output values that feed the con-

troller. The design and analysis have been carried out in the

favourable setting in which measurements are noise-free and

the nonlinearities can be expressed via a dictionary of known

functions. Regarding the future work, besides going beyond

the favourable setting, we would like to explore either a

more sophisticated observer design or a different data-driven

control design method. An option is to express the function

ψ via a dictionary of functions, perform a data-driven design

of an observer and follow a certainty equivalence principle

in the analysis of the closed-loop system.

APPENDIX

A. Proof of Lemma 1

For any time k, collect the past N output samples gener-

ated by the system (1) in the vector y[k−N,k−1]. The vectors

y[k−N,k−1], y[k−N+1,k] at two successive time instants are

related by

y[k−N+1,k] =















y(k −N + 1)
y(k −N + 2)

...

y(k − 1)
y(k)















= Acy[k−N,k−1] +Bcy(k)

(27)

By the dynamics (1) and the definitions (3), the state x(k)
at time k is given by

x(k) = FN (x(k −N), u[k−N,k−1]) (28)

the output y(k) at time k is given by

y(k) = h ◦ FN (x(k −N), u[k−N,k−1])

and, by the definition (4),

y[k−N,k−1] = ΦN (x(k −N), u[k−N,k−2]). (29)

By Assumption 1 and the hypothesis that x(k − N) ∈ X
and u[k−N,k−1] ∈ UN for all k ∈ Z≥k0

, the mapping (29) is

invertible and returns

x(k −N) = ΨN(y[k−N,k−1], u[k−N,k−2]).

Hence, the state x(k) in (28) can be expressed as a mapping

of the past input and output samples

x(k) = FN (ΨN(y[k−N,k−1], u[k−N,k−2]), u[k−N,k−1])
= ψ(y[k−N,k−1], u[k−N,k−1])

and similarly for the output

y(k) = h ◦ FN (ΨN (y[k−N,k−1], u[k−N,k−2]), u[k−N,k−1])

= h̃(y[k−N,k−1], u[k−N,k−1])

If y(k) is replaced in (27), then

y[k−N+1,k] = f̃(y[k−N,k−1], u[k−N,k−1]),

by definition of f̃ in (5).

By the choice of the input v(k) = u[k−N,k−1], for all

k ∈ Z≥k0
and of the initial condition w(k0) = y[k0−N,k0−1],

we have that w(k) = y[k−N,k−1] for all k ∈ Z≥k0
, and this

ends the proof. �
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