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Abstract— We investigate pathwise turnpike behavior of
discrete-time stochastic linear-quadratic optimal control prob-
lems. Our analysis is based on a novel strict dissipativity notion
for such problems, in which a stationary stochastic process
replaces the optimal steady state of the deterministic setting.
The analytical findings are illustrated by a numerical example.

I. INTRODUCTION

Turnpike properties are a valuable feature of optimal
control problems (OCPs). In deterministic problems, the
most common variant of this phenomenon describes that
for increasing horizon lengths, the optimal trajectories spend
most of their time near an optimal steady state. This means
that the turnpike property can be seen as a finite-horizon
variant of the usual asymptotic stability property. It was
first observed by von Neumann and Ramsey, see [19], [22],
but it is still a topic of recent research, particularly due
to its relation to model predictive control, see [3], [9]. A
closely related concept is strict dissipativity. For determinis-
tic problems the connection between strict dissipativity and
the turnpike property is well studied, see [4], [8], [10].

While turnpike phenomena are rather well understood in
the deterministic setting, more theoretical work is needed
when uncertainties enter the dynamics and the setting be-
comes stochastic. Some of the challenges here are the defi-
nition of the stochastic counterpart to the optimal steady state
and the question of which objects we should work within the
theoretical analysis, given that in numerical experiments one
can observe turnpike properties concerning different objects
like distributions, moments, or sample paths of the stochastic
system, see [17].

The contribution of this paper is twofold: On the one hand
we show a pathwise turnpike phenomenon in probability for
stochastic systems in which the individual paths do not con-
verge to a steady state but are subject to continued excitation
by an additive disturbance. As we will see in Theorem 3,
this pathwise turnpike behavior states that there is a specific
stationary process such that with high probability the paths of
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near-optimal processes stay close to corresponding paths of
the stationary process, except for a number of time instances
independent of the optimization horizon. This distinguishes
our results from existing ones, e.g., in [12], [14], [21], which
either consider turnpike phenomena in distribution rather
than pathwise or assume that the stochastic system is L2-
stabilizable, in contrast to our setting. On the other hand, we
provide the—to the best of the authors’ knowledge—first
dissipativity-based analysis of a pathwise turnpike property
for stochastic optimal control problems.

We investigate this connection in the discrete-time linear-
quadratic setting. We note that our strict dissipativity notion
differs from the one recently introduced in [6], because our
notion cannot be reformulated in the sense of the underlying
probability measures. In fact, a dissipativity notion in the
sense of probability measures would not be strong enough
to conclude the pathwise turnpike property in probability that
we achieve in this paper, cf. Remark 1 and Section IV.

The remainder of the paper is structured as follows:
Section II introduces the considered problem formulation
and recalls the concepts of turnpike and dissipativity in
the deterministic setting. Section III shows that a pair of
stationary stochastic processes fulfilling a suitable optimality
criterion can replace the deterministic optimal steady state.
Moreover, we show in Section IV that a time-varying dissi-
pativity notion implies a pathwise turnpike property for this
stationary pair. We also present an illustrative example in
Section V and summarize our results in Section VI.

II. SETTING AND PRELIMINARIES
Before investigating stochastic turnpike properties, we

introduce our problem set-up and briefly recall the basic
concepts of dissipativity and turnpike in the deterministic
case.

A. Problem formulation

For a stabilizable pair (A,B), we consider linear stochas-
tic systems of the form

X(k + 1) = AX(k) +BU(k) +W (k), X(0) = X0 (1)

where at each time step k ∈ N0, X(k) ∈ L2(Ω,Fk,P,Rn),
U(k) ∈ L2(Ω,Fk,P,Rl), and W (k) ∈ L2(Ω,F ,P,Rn).
Here Ω is the set of realizations, P is the probability measure,
F is a σ-algebra, and (Fk)k∈N0

is a filtration following
the usual hypotheses of [18]. For our purpose, we choose
(Fk)k∈N0

as the smallest filtration such that X is an adapted
process, i.e.

Fk = σ(X(0), . . . , X(k)), k ∈ N0.
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This choice of the stochastic filtration induces a causality
requirement, which ensures that the control action U(k) at
time k only depends on the sequence of past disturbances
{W (k)}k=0,...,k−1 and not on future events. We refer to [5],
[18] for more details on stochastic filtrations.
Further, for all k ∈ N0 we assume that W (k) ∼ N (0,ΣW )
are i.i.d Gaussian random variables which are independent of
X(k) and U(k) and which have zero mean and covariance
matrix ΣW ∈ Rn×n. For a given initial value X0 ∼
N (µ0,Σ0) and control U(·) we denote the solution of system
(1) by XU (·, X0), or short by X(·) if the initial value and the
control are unambiguous. Note, that the solution XU (·, X0)
also depends on the disturbance W (·). However, for the sake
of readability, we do not highlight this in our notation.
For two matrices R ∈ Rl×l, Q ∈ Rn×n with R > 0, Q ≥ 0
and (A,Q1/2) detectable, the stage cost is given by

ℓ(X,U) := E
[
∥X∥2Q + ∥U∥2R

]
. (2)

The stochastic optimal control problem (stochastic OCP)
under consideration is

min
U(·)

JN (X0, U) :=

N−1∑
k=0

ℓ(X(k), U(k)) (3)

subject to (1). The solution of problem (3) is well known,
see [2], and given by U∗(k) = KN (k)XU∗(k,X0) where

KN (k) := −
[
R+BTPN (k + 1)B

]−1
BTPN (k + 1)A

and PN (k) is the solution of the backward Riccati iteration
(or Riccati difference equation)

PN (k) =ATPN (k + 1)A+Q−ATPN (k + 1)B

× [R+BTPN (k + 1)B]−1BTPN (k + 1)A
(4)

with the terminal condition PN (N) = 0.

B. Deterministic Dissipativity and Turnpike

Let us denote the deterministic counterpart to system (1)
by

x(k + 1) = Ax(k) +Bu(k), x(0) = x0 (5)

and the corresponding solution analogously by xu(·, x0). It
is easy to see that (xs, us) = (0, 0) solves the optimization
problem

min
x,u

ℓ(x, u) = ∥x∥2Q + ∥u∥2R s.t. x = Ax+Bu. (6)

Therefore, we call (xs, us) = (0, 0) the optimal steady state
of the deterministic linear-quadratic optimal control problem.
Next, we formalize the strict dissipativity property for the
deterministic problem.

Definition 1: The deterministic linear-quadratic optimal
control problem is called strictly (x, u)-dissipative at (xs, us)
if there exists a storage function λ : Rn → R bounded
from below and a function ρ ∈ K∞, i.e., ρ : R+

0 → R+
0

continuous, strictly increasing and unbounded with ρ(0) = 0,
such that

ℓ(x, u)− ℓ(xs, us) + λ(x)− λ(Ax+Bu)

≥ ρ(∥(x− xs, u− us)∥)
(7)

holds for all (x, u) ∈ Rn × Rl.
The following lemma, a slight modification of [7, Theorem

5.3], shows that strict dissipativity implies turnpike-like
behavior for the deterministic case.

Lemma 1: Assume strict (x, u)-dissipativity at (xs, us).
Then for each x0 ∈ Rn there exists a constant C ∈ R such
that for each δ > 0, each control sequence u(·) satisfying
JN (x0, u) ≤ Nℓ(xs, us)+δ and each ε > 0 the value Qε :=
#{k ∈ {0, . . . , N − 1} | ∥(xu(k, x0)− xs, u(k)− us)∥ ≤
ε} satisfies the inequality Qε ≥ N − (δ + C)/ρ(ε).

We note that this result holds for much more general
optimal control problems than specified above. In the setting
from above, we have ℓ(xs, us) = 0 and thus we will see the
turnpike phenomenon for all solutions xu(k, x0) for which
JN (x0, u) is uniformly bounded in N . We note that although
in the sequel we do not change the structure of the cost
function, we will not have that the cost vanishes in the
stochastic counterpart of the turnpike steady state (xs, us)
that we identify below.

III. STATIONARY SOLUTIONS AND OVERTAKING
OPTIMALITY

Our aim is to transfer the results from the deterministic to
the stochastic setting. For that, we have to consider how we
can receive an equivalent formulation of (6) to characterize
the optimal steady state for system (1). We note that, for any
U ∈ L2(Ω,Fk,P,Rl), the condition

X = AX +BU +W (8)

cannot be satisfied as U may not depend on W according to
the underlying filtration. Thus, a random variable, which is
constant in time, is not a suitable candidate for the stochastic
counterpart of the optimal steady state. However, we can
keep the distribution of such a process constant, instead, and
use the following definition of stationary processes.

Definition 2: A pair of state and control processes
(Xs(·), Us(·)) is called stationary for system (1) if there is
a stationary distribution ϱs such that

Xs(k) ∼ ϱs and Xs(k+1) = AXs(k)+BUs(k)+W (k)

for all k ∈ N0.
Remark 1 (Stationarity in probability measures):

The probability measure defining a stationary distribution is
called an invariant measure, see [16]. Hence, an alternative
approach to the above stationarity concept could be to switch
entirely to the set of underlying probability measures and to
conduct the analysis there, see [6]. However, this approach
is limited in that all information about the single realization
paths of the solutions is lost – although numerical simulations
suggest a turnpike phenomenon for the paths, as well, see
[17].

As shown in [15], every control of the form U(k) :=
LX(k) with A+BL Schur-stable yields an invariant prob-
ability measure and, therefore, such a stationary pair. So
we need an additional optimality criterion to characterize
optimal stationary pairs along with the optimal L. Since
we aim at formulating this criterion regarding the stochastic



processes, which are not constant over time, we cannot
minimize the stage cost (2) for one single time step. Instead,
we must include the entire evolution of X(·) and U(·) in the
optimization process. For this purpose, let us first derive a
reformulation of the cost.

Lemma 2: Let P be the unique positive semidefinite so-
lution of the discrete-time algebraic Riccati equation

P = ATPA+Q−ATPB[R+BTPB]−1BTPA, (9)

and set K := −
[
R+BTPB

]−1
BTPA. Then for every

N ∈ N the cost (3) can be rewritten as

JN (X0, U) =

N−1∑
k=0

E
[
∥U(k)−KX(k)∥2R̃

]
+ E

[
∥X0∥2P

]
− E

[
∥X(N)∥2P

]
+

N−1∑
k=0

E
[
∥W (k)∥2P

]
with R̃ := R+BTPB symmetric and positive definite.

Proof: Since P is the constant solution of the Riccati
iteration (4) with terminal condition PN (N) = P , this
lemma is a direct consequence of [20, Chapter 8, Lemma 6.1]
and the stochastic independence of X(k) and W (k) as well
as U(k) and W (k).
Lemma 2 reveals that for every control U(·), the cost grows
unbounded if we let N go to infinity. That means we
cannot directly solve the infinite horizon stochastic OCP.
Thus, we use the following concept of overtaking optimality,
originally introduced by [1], [23]. Moreover, it was already
used to analyze turnpike behavior for time-varying discrete-
time optimal control problems in deterministic settings, see
[11].

Definition 3: Let X0 be a fixed initial condition. Then a
control U1(·) overtakes U2(·) if there is a time N0 such that

JN (X0, U1) < JN (X0, U2), for all N > N0.

For a set of controls U , a control U∗(·) ∈ U is called
overtaking optimal on U if it overtakes every other control
U(·) ∈ U .

Note that this definition implies the uniqueness of the
overtaking optimal control if it exists. For the continuous-
time case, it has been shown in [13] that the feedback law
obtained from the solution of the algebraic Riccati equation
defines an overtaking optimal control. We adapt this proof
and show that the claim also holds for the discrete-time case.

Theorem 1: For every initial condition X0 ∼ N (µ0,Σ0)
there exists a unique overtaking optimal control U∗(·) on the
set

U = {U(·) | ∃α > 0 : E
[
∥XU (k,X0)∥2

]
≤ α and

U(k) ∈ L2(Ω,Fk,P,Rl) for all k ∈ N0}
given by the feedback law

U∗(k) = KX∗(k), X∗(·) := XU∗(·, X0) (10)

where K := −
[
R+BTPB

]−1
BTPA and P is the pos-

itive semidefinite symmetric solution of the discrete-time
algebraic Riccati equation (9). Further, the following stronger

version of overtaking optimality holds: For every U(·) ∈ U
with U(·) ̸= U∗(·) there is a time N0 and an ε > 0 such
that

JN (X0, U
∗) + ε < JN (X0, U)

for all N ≥ N0.
Proof: First we have to verify that U∗(·) = KX∗(·) ∈

U . Since U∗(·) only depends on the current state, it is clear
that the filtration condition is fulfilled and thus U∗(k) ∈
L2(Ω,Fk,P,Rl) holds for all k ∈ N0. So it remains to
show that E[∥X∗(k)∥2] is bounded for all k ∈ N0. We
can calculate the distribution of X∗(k) ∼ N (µ(k),Σ(k))
directly by the equations

µ(k + 1) = AKµ(k)

Σ(k + 1) = AKΣ(k)AT
K +ΣW

(11)

with the initial condition (µ(0),Σ(0)) = (µ0,Σ0) and the
Schur-stable matrix AK := A + BK. Therefore, we know
that µ(k) and Σ(k) converge because of the Schur-stability
of AK and, thus, we get that

E
[
∥X(k)∥2

]
=

n∑
i=0

E
[
Xi(k)

2
]
= µ(k)Tµ(k) + Tr(Σ(k))

converges, too, which especially implies the boundedness of
E[∥X∗(k)∥2].

Now, since we know that U∗(·) ∈ U , we can write every

U(k) = KX(k) + V (k), for all k ∈ N0

with V (·) ∈ U . If we use Lemma 2 to calculate the cost of
U(·) we get

JN (X0, U) =

N−1∑
k=0

E
[
∥V (k)∥2R̃

]
+ E

[
∥X0∥2P

]
− E

[
∥X(N)∥2P

]
+

N−1∑
k=0

E
[
∥W (k)∥2P

]
and, thus,

JN (X0, U)− JN (X0, U
∗)

=

N−1∑
k=0

E
[
∥V (k)∥2R̃

]
− E

[
∥X(N)∥2P

]
+ E

[
∥X∗(N)∥2P

]
.

We consider two cases to prove that U∗(·) is overtaking
optimal. First assume limN→∞

∑N−1
k=0 E[∥V (k)∥2

R̃
] = ∞.

Then we get by the boundedness of E[∥X(T )∥2] and the
nonnegativity of E[∥X∗(T )∥2P ] that there exists a time N0 >
0 and a constant α0 > 0 such that

JN (X0, U)− JN (X0, U
∗) ≥

N−1∑
k=0

E
[
∥V (k)∥2R̃

]
− α0 > ε

for all N > N0, i.e., U∗ is overtaking optimal.
Let us now consider the second possibility

0 ≤ lim
N→∞

N−1∑
k=0

E
[
∥V (k)∥2R̃

]
=: γ < ∞. (12)



First, we assume γ = 0. Then we can conclude that
E[∥V (k)∥2

R̃
] = 0 for all k ∈ N0 and thus V (·) = 0 almost

surely, which implies U(·) = U∗(·). Therefore, we can
w.l.o.g. assume that γ > 0, which implies that there exists a
constant ε̃ > 0 and a time N1 > 0 such that

N−1∑
k=0

E
[
∥V (k)∥2R̃

]
> ε̃ for all N ≥ N1. (13)

Next, we show that

lim
N→∞

[
E
[
∥X(N)∥2P

]
− E

[
∥X∗(N)∥2P

]]
= 0 (14)

for which by the equality xTPx = tr(PxxT ) it is sufficient
to prove that

lim
N→∞

[
E
[
X(N)X(N)T

]
− E

[
X∗(N)X∗(N)T

]]
= 0.

The equations satisfied by X∗(·) and X(·) are

X∗(k + 1) = AKX∗(k) +W (k)

X(k + 1) = AKX(k) +BV (k) +W (k)

and thus, the solution X(·) is given by

X(k) = X∗(k) +

k−1∑
j=0

Aj
KBV (k − 1− j). (15)

From equation (15) we get

E
[
X(k)X(k)T

]
= E

[
X∗(k)X∗(k)T

]
+ E

[
X∗(k)Ṽ (k)T

]
+ E

[
Ṽ (k)X∗(k)T

]
+ E

[
Ṽ (k)Ṽ (k)T

]
with Ṽ (k) :=

∑k−1
j=0 A

j
KBV (k− 1− j). It follows from the

Cauchy-Schwarz inequality that there is a constant κ > 0
such that any two random variables Z1 and Z2 satisfy∥∥E [

Z1Z
T
2

]∥∥ ≤ κ
(
E
[
∥Z1∥2

])1/2 (
E
[
∥Z2∥2

])1/2

. (16)

By inequality (16), it will be sufficient to prove that
E[∥Ṽ (k)∥2] → 0 as k → ∞ in order to establish
E[X(k)X(k)T −X∗(k)X∗(k)T ] → 0. It holds that

E
[∥∥Ṽ (k)

∥∥2] ≤ ∥B∥2
k−1∑
j=0

∥∥Aj
K

∥∥2 E
[∥∥V (k − 1− j)

∥∥2]
which converges to zero for k → ∞ because ∥Aj

K∥2 and
E[∥V (j)∥2] are summable by Schur-stability of AK and
equation (12), respectively. This proves (14), and thus there
exist a time N0 ≥ N1 such that

JN (X0, U)− JN (X0, U
∗)

=

N−1∑
k=0

E
[
∥V (k)∥2R̃

]
+ E

[
∥X∗(N)∥2P

]
− E

[
∥X(N)∥2P

]
> ε̃− ε̃

2
=

ε̃

2
:= ε > 0

for all N > N0, which concludes the proof.
Note that the restriction to the set U in Theorem 1 is not
limiting, since we are only interested in optimal stationary
pairs and every control defining a stationary pair must lie

in U to provide an invariant measure. Next, we show that
with a proper choice of X0 the overtaking optimal control
process from Theorem 1 defines a stationary pair in the sense
of Definition 2.

Lemma 3: For system (1), there exists a stationary pair
with control Us

∗ (·) = KXs
∗(·), where K is the feedback law

generating the overtaking optimal control from Theorem 1,
together with the state process

Xs
∗(k + 1) = (A+BK)Xs

∗(k) +W (k)

and initial distribution Xs
∗(0) ∼ N (µs

∗,Σ
s
∗). Here µs

∗ = 0
and Σs

∗ is the solution of the Lyapunov equation

Σs
∗ = (A+BK)Σs

∗(A+BK)T +ΣW .
Proof: Since A + BK is Schur-stable, by [15] the

stationary state process Xs
∗(·) exists. From equation (11) it

is clear that the corresponding invariant measure is given by
N (µs

∗,Σ
s
∗) where µs

∗ and Σs
∗ must satisfy the equations

µs
∗ = AKµs

∗, Σs
∗ = AKΣs

∗A
T
K +ΣW .

IV. STOCHASTIC DISSIPATIVITY AND TURNPIKE

As we have characterized the optimal stationary pair for
the considered stochastic OCP, we now show that this pair
satisfies a stochastic extension of strict dissipativity. In the
resulting dissipativity inequality, the distance measure on
the right-hand side depends on the exact realization of the
random variables rather than only on their distributions, cf.
(7). That means our distance measure is not a dissimilarity
measure in the sense of [6], and, thus, our concept of
stochastic dissipativity differs from that one presented there.
Specifically, we construct a modified cost function and a
corresponding storage function in several steps in a series
of lemmas, starting with the stage cost from Lemma 2.

Lemma 4: For every control U(·) and corresponding state
X(·) = XU (·, X0), the equality

ℓ̂(X(k), U(k)) := ℓ(X(k), U(k))− ℓ(Xs
∗(k), U

s
∗ (k))

+ λ̂(X(k))− λ̂(X(k + 1)) = E
[
∥U(k)−KX(k)∥2R̃

]
holds with λ̂(X(k)) = −E[∥X(k)∥2P ].

Proof: Using Lemma 2 with N = 1 we get

ℓ(X(k), U(k)) =E
[
∥U(k)−KX(k)∥2R̃

]
+ E

[
∥X(k)∥2P

]
− E

[
∥X(k + 1)∥2P

]
+ E

[
∥W (k)∥2P

]
and ℓ(Xs

∗(k), U
s
∗ (k)) = E[∥W (k)∥2P ]. This results in

ℓ̂(X(k), U(k)) = ℓ(X(k), U(k))

− E
[
∥W (k)∥2P

]
− E

[
∥X(k)∥2P

]
+ E

[
∥X(k + 1)∥2P

]
= E

[
∥U(k)−KX(k)∥2R̃

]
which proves the claim.
If we see the control U(·) as a kind of strategy π(·) of
the form U(k) = π(X(k)) then Lemma 4 could already
be interpreted as a dissipativity equation with respect to
the strategy. However, since we are interested in deriving a



stochastic version of (x, u)-dissipativity, we further modify
this equation, leading to the following lemma. For simplic-
ity, we denote in the following the difference between a
stochastic state or control process and the optimal stationary
process by X̃(·) := X(·) −Xs

∗(·), respectively, by Ũ(·) :=
U(·)− Us

∗ (·).
Lemma 5: For every control U(·) it holds that

ℓ̄(X(k), U(k)) :=ℓ(X(k), U(k))− ℓ(Xs
∗(k), U

s
∗ (k))

+ λ̄(k,X(k))− λ̄(k + 1, X(k + 1))

= E
[
∥X(k)−Xs

∗(k)∥2Q + ∥U(k)− Us
∗ (k)∥2R

]
for every k ∈ N0. Here, λ̄ is given by

λ̄(k,X(k)) := −E
[
∥X(k)∥2P − ∥X(k)−Xs

∗(k)∥
2
P

]
.

Proof: First, we observe that

E
[
∥U(k)−KX(k)∥2R̃

]
= E

[
∥(U(k)− Us

∗ (k))−K (X(k)−Xs
∗(k))∥

2
R̃

]
holds with Us

∗ (k) = KXs
∗(k). Thus, we obtain

ℓ̂(X(k), U(k)) = ℓ̂(X̃(k), Ũ(k)) by Lemma 4 and therefore

E
[
∥X̃(k)∥2Q + ∥Ũ(k)∥2R

]
= ℓ(X̃(k), Ũ(k))

= ℓ̂(X(k), U(k)) + ℓ(Xs
∗(k), U

s
∗ (k))

− λ̂(X̃(k)) + λ̂
(
AX̃(k) +BŨ(k) +W (k)

)
.

Further, because (X(k), U(k)) as well as (Us
∗ (k), X

s
∗(k))

are stochastically independent of W (k) we get

λ̂
(
AX̃(k) +BŨ(k) +W (k)

)
= −E

[
∥W (k)∥2P

]
− E

[
∥AX(k) +BU(k)−AXs

∗(k)−BUs
∗ (k)∥

2
P

]
= −E

[
∥X̃(k + 1)∥2P

]
− ℓ(Xs

∗(k), U
s
∗ (k)).

Putting all these equations together, we finally get

E
[
∥X(k)−Xs

∗(k)∥
2
Q + ∥U(k)− Us

∗ (k)∥
2
R

]
= ℓ̂(X(k), U(k)) + E

[
∥X(k)−Xs

∗(k)∥
2
P

]
− E

[
∥X(k + 1)−Xs

∗(k + 1)∥2P
]
= ℓ̄(X(k), U(k)).

With a final modification of the stage cost we can replace
the positive semidefinite matrix Q in the weight of the state
with a positive definite matrix. This leads to the next lemma.

Lemma 6: There exists symmetric and positive definite
matrices S ∈ Rn×n, H ∈ R(n+l)×(n+l), such that for every
control U(·) it holds that

ℓ̃(X(k), U(k)) :=ℓ(X(k), U(k))− ℓ(Xs
∗(k), U

s
∗ (k))

+ λ̃(k,X(k))− λ̃(k + 1, X(k + 1))

=E
[
∥(X(k)−Xs

∗(k), U(k)− Us
∗ (k))∥

2
H

]
with λ̃(k,X(k)) := λ̄(k,X(k)) + E

[
∥X(k)−Xs

∗(k)∥2S
]
.

Proof: Since (A,Q1/2) is detectable, we know by [8,
Lemma 5.4] that there is S̃ ∈ Rn×n symmetric and positive
definite satisfying the matrix inequality Q+ S̃−AT S̃A > 0.

For a given γ ∈ (0, 1], set S̃γ := γS̃ and Qγ := Q + S̃γ −
AT S̃γA. Then following the calculation of [8, Lemma 4.1]
we get

ℓ(X̃(k), Ũ(k)) + E
[
∥X̃(k)∥2

S̃γ

]
− E

[
∥X̃(k + 1)∥2

S̃γ

]
= ℓ̄(X(k), U(k)) + E

[
∥X̃(k)∥2

S̃γ

]
− E

[
∥AX̃(k) +BŨ(k)∥2

S̃γ

]
= E

[
∥(X̃(k), Ũ(k))∥2H

]
with

H :=
1

2

(
2Qγ γE
γE 2Rγ

)
,

Rγ := R−BT S̃γB and E := −AT S̃B−BT S̃A. Using the
Schur complement we can show, that H is positive definite
for a sufficient small γ̃ ∈ (0, 1], see [8], which proves the
lemma with S = S̃γ̃ > 0.
Note that,

λ̃(k,X(k)) = E
[
∥X(k)−Xs

∗(k)∥
2
P+S − ∥X(k)∥2P

]
=E

[
∥X(k)∥2S − 2X(k)T (P + S)Xs

∗(k) + ∥Xs
∗(k)∥

2
P+S

]
is bounded from below since S > 0 and P ≥ 0 and thus,
Lemma 6 delivers a dissipativity equation equivalently to
Definition 1. Therefore, we can show a turnpike property for
the stochastic case analogous to Lemma 1.

Theorem 2: For each X0 ∼ N (µ0,Σ0), there exists a con-
stant C ∈ R such that for each δ > 0, each control process
U(·) satisfying JN (X0, U) ≤ δ +

∑N−1
k=0 ℓ(Xs

∗(k), U
s
∗ (k))

and each ε > 0 the value

Qε := #
{
k ∈ {0, . . . , N − 1} | E

[
∥(X̃(k), Ũ(k))∥2H

]
≤ ε

}
satisfies the inequality Qε ≥ N − (δ +C)/ε for all N ∈ N.

Proof: The proof follows the same arguments as [7,
Theorem 5.3]. Set C := λ̃(0, X0) − M where M ∈
R is a lower bound on λ̃. Then for J̃N (X0, U) :=∑N−1

k=0 ℓ̃(X(k), U(k)) we get

J̃N (X0, U) =JN (X0, U)−
N−1∑
k=0

ℓ(Xs
∗(k), U

s
∗ (k))

+ λ̃(0, X(0))− λ̃(N,X(N)) ≤ δ + C.

(17)

Now assume that Qε < N − (δ + C)/ε. This means there
is a set M̄ ⊂ {0, . . . , N − 1} of N − Qε > (δ + C)/ε
time instants such that E[∥(X̃(k), Ũ(k))∥2H ] ≥ ε for all
k ∈ M̄. Using Lemma 6, this implies J̃N (X0, U) =∑N−1

k=0 E
[
∥(X̃(k), Ũ(k))∥2H

]
> δ + C, which contradicts

(17) and, thus, proves the theorem.
It is not immediately obvious what Theorem 2 means

for the single realization paths of X(·) and U(·). What we
cannot conclude is an almost sure turnpike property of the
paths. However, what we can conclude is a turnpike property
in probability. This means the probability that a realization is
not near (Xs

∗(·), Us
∗ (·)) is small in an appropriate probabilis-

tic sense, except for a number of time instances independent
of N . The following theorem formalizes this result.



Theorem 3: For each X0 ∼ N (µ0,Σ0), there exists a con-
stant C ∈ R such that for each δ > 0, each control process
U(·) satisfying JN (X0, U) ≤ δ +

∑N−1
k=0 ℓ(Xs

∗(k), U
s
∗ (k))

and each ϵ, η > 0 the value

Pϵ,η := #
{
k ∈ MN | P

(
∥(X̃(k), Ũ(k))∥2H ≥ ϵ

)
≤ η

}
satisfies Pϵ,η ≥ N − (δ + C)/(ϵη) for all N ∈ N, where
MN := {0, . . . , N − 1}.

Proof: Using the Markov inequality, we get

P
(
∥(X̃(k), Ũ(k))∥2H ≥ ϵ

)
≤ 1

ϵ
E
[
∥(X̃(k), Ũ(k))∥2H

]
. (18)

Further, by Theorem 2, we know that there are at
least N − (δ + C)/(ϵη) time instants for which
E[∥(X̃(k), Ũ(k))∥2H ] ≤ ϵη. Using equation (18), this gives
P
(
∥(X̃(k), Ũ(k))∥2H ≥ ϵ

)
≤ η for all these time instants

and, thus, proves the claim.
Note that in contrast to the classical turnpike approaches,

we have to fix two constants in Theorem 3 where ϵ defines
how close we want to be to the realization of the stationary
pair and η defines the desired probability bound for this.

V. NUMERICAL EXAMPLE
Consider the one-dimensional stochastic OCP

min
U(·)

N−1∑
k=0

E
[
X(k)2 + 5U(k)2

]
s.t. X(k + 1) = 1.2X(k) + U(k) +W (k)

(19)

with initial condition X(0) = X0 ∼ N (3, 1.5) and W (k) ∼
N (0, 10) for all k = 0, . . . , N − 1. Then the corresponding
stationary pair from Lemma 3 is defined by the feedback
K ≈ −0.558 and the initial distribution Xs

∗(0) ∼ N (0, 17).
To observe the pathwise turnpike property from Theorem 3,
we fix a realization of W (·) given by w = {wk} and simulate
the states and controls according to the equation (19) and the
optimal stationary pair with W (k) = wk and random initial
values following the desired distributions. Figure 1 shows
the noise-sequence w and the resulting turnpike behavior of
the realization. Further, Table I shows the number of points
Pw
0.25 := #{k ∈ MN | ∥(X̃(k), Ũ(k))∥2H ≥ 0.25} outside

the ε = 0.25 neighborhood of the stationary pair for the paths
from Figure 1 for the fixed realization w of the noise. It can
be observed that the value Pw

0.25 is uniformly bounded by
12, which further illustrates the pathwise turnpike property
of this realization.

N 10 15 20 25 30 35 40 45 50
Pw
0.25 10 9 11 12 9 10 12 10 12

TABLE I
NUMBER OF POINTS Pw

0.25 FOR DIFFERENT HORIZONS N .

VI. SUMMARY
This paper presented pathwise turnpike results in proba-

bility based on strict dissipativity for discrete-time stochastic
linear-quadratic optimal control problems. Compared to the
deterministic setting, a stationary stochastic process replaces
the optimal steady state. We have illustrated the theoretical
results considering a one-dimensional example.

Fig. 1. Fixed realization w of the noise and corresponding realizations of
the optimal solutions (X∗

N (·), U∗
N (·)) from (19) on different horizons N

(dashed) and the optimal stationary pair (Xs
∗(·), Us

∗ (·)) (solid red).
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[23] C. C. von Weizsäcker. Existence of optimal programs of accumulation
for an infinite time horizon. Rev. Econ. Stud., 32:85–104, 1965.


	I INTRODUCTION
	II SETTING AND PRELIMINARIES
	II-A Problem formulation
	II-B Deterministic Dissipativity and Turnpike

	III STATIONARY SOLUTIONS AND OVERTAKING OPTIMALITY
	IV STOCHASTIC DISSIPATIVITY AND TURNPIKE
	V NUMERICAL EXAMPLE
	VI SUMMARY
	References

