
Noname manuscript No.
(will be inserted by the editor)

Optimization-Based Bound Tightening using a
Strengthened QC-Relaxation of the Optimal Power Flow
Problem

Kaarthik Sundar ¨ Harsha Nagarajan ¨

Sidhant Misra ¨ Mowen Lu ¨ Carleton
Coffrin ¨ Russell Bent

Received: date / Accepted: date

Abstract This article develops a strengthened convex quadratic convex (QC)
relaxation of the AC Optimal Power Flow (AC-OPF) problem and presents
an optimization-based bound-tightening (OBBT) algorithm to compute tight,
feasible bounds on the voltage magnitude variables for each bus and the phase
angle difference variables for each branch in the network. Theoretical prop-
erties of the strengthened QC relaxation that show its dominance over the
other variants of the QC relaxation studied in the literature are also derived.
The effectiveness of the strengthened QC relaxation is corroborated via ex-
tensive numerical results on benchmark AC-OPF test networks. In particular,
the results demonstrate that the proposed relaxation consistently provides the
tightest variable bounds and optimality gaps with negligible impacts on run-
time performance.
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Nomenclature

Sets and Parameters
N - set of nodes (buses)
G - set of generators
Gi - set of generators at bus i
E - set of from edges (branches)
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ER - set of to edges (branches)
c0, c1, c2 - generation cost coefficients
i - imaginary number constant
Yij “ gij ` ibij - admittance on branch ij
Sdi “ p

d
i ` iq

d
i - AC power demand at bus i

suij - apparent power limit on branch ij

θlij ,θ
u
ij - phase angle difference limits on branch ij

θmij - maxp|θlij |, |θ
u
ij |q on branch ij

vli ,v
u
i - voltage magnitude limit at bus i

Sgli , Sgui - power generation limit at bus i
Rp¨q - real part of a complex number
Ip¨q - imaginary part of a complex number
p¨q˚ - hermitian conjugate of a complex number
| ¨ |,=¨ - magnitude, angle of a complex number

Continuous variables
Vi “ vie

iθi - AC voltage at bus i
θij “ =Vi ´=Vj - phase angle difference on branch ij
Wij - AC voltage product on branch ij, i.e., ViV

˚
j

Sij “ pij ` iqij - AC power flow on branch ij
Sgi “ pgi ` iq

g
i - AC power generation at bus i

lij - current magnitude squared on branch ij

Notation In this paper, constants are typeset in bold face. In the AC
power flow equations, the primitives, Vi, Sij , S

g
i , Sdi and Yij are complex

quantities. Given any two complex numbers (variables/constants) z1 and z2,
z1 ě z2 implies Rpz1q ě Rpz2q and Ipz1q ě Ipz2q. | ¨ | represents absolute value
when applied to a real number.

1 Introduction

The AC Optimal Power Flow (AC-OPF) problem is one of the most fundamen-
tal optimization problems for economic and reliable operation of the electric
transmission system. Since its introduction in 1962 [3], efficient solution tech-
niques to solve the AC-OPF have garnered a lot of attention from the research
community. The objective of the AC-OPF is to minimize the generation cost
while satisfying the power flow constraints and the network limits. The fun-
damental difficultly with solving the AC-OPF arises due to the nonlinear and
non-convex nature of the power flow constraints. The literature with regards
to AC-OPF can predominantly be classified into the one of the following three
groups: (i) developing fast algorithms to compute a local optimal solution to
the AC-OPF either using meta-heuristics or numeral techniques like gradient
descent [11] etc., (ii) developing convex relaxations that convexify the feasible
space defined by the AC-OPF, and (iii) developing global optimization algo-
rithms for AC-OPF [15]. The NP-hardness of AC-OPF [16] makes guarantees
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on feasibility and global optimality very difficult and hence, the past decade
has seen a surge in the work devoted towards developing convex relaxations
of AC-OPF. They include the Semi-Definite Programming (SDP) [1], Second
Order Cone (SOC) [14], the recent Quadratic Convex (QC) [13] and Moment-
Based [20] relaxations. In general, convex relaxations of AC-OPF are appealing
because they can provide lower bounds to the AC-OPF objective value, prove
infeasibility of the AC-OPF, or can aid in proving global optimality by produc-
ing a feasible solution in the non-convex space defined by the AC-OPF. One
major factor that parameterizes the strength of the convex relaxation for the
AC-OPF is the variable bounds. This dependence goes both ways, i.e., tight-
ened bounds can aid in providing tighter convex relaxations and better convex
relaxations can aid in tightening the variable bounds even further [8, 9]. In
this article, we exploit this dependence between bound-tightening and strong
convex relaxations in two novel ways: (i) we first present a strengthened QC
relaxation that uses an extreme-point representation and strictly dominates
the state-of-the-art QC relaxations in the literature [13, 18] and (ii) we de-
velop an optimality-based bound-tightening algorithm (OBBT) that exploits
the strengthened QC relaxations. These two novel contributions are put to-
gether to obtain lower bounds, that are better than the current known lower
bounds, for the benchmark AC-OPF problem instances. We also note that
variants of the bound-tightening algorithm presented in this article are used
routinely in the mixed-integer nonlinear programming literature [21, 25] and
also in algorithmic approaches used to tighten variable bound in AC-OPF [4,8].
Furthermore, we show theoretical properties of the strengthened QC relaxation
and present extensive experimental results that demonstrate the value of the
convex relaxation applied in conjunction with OBBT. In particular, we show
that

1. The strengthened QC relaxation is able to obtain the tightest voltage and
phase angle difference bounds for the AC-OPF problem compared to the
other QC relaxations in the literature.

2. When utilized in the context of global optimization of AC-OPF with OBBT,
on networks with less than 1000 buses, the strengthened QC relaxation re-
sults in an optimality gap of ă 1% for 52 out of 57 networks.

2 The Strengthened QC Relaxation

This section presents an overview of the mathematical formulation of the AC-
OPF and its state-of-the-art QC relaxation and develops the strengthened QC
relaxation for the AC-OPF.

2.1 AC Optimal Power Flow

We start by presenting the mathematical formulation of the AC-OPF problem
in Model 1 with additional Wij and Wii variables for each branch and bus, re-
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Model 1 AC Optimal Power Flow (AC-OPF) problem

minimize:
ÿ

iPG

c2ipRpS
g
i q

2q ` c1iRpS
g
i q ` c0i (1a)

subject to:
ÿ

kPGi

Sgk ´ S
d
i “

ÿ

pi,jqPEYER

Sij @i P N (1b)

Sij “ Y
˚
ijWii ´ Y

˚
ijWij @pi, jq P E (1c)

Sji “ Y
˚
ijWjj ´ Y

˚
ijW

˚
ij @pi, jq P E (1d)

Wii “ |Vi|
2 @i P N (1e)

Wij “ ViV
˚
j @pi, jq P E (1f)

θlij ď θij ď θ
u
ij @pi, jq P E (1g)

pvliq
2 ďWii ď pv

u
i q

2 @i P N (1h)

Sgli ď Sgi ď S
gu
i @i P G (1i)

|Sij | ď s
u
ij @pi, jq P EY ER (1j)

spectively. The optimal solution to the AC-OPF problem minimizes generation
costs for a specified demand and satisfies engineering constraints and power
flow physics. The convex quadratic objective (1a) minimizes total generation
cost. Constraint (1b) enforces nodal power balance at each bus. Constraints
(1c) through (1f) model the AC power flow on each branch. Constraint (1g)
limits the phase angle difference on each branch. Constraint (1h) limits the
voltage magnitude square at each bus. Constraint (1i) restricts the apparent
power output of each generator. Finally, constraint (1j) restricts the apparent
power transmitted on each branch. For simplicity, we omit the details of con-
stant bus shunt injections, transformer taps, phase shifts, and line charging,
though we include them in the computational studies. The AC-OPF is a hard,
non-convex problem [2], with non-convexities arising from the constraints (1e)
and (1f).

2.2 QC Relaxation using Recursive McCormick

The quadratic convex relaxation of the AC-OPF, proposed in [5,13], is inspired
by an arithmetic analysis of (1e) and (1f) in polar coordinates (i.e., Vi “
vi =θi @i P N) with the goal of preserving stronger links between the voltage
variables. Rewriting Eq. (1e) and (1f) using the polar voltage variables, the
non-convexities reduce to the following equations:

Wii “ v2i @i P N (2a)
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RpWijq “ vivj cospθijq @pi, jq P E (2b)

IpWijq “ vivj sinpθijq @pi, jq P E (2c)

Each of the above non-convex equations are then relaxed by composing convex
envelopes of the non-convex sub-expressions using the bounds on vi, vj , θij
variables. For the square and product of variables, the QC relaxation uses the
well-known McCormick envelopes [19], i.e.,

xx2yT ”

#

qx ě x2

qx ď pxu ` xlqx´ xuxl
(T-CONV)

xxyyM ”

$

’

’

’

&

’

’

’

%

|xy ě xly ` ylx´ xlyl

|xy ě xuy ` yux´ xuyu

|xy ď xly ` yux´ xlyu

|xy ď xuy ` ylx´ xuyl

(M-CONV)

The above convex envelopes are parameterized by the variable bounds (i.e.,
xl,xu,yl,yu). The convex envelopes for the the cosine (C-CONV) and sine
(S-CONV) functions, under the assumption that the phase angle difference
bound satisfies ´π{2 ď θlij ď θ

u
ij ď π{2 [6], are given by

xcospxqyC ”

#

qcs ď 1´ 1´cospxm
q

pxmq2
x2

qcs ě cospxl
q´cospxu

q

pxl´xuq
px´ xlq ` cospxlq

xsinpxqyS”

$

’

’

’

’

’

&

’

’

’

’

’

%

|sn ď cos
´

xm

2

¯´

x´ xm

2

¯

` sin
´

xm

2

¯

|sn ě cos
´

xm

2

¯´

x` xm

2

¯

´ sin
´

xm

2

¯

|sn ě sinpxl
q´sinpxu

q

pxl´xuq
px´xlq`sinpxlq if xlě0

|sn ď sinpxl
q´sinpxu

q

pxl´xuq
px´xlq`sinpxlq if xuď0

respectively, where xm “ maxp|xl|, |xu|q. The QC relaxation of the equations
(2) is now obtained composing the convex envelopes for square, sine, cosine,
and the product of two variables; the complete relaxation is shown in Model
2. In Model 2 and the models that follow, we abuse notation and let xfp¨qyC

denote the variable on the left-hand side of the convex envelope, C, for the
function fp¨q. When such an expression is used inside an equation, the con-
straints xfp¨qyC are also added to the model. Eq. (3e) and (3f) in Model 2 are
convex constraints that connect apparent power flow on branches (Sij) with
current magnitude squared variables (lij). It is important to highlight that
Model 2 includes the “Lifted Nonlinear Cuts” (LNCs) of [6], which further
improve the version presented in [5, 13]. The LNCs are formulated using the
following constants that are based on variable bounds, i.e.:

vσi “ v
l
i ` v

u
i @i P N (4a)

φij “ pθ
u
ij ` θ

l
ijq{2 @pi, jq P E (4b)
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Model 2 Original QC Relaxation (QC-RM).

minimize:
ÿ

iPG

c2ipRpS
g
i q

2q ` c1iRpS
g
i q ` c0i (3a)

subject to: (1b) – (1d), (1g) – (1j), (5a) – (5b)

Wii “ xv
2
i y
T i P N (3b)

<pWijq “ xxvivjy
M xcospθijqy

CyM @pi, jq P E (3c)

=pWijq “ xxvivjy
M xsinpθijqy

SyM @pi, jq P E (3d)

Sij ` Sji “ Zij lij @pi, jq P E (3e)

|Sij |
2 ďWiilij @pi, jq P E (3f)

vσi v
σ
j pw

R
ij cospφijq`w

I
ij sinpφijqq´v

u
j cospδijqv

σ
j wi ´ v

u
i cospδijqv

σ
i wj ě

vui v
u
j cospδijqpv

l
iv
l
j ´ v

u
i v

u
j q @pi, jqPE

(5a)

vσi v
σ
j pw

R
ij cospφijq`w

I
ij sinpφijqq´v

l
j cospδijqv

σ
j wi ´ v

l
i cospδijqv

σ
i wj ě

vliv
l
j cospδijqpv

u
i v

u
j ´ v

l
iv
l
jq @pi, jqPE

(5b)

δij “ pθ
u
ij ´ θ

l
ijq{2 @pi, jq P E. (4c)

The LNCs are then given by (5a)-(5b), and are linear in the wi :“Wii, wj :“
Wjj , w

R
ij :“ <pWijq, w

I
ij :“ IpWijq variables.

2.3 QC Relaxation using Extreme Point Representation

We now present an alternate QC relaxation that uses an extreme-point rep-
resentation, instead of applying the McCormick constraints recursively, to ex-
press the convex envelope of RpWijq and IpWijq in Eq. (2). After the in-
troduction of lifted variables qcsij and |snij for the cosine and sine functions,
respectively, for each branch pi, jq P E, the non-convex constraints in Eq. (2b)
and Eq. (2c) become trilinear term of the form vivj qcsij and vivj|snij , respec-
tively. This version of the QC relaxation uses the extreme-point representation
to obtain the convex envelope of these trilinear terms. It is known in the lit-
erature that the extreme-point representation captures the convex hull of a
given, single multilinear term [26] and that it is tighter than the recursive
McCormick envelopes in Eq. (3c) and (3e) [23, 24]. Nevertheless, though we
capture the term-wise convex hull, we lose a potential connection between the
voltage products in Eq. (2b) and Eq. (2c) that is captured in Model 2 using
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Model 3 λ-based QC relaxation (QC-LM).

minimize:
ÿ

iPG

c2ipRpS
g
i q

2q ` c1iRpS
g
i q ` c0i (8a)

subject to: (1b) – (1d), (1g) – (1j), (3b),

(3e) – (3f), (5a) – (5b)

<pWijq “ xvivj qcsijy
λc
ij @pi, jq P E (8b)

=pWijq “ xvivj|snijy
λs
ij @pi, jq P E (8c)

the shared lifted variable, }vivj , to capture xvivjy
M in Eq. (3c) and Eq. (3d).

Hence, no clear dominance between the original QC relaxation in Model 2
and the QC relaxation using an extreme point representation in the forthcom-
ing Model 3 can be established. This is also depicted in the Venn diagram in
Figure 1 and later observed in the computational results as well.

We now define an extreme point before describing the convex envelope.
Given a set X, a point p P X is extreme if there does not exist two other
distinct points p1, p2 P X and a non-negative multiplier λ P r0, 1s such that p “
λp1`p1´λqp2. To that end, let ϕpx1, x2, x3q “ x1x2x3 denote a trilinear term
with variable bounds xli ď xi ď x

u
i for all i “ 1, 2, 3. Also, let ξ “ xξ1, . . . , ξ8y

denote the vector of eight extreme points of rxl1,x
u
1 sˆ rx

l
2,x

u
2 sˆ rx

l
3,x

u
3 s and

we use ξik to denote the ith coordinate of ξk. The extreme points in ξ are given
by

ξ1 “ px
l
1,x

l
2,x

l
3q, ξ2 “ px

l
1,x

l
2,x

u
3 q, ξ3 “ px

l
1,x

u
2 ,x

l
3q,

ξ4 “ px
l
1,x

u
2 ,x

u
3 q, ξ5 “ px

u
1 ,x

l
2,x

l
3q, ξ6 “ px

u
1 ,x

l
2,x

u
3 q,

ξ7 “ px
u
1 ,x

u
2 ,x

l
3q, and ξ8 “ px

u
1 ,x

u
2 ,x

u
3 q. (6)

Then, the tightest convex envelope of the trilinear term x1x2x3 (TRI-CONV)
is given by

xx1x2x3y
λ ”

$

’

&

’

%

qx “
ř8
k“1 λi ϕpξ

1
k, ξ

2
k, ξ

3
kq

xi “
ř8
k“1 λk ξ

i
k @i “ 1, 2, 3

ř8
k“1 λk “ 1, λk ě 0 @k “ 1, . . . , 8

(7)

Notice, that the lifted variable qx represents the trilinear term i.e., it will replace
the the right-hand side of Eq. (8b) and (8c). Using the convex envelope for the
trilinear term results in the QC relaxation given by Model 3. In Model 3, the
constraints defining the lifted variables qcsij and |snij , for each branch pi, jq P E,
are included in Eq. (8b) and (8c), respectively. We also remark that distinct
multiplier variables λcij and λsij are used for capturing the convex envelopes in
Eq. (8b) and (8c), respectively.
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2.4 A Strengthened QC Relaxation

This section presents additional constraints to strengthen Model 3. The fun-
damental idea used to develop these strengthening constraints lies in the ob-
servation that different sets of multiplier variables λcij and λsij are used for
capturing the convex envelopes in Eq. (8b) and (8c), respectively. There are
no constraints that link λcij and λsij directly despite sharing two out of three
variables in the trilinear term. Adding such a linking constraint intuitively
leads to strengthening the relaxation in Model 3. We first state the linking
constraint for every branch pi, jq P E, as follows:

¨

˚

˚

˝

λcij,1 ` λ
c
ij,2 ´ λ

s
ij,1 ´ λ

s
ij,2

λcij,3 ` λ
c
ij,4 ´ λ

s
ij,3 ´ λ

s
ij,4

λcij,5 ` λ
c
ij,6 ´ λ

s
ij,5 ´ λ

s
ij,6

λcij,7 ` λ
c
ij,8 ´ λ

s
ij,7 ´ λ

s
ij,8

˛

‹

‹

‚

T ¨

˚

˚

˝

vli ¨ v
l
j

vli ¨ v
u
j

vui ¨ v
l
j

vui ¨ v
u
j

˛

‹

‹

‚

“ 0 (9)

This constraint enforces, for each branch pi, jq P E, the value of the volt-
age product vivj to take the same value in Eq. (8b) and (8c). The resulting
strengthened QC relaxation is summarized in Model 4.

Model 4 Tighter λ-based QC Relaxation (QC-TLM).

minimize:
ÿ

iPG

c2ipRpS
g
i q

2q ` c1iRpS
g
i q ` c0i (10a)

subject to: (1b) – (1d), (1g) – (1j), (3b), (3e) – (3f),

(5a) – (5b), (8b) – (8c), (9)

In the following subsection, we detail the theoretical properties of Model 4
and show that it is tighter than the QC relaxations in Model 2 and 3.

2.5 Theoretical Properties of the QC-TLM Relaxation

Before presenting the theoretical properties of the strengthened QC relaxation,
we first expand constraints in Eq. (1c), (1e), and (1f) for a branch pi, jq P E as
follows:

pij “ gijv
2
i ´ gijvivj cos θij ´ bijvivj sin θij (11a)

qij “ ´bijv
2
i ´ gijvivj cos θij ` bijvivj sin θij (11b)

After applying the convex envelopes (C-CONV) and (S-CONV) for the cosine
and sine terms, the Eq. (11) reduce to

pij “ gijv
2
i ´ gijvivj qcsij ´ bijvivj|snij (12a)
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qij “ ´bijv
2
i ´ gijvivj qcsij ` bijvivj|snij (12b)

Given Eq. (12), the strengthened QC relaxation has the following properties

Theorem 1 The strengthened QC relaxation in Model 4 captures the con-
vex hull of the nonlinear, non-convex term p´gijvivj qcsij ´ bijvivj|snijq in Eq.
(12a).

Proof See Sec. 2.6.

Theorem 2 The strengthened QC relaxation in Model 4 captures the con-
vex hull of the nonlinear, non-convex term p´gijvivj qcsij ` bijvivj|snijq in Eq.
(12b).

Proof See Sec. 2.6.

QC-RM

QC-LM
QC-TLM

AC

QC-RM

QC-LM
QC-TLM

AC

Fig. 1: A Venn diagram representing the feasible sets of QC relaxation with
various trilinear term relaxations (set sizes in this illustration are not to scale).

The theoretical properties of the QC relaxations considered here are sum-
marized in Figure 1. To the best of our knowledge, the theoretical results con-
necting the summation of multilinear terms presented in this paper are new
and novel in the global optimization literature. The computational impact of
Theorems 1 and 2 are presented in Section 4.

Before, we present the proof of Theorems 1 and 2, we present some results
of a computational experiment comparing the three relaxations namely the
Recursive-McCormick (RM), the λ-based formulation (LM), and the tight-
ened λ-based formulation (TLM) applied to the sum of two multilinear terms
φpx1, x2, x3, x4q “ x1x2x3`x1x2x4 defined on xi P r0, 1s for every i P t1, 2, 3, 4u.
To that end, we randomly generate 5000 points uniformly in the domain r0, 1s4

and for each point xk, calculate the difference between the upper and lower
bounds of φpx1, x2, x3, x4q as defined by RM, LM, and TLM formulations.
We denote these differences by RMgappxkq, LMgappxkq, and TLMgappxkq,
respectively. We then construct two scatter plots, shown in Figure 2, of the
points pLMgappxkq,RMgappxkqq and pTLMgappxkq,RMgappxkqq for all k “
1, . . . , 5000, respectively. The points in scatter plot shown in Fig. 2a, lie above
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(a) RM gap vs. LM gap
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(b) RM gap vs. TLM gap

Fig. 2: Scatter plots of the gaps obtained using the three relaxations for the
sum of trilinear terms φpx1, x2, x3, x4q in the domain r0, 1s4.

or below the line of unit slope indicating that there are instances where either
relaxation i.e., RM or LM, can be stronger than the other. In contrast, all
the points in Fig. 2b lie above the line of unit slope indicating that the TLM
relaxation is always better than RM. Between LM and TLM relaxations, it is
clear from the definition of these relaxations that TLM is stronger than LM.
In the next section, we present a proof that TLM indeed captures the convex
hull of the sum of trilinear terms with two shared variables.
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2.6 Proof of Theorem 1 and Theorem 2

To keep the proof general, we shall present it for the sum of trilinear terms
φpx1, x2, x3, x4q “ αcx1x2x3`αsx1x2x4 where αc,αs P R and xli ď xi ď x

u
i ,

i “ 1, 2, 3, 4. The convex hull of z “ φpx1, x2, x3, x4q is given by

S “

$

’

&

’

%

z “
ř16
k“1 λkφpγkq

xi “
ř16
k“1 λk γ

i
k @i “ 1, 2, 3, 4

ř16
k“1 λk “ 1, λk ě 0 @k “ 1, . . . , 16

(13)

Let γc “ xγc1, . . . ,γ
c
8y and γs “ xγs1, . . . ,γ

s
1y and γ “ xγ1, . . . ,γ16y denote

the extreme points of rxl1,x
u
1 s ˆ rx

l
2,x

u
2 s ˆ rx

l
3,x

u
3 s and rxl1,x

u
1 s ˆ rx

l
2,x

u
2 s ˆ

rxl4,x
u
4 s, and rxl1,x

u
1 sˆrx

l
2,x

u
2 sˆrx

l
3,x

u
3 sˆrx

l
4,x

u
4 s, respectively. The extreme

points in γc, γs and γ are ordered similar to the extreme points in Eq. (6),
i.e., in dictionary order. The strengthened QC relaxation represents the term
z “ φpx1, x2, x3, x4q by using the following equations:

SQC “

$

’

&

’

%

zc “ xx1x2x3y
λc

, zs “ xx1x2x4y
λs

z “ αczc `αszs

Eq. (9) with x1 ” vi, x2 ” vj .

(14)

We show that the projection of (14) on to the pz, x1, x2, x3, x4q space is iden-
tical to its convex hull given in (13).

Let pz, x1, x2, x3, x4q P S and let pλiq i “ 1, . . . , 16 be the corresponding
multipliers. Set

λc1 “ λ1 ` λ2 λs1 “ λ1 ` λ3 (15a)

λc2 “ λ3 ` λ4 λs2 “ λ2 ` λ4 (15b)

λc3 “ λ5 ` λ6 λs3 “ λ5 ` λ7 (15c)

λc4 “ λ7 ` λ8 λs4 “ λ6 ` λ8 (15d)

λc5 “ λ9 ` λ10 λs5 “ λ9 ` λ11 (15e)

λc6 “ λ11 ` λ12 λs6 “ λ10 ` λ12 (15f)

λc7 “ λ13 ` λ14 λs7 “ λ13 ` λ15 (15g)

λc8 “ λ15 ` λ16 λs8 “ λ14 ` λ16. (15h)

With the above assignment, it is easy to check that λci , λ
s
i ě 0 and

ř

i λ
c
i “

ř

i λ
s
i “ 1 andαc

ř

i λ
c
iγ
c
i`αs

ř

i λ
s
iγ
s
i “

ř

i λiγi. This shows that pz, x1, x2, x3, x4q P
PpSQCq and hence that S Ď PpSQCq.

Now, let pz, zc, zs, x1, x2, x3, x4q P SQC . Let

λ1|4 “ λsodd ´ λ
c
even `maxtλceven ´ λ

s
odd, 0u (16a)

λ2|4 “ λseven ´maxtλceven ´ λ
s
odd, 0u (16b)

λ3|4 “ λceven ´maxtλceven ´ λ
s
odd, 0u (16c)

λ4|4 “ 0`maxtλceven ´ λ
s
odd, 0u (16d)
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where, λi|4 “ pλi, λi`4, λi`8, λi`12q. Also, λseven represents the vector of λs

variables with even indices arranged in sorted order and the vectors λsodd,
λceven, and λcodd are defined in a similar manner. By construction, the above
assignment of λ satisfies the system of equations in (15). As a result, we have
αc

ř

i λ
c
iγ
c
i ` αs

ř

i λ
s
iγ
s
i “

ř

i λiγi. Further,
ř

i λi “
ř

i λ
s
i “ 1. What is left

is to show that λi ě 0 @i. We can rewrite (16) as

λ1|4 “ maxtλsodd ´ λ
c
even, 0u (17a)

λ2|4 “ mintλseven ` λ
s
odd ´ λ

c
even, λ

s
evenu (17b)

λ3|4 “ mintλsodd, λ
c
evenu (17c)

λ4|4 “ maxtλceven ´ λ
s
odd, 0u. (17d)

We observe that the expressions on the RHS of Equations (17a),(17c) and
(17d) are positive. To show that λ2|4 in (17b) is positive, we need the following
additional result.

Lemma 3 The multipliers λc and λs satisfy

λceven ` λ
c
odd “ λseven ` λ

s
odd. (18)

Using Lemma 3, we see that λseven ` λsodd ´ λceven “ λcodd, and thus λ2|4 “
mintλcodd, λ

s
evenu ě 0 and proof of the theorem is complete.

2.6.1 Proof of Lemma 3

Using Eq (7) and the coupling constraint in (9), we conclude that λc, λs satisfy
the following constraint.

¨

˚

˚

˝

xl1 x
l
2 x

l
1x
l
2

xl1 x
u
2 x

l
1x
u
2

xu1 x
l
2 x

u
1 x

l
2

xu1 x
u
2 x

u
1 x

u
2

˛

‹

‹

‚

`

λcodd ` λ
c
even ´ λ

s
odd ´ λ

s
even

˘

“ 0. (19)

Since the four extreme points appearing in the rows of the matrix in LHS of
(19) are assumed to be distinct, the matrix is full rank (3) and we must have
λcodd ` λ

c
even ´ λ

s
odd ´ λ

s
even “ 0.

3 Optimization-Based Bound Tightening

We now present an Optimization-Based Bound Tightening (OBBT) algorithm
that can be applied to any convex relaxation of the AC-OPF problem with
voltage magnitude and phase angle difference variables and is aimed at tight-
ening the bounds on these variables. It has been observed in [4, 8] that the
SDP and QC relaxations of AC-OPF benefit substantially with tight vari-
able bounds. The algorithm proceeds as follows: Let Ω denote the feasible
set of any one of the QC relaxations of the AC-OPF problem presented in
this article. Then, two optimization problems, one for each variable in the set
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V “ tvi @i P N, θij @pi, jq P Eu are solved to find the maximum and minimum
value of the variable subject to the constraints in Ω. Observe that each opti-
mization problem is convex and upon computing tighter variable bounds for
each variable in the set V, a new, tighter QC relaxation is constructed, if any
bound has changed. This process is repeated until a fixed point is reached, i.e.,
none of the variable bounds change between subsequent iterations. A pseudo-
code of the OBBT algorithm is given in Algorithm 1.

Algorithm 1 The OBBT Algorithm

Input: A QC Relaxation (Model 2/3/4) to construct Ω
Output: vl, vu, θl, θu

1: repeat
2: vl0,vu0,θl0,θu0 Ð vl,vu,θl,θu

3: Ω Ð QC relaxation given vl0,vu0,θl0,θu0

4: for all i P N do
5: vli Ð mintvi : Ωu
6: vui Ð maxtvi : Ωu

7: for all pi, jq P E do
8: θlij Ð mintθij : Ωu
9: θuij Ð maxtθij : Ωu

10: until vl0,vu0,θl0,θu0 “ vl,vu,θl,θu

3.1 OBBT for Global Optimization

The value of using the OBBT algorithm for characterizing the AC-OPF feasi-
bility set was originally highlighted in [8]. However, recent works have noticed
that if the primary goal is to improve the objective lower bound of the AC-OPF
problem, then adding the following additional, convex, upper bound constraint
to Ω can vastly improve the algorithm [17,18]:

ÿ

iPG

c2ipRpS
g
i q

2q ` c1iRpS
g
i q ` c0i ď f˚ (20)

where, f˚ denotes the cost of any feasible AC-OPF solution or in particular, a
local optimal AC-OPF solution. The additional constraint reduces the search
space for each convex optimization problem solved during the OBBT algorithm
and is routinely used in the global optimization literature [21,22]. We refer to
the version of Algorithm 1 that includes constraint (20) as GO-OBBT.



14 Kaarthik Sundar et al.

4 Numerical Results

This section highlights the computational differences of the proposed QC re-
laxations (i.e. QC-RM, QC-LM, and QC-TLM) via two detailed numerical
studies. The first study revisits the OBBT algorithm from [8] and demon-
strates that QC-TLM provides tighter voltage and voltage angle bounds with
a negligible change in runtime. The second study explores the effectiveness of
the QC relaxations for providing lower bounds on the AC-OPF both with and
without bound tightening.

4.1 Test Cases and Computational Setting

This study focuses on 57 networks from the IEEE PES PGLib AC-OPF v18.08
benchmark library [27], which are all under 1000 buses. Larger cases were not
considered due to the computational burden of running the OBBT algorithm
on such cases. All of QC relaxations and the OBBT algorithms were imple-
mented in Julia v0.6 using the optimization modeling layer JuMP.jl v0.18 [10].
All of the implementations are available as part of the open-source julia pack-
age PowerModels.jl v0.8 [7]. Individual non-convex AC-OPF problems and
convex QC-OPF relaxations were solved with Ipopt [28] using the HSL-MA27
linear algebra solver. The convex relaxations in the OBBT algorithms were
solved with Gurobi v8.0 [12] for improved performance and numerical accuracy.
All solvers were set to optimally tolerance of 10´6 and the OBBT algorithm
was configured with a minimum bound width and an average improvement
tolerance [7] of 10´3 and 10´4, respectively. Finally, all of the algorithms were
evaluated on HPE ProLiant XL170r servers with two Intel 2.10 GHz CPUs
and 128 GB of memory.

4.2 Computing AC-OPF Feasibility Sets

Table 1 presents the bound improvements from running OBBT (Algorithm 1)
with the proposed QC relaxations. For each network considered, the table re-
ports: (1) the average voltage magnitude bound range (i.e.

ř

iPNpv
u
i ´v

l
iq{|N|);

(2) the average voltage angle difference bound range (i.e.
ř

pi,jqPEpθ
u
ij´θ

l
ijq{|E|)

and; (3) the number of branches where the sign of the θ is fixed (i.e.
ř

pi,jqPEpθ
u
ij ď

0_ θlij ě 0q). Bold text is used to highlight the best result in each row of the
table.

The results in Table 1 highlight the theoretical result showing that the
QC-TLM relaxation dominates both the QC-RM and QC-LM relaxations. It
also provides examples where QC-LM dominates QC-RM (e.g. case118 ieee)
and QC-RM dominates QC-LM (e.g. case39 epri). It is important to note, that
although the differences in average range values may be very small, these lead
to significant range reductions when considered across the network.
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Figure 3 presents the distribution of OBBT runtimes for the various QC
relaxations presented in Table 1, both in terms of total runtime and an ideal
parallel runtime. These results highlight that there is no significant difference
in the runtime of the QC relaxations considered here.

Table as of 08/2018
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Fig. 3: Runtime distributions of OBBT with various QC relaxations. The lower
and upper ends of the boxes reflect the first and third quartiles, the lines inside
the boxes denote the median, and the circles are outliers.

4.3 Computing AC-OPF Lower Bounds

Table 2 presents AC-OPF optimality gaps provided by the proposed QC re-
laxations both with and without bound tightening, where the percentage gap
is defined as 100 ˚ pACHeuristic´Relaxationq{ACHeuristic. For each net-
work considered, the table reports: (1) The AC objective value from solving
the non-convex problem with Ipopt; (2) the optimally gap of each relaxation,
without bound tightening; (3) the optimally gap of each relaxation after run-
ning GO-OBBT. In the interest of brevity, cases where the base QC-RM gap
is ă 1.0% are omitted. Bold text is used to highlight the best result in each
row of the table.

Again, the results in Table 2 highlight the theoretical result showing that
the QC-TLM relaxation dominates both the QC-RM and QC-LM relaxations.
It also highlights two interesting points: (1) In some cases the QC-TLM relax-
ation can provide benefits without bound tightening, e.g. case24 ieee rts api,
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case73 ieee rts api and case14 ieee sad; (2) the QC-TLM relaxation’s most sig-
nificant benefits occur in the most challenging GO-OBBT cases, e.g. case89 pegase api,
case118 ieee api. It is important to note that small discrepancies in the GO-
OBBT optimality gaps are observed. These are due to numerical challenges
resulting from the finite precision of floating point arithmetic and only occur
in cases where the optimality gap is close to zero.

5 Conclusion

In summary, this article presents a strengthened version of the QC relaxation
and shows its theoretical tightness and its effectiveness in computing bet-
ter variable bounds and reducing the optimality gap on a wide range of test
networks, when used in conjunction with bound-tightening techniques. Fu-
ture research directions include extensions of these relaxations to the optimal
transmission switching problem, both theoretically and computationally.
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Table 1: The Quality of QC Relaxations on OBBT Computations.

Average Vm Range Average Td Range Td Sign
Case |N | |E| RM LM TLM RM LM TLM RM LM TLM

Typical Operating Conditions (TYP)
case3 lmbd 3 3 0.2000 0.2000 0.2000 0.4364 0.4361 0.4361 2 2 2
case5 pjm 5 6 0.1981 0.1981 0.1981 0.0718 0.0716 0.0714 3 3 3

case14 ieee 14 20 0.0883 0.0883 0.0883 0.0165 0.0166 0.0164 18 18 18
case24 ieee rts 24 38 0.0895 0.0895 0.0895 0.1067 0.1063 0.1062 19 19 19

case30 as 30 41 0.0771 0.0771 0.0771 0.0294 0.0294 0.0293 31 31 32
case30 fsr 30 41 0.0927 0.0927 0.0927 0.0403 0.0402 0.0401 9 9 9

case30 ieee 30 41 0.0587 0.0587 0.0587 0.0064 0.0064 0.0064 36 36 36
case39 epri 39 46 0.1058 0.1058 0.1058 0.0885 0.0887 0.0884 21 21 21
case57 ieee 57 80 0.0358 0.0358 0.0358 0.0501 0.0501 0.0500 42 42 42

case73 ieee rts 73 120 0.0911 0.0911 0.0911 0.1772 0.1761 0.1758 39 39 39
case89 pegase 89 210 0.0951 0.0950 0.0949 0.0805 0.0806 0.0798 107 107 108

case118 ieee 118 186 0.1068 0.1067 0.1067 0.1144 0.1136 0.1133 70 71 71
case162 ieee dtc 162 284 0.0645 0.0642 0.0641 0.0419 0.0417 0.0414 230 231 231

case179 goc 179 263 0.1828 0.1828 0.1828 0.1635 0.1634 0.1628 65 65 65
case200 tamu 200 245 0.1906 0.1906 0.1906 0.0300 0.0302 0.0297 124 121 126
case240 pserc 240 448 0.1919 0.1918 0.1918 0.2350 0.2328 0.2307 81 84 85

case300 ieee 300 411 0.0713 0.0713 0.0713 0.1481 0.1478 0.1476 140 140 140
case500 tamu 500 597 0.1755 0.1755 0.1754 0.0216 0.0218 0.0215 375 373 376
case588 sdet 588 686 0.1844 0.1844 0.1843 0.0602 0.0603 0.0599 174 173 174

Congested Operating Conditions (API)
case3 lmbd api 3 3 0.0379 0.0380 0.0378 0.0464 0.0465 0.0465 3 3 3
case5 pjm api 5 6 0.0485 0.0485 0.0485 0.0271 0.0270 0.0270 4 4 4

case14 ieee api 14 20 0.0416 0.0415 0.0412 0.0135 0.0135 0.0134 19 19 19
case24 ieee rts api 24 38 0.0485 0.0484 0.0484 0.1122 0.1119 0.1118 24 24 24

case30 as api 30 41 0.0100 0.0100 0.0100 0.0067 0.0067 0.0067 39 39 39
case30 fsr api 30 41 0.0363 0.0361 0.0358 0.0140 0.0140 0.0138 30 30 30

case30 ieee api 30 41 0.0206 0.0205 0.0203 0.0037 0.0037 0.0037 39 39 39
case39 epri api 39 46 0.0385 0.0386 0.0384 0.0165 0.0165 0.0165 43 43 43
case57 ieee api 57 80 0.0237 0.0237 0.0237 0.0588 0.0586 0.0586 41 41 41

case73 ieee rts api 73 120 0.0508 0.0507 0.0507 0.1660 0.1654 0.1653 65 65 65
case89 pegase api 89 210 0.1322 0.1325 0.1307 0.0841 0.0849 0.0798 100 99 101

case118 ieee api 118 186 0.1088 0.1080 0.1076 0.0778 0.0749 0.0738 127 129 130
case162 ieee dtc api 162 284 0.0304 0.0304 0.0301 0.0079 0.0079 0.0078 273 273 273

case179 goc api 179 263 0.1699 0.1699 0.1699 0.1459 0.1457 0.1454 108 108 108
case200 tamu api 200 245 0.1877 0.1877 0.1877 0.0926 0.0930 0.0921 73 73 73
case240 pserc api 240 448 0.1747 0.1746 0.1745 0.2490 0.2469 0.2461 92 92 92

case300 ieee api 300 411 0.0830 0.0830 0.0830 0.1808 0.1803 0.1799 131 131 131
case500 tamu api 500 597 0.1789 0.1789 0.1789 0.0583 0.0586 0.0580 265 265 267
case588 sdet api 588 686 0.1835 0.1835 0.1835 0.0705 0.0704 0.0702 160 160 161

Small Angle Difference Conditions (SAD)
case3 lmbd sad 3 3 0.0947 0.0947 0.0947 0.0701 0.0701 0.0701 2 2 2
case5 pjm sad 5 6 0.0483 0.0482 0.0482 0.0062 0.0062 0.0062 5 5 5

case14 ieee sad 14 20 0.0540 0.0540 0.0540 0.0069 0.0069 0.0069 19 19 19
case24 ieee rts sad 24 38 0.0762 0.0762 0.0761 0.0296 0.0296 0.0295 29 29 29

case30 as sad 30 41 0.0464 0.0464 0.0464 0.0086 0.0086 0.0085 39 39 39
case30 fsr sad 30 41 0.0574 0.0574 0.0574 0.0215 0.0215 0.0214 22 22 22

case30 ieee sad 30 41 0.0462 0.0462 0.0462 0.0045 0.0045 0.0045 36 36 36
case39 epri sad 39 46 0.0701 0.0700 0.0699 0.0209 0.0209 0.0209 39 39 39
case57 ieee sad 57 80 0.0320 0.0320 0.0320 0.0093 0.0093 0.0092 71 71 71

case73 ieee rts sad 73 120 0.0843 0.0842 0.0842 0.0473 0.0472 0.0471 78 78 78
case89 pegase sad 89 210 0.0917 0.0917 0.0917 0.0611 0.0612 0.0605 113 113 113

case118 ieee sad 118 186 0.1043 0.1042 0.1041 0.0713 0.0707 0.0706 103 103 103
case162 ieee dtc sad 162 284 0.0552 0.0550 0.0549 0.0315 0.0314 0.0312 238 238 238

case179 goc sad 179 263 0.1505 0.1506 0.1503 0.0943 0.0942 0.0938 77 77 77
case200 tamu sad 200 245 0.0921 0.0921 0.0920 0.0191 0.0191 0.0190 143 143 143
case240 pserc sad 240 448 0.1843 0.1840 0.1832 0.1717 0.1707 0.1685 128 128 134

case300 ieee sad 300 411 0.0693 0.0693 0.0693 0.1428 0.1426 0.1424 142 142 142
case500 tamu sad 500 597 0.1040 0.1046 0.1039 0.0106 0.0106 0.0105 428 428 428
case588 sdet sad 588 686 0.1708 0.1706 0.1701 0.0378 0.0379 0.0375 214 214 214
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Table 2: The Quality of QC Relaxations for AC-OPF Lower Bounds.

Base Opt. Gap (%) GO-OBBT Opt. Gap (%)
Case |N | |E| AC Obj. RM LM TLM RM LM TLM

Typical Operating Conditions (TYP)
case3 lmbd 3 3 5.8126e+03 1.22 0.97 0.97 0.01 0.01 0.01
case5 pjm 5 6 1.7552e+04 14.55 14.55 14.55 6.01 6.14 5.80

case30 ieee 30 41 1.1974e+04 10.78 10.67 10.67 0.01 0.01 0.01
case118 ieee 118 186 1.1580e+05 2.20 2.18 2.18 0.02 0.02 0.02

case162 ieee dtc 162 284 1.2615e+05 7.54 7.54 7.54 0.05 0.03 0.04
case240 pserc 240 448 3.5700e+06 3.81 3.80 3.79 2.37 2.36 2.30

case300 ieee 300 411 6.6422e+05 2.56 2.54 2.54 0.06 0.06 0.07
case500 tamu 500 597 7.2578e+04 5.39 5.39 5.39 0.01 0.01 0.01
case588 sdet 588 686 3.8155e+05 1.68 1.68 1.68 0.33 0.35 0.32

Congested Operating Conditions (API)
case3 lmbd api 3 3 1.1242e+04 5.63 4.58 4.58 0.04 0.04 0.04
case5 pjm api 5 6 7.6377e+04 4.09 4.09 4.09 0.01 0.01 0.01

case14 ieee api 14 20 1.3311e+04 1.77 1.77 1.77 0.02 0.01 0.02
case24 ieee rts api 24 38 1.3495e+05 13.01 11.06 11.03 0.04 0.04 0.04

case30 as api 30 41 4.9962e+03 44.61 44.61 44.61 0.72 0.77 0.80
case30 fsr api 30 41 7.0115e+02 2.76 2.76 2.76 0.13 0.13 0.13

case30 ieee api 30 41 2.4032e+04 3.73 3.73 3.73 0.04 0.04 0.04
case39 epri api 39 46 2.5721e+05 1.57 1.57 1.57 0.02 0.02 0.02

case73 ieee rts api 73 120 4.2273e+05 11.07 9.56 9.54 0.41 0.41 0.46
case89 pegase api 89 210 1.4198e+05 8.13 8.13 8.13 1.69 1.50 1.33

case118 ieee api 118 186 3.1642e+05 28.63 28.62 28.62 4.27 3.64 3.39
case162 ieee dtc api 162 284 1.4351e+05 5.44 5.44 5.44 0.06 0.06 0.07

case179 goc api 179 263 2.1326e+06 7.18 7.21 7.10 0.03 0.02 0.02

Small Angle Difference Conditions (SAD)
case3 lmbd sad 3 3 5.9593e+03 1.42 1.38 1.38 0.03 0.03 0.03
case14 ieee sad 14 20 6.7834e+03 7.16 6.38 6.36 0.30 0.30 0.30

case24 ieee rts sad 24 38 7.6943e+04 2.93 2.77 2.74 0.23 0.23 0.23
case30 as sad 30 41 8.9749e+02 2.32 2.32 2.31 0.31 0.32 0.32

case30 ieee sad 30 41 1.1974e+04 3.42 3.28 3.24 0.01 0.01 0.01
case73 ieee rts sad 73 120 2.2775e+05 2.54 2.39 2.38 0.09 0.09 0.10

case118 ieee sad 118 186 1.2924e+05 9.48 9.31 9.30 0.24 0.25 0.26
case162 ieee dtc sad 162 284 1.2704e+05 8.02 7.98 7.97 0.08 0.08 0.08

case179 goc sad 179 263 8.3560e+05 1.05 1.04 1.04 0.02 0.02 0.02
case240 pserc sad 240 448 3.6565e+06 5.24 5.22 5.21 2.83 2.82 2.70

case300 ieee sad 300 411 6.6431e+05 2.36 2.30 2.29 0.04 0.04 0.04
case500 tamu sad 500 597 7.9234e+04 7.90 7.90 7.90 0.31 0.34 0.30
case588 sdet sad 588 686 4.0427e+05 6.26 6.28 6.24 0.25 0.26 0.24
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