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Efficient Online Learning with Memory via Frank-Wolfe Optimization:

Algorithms with Bounded Dynamic Regret and Applications to Control
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Abstract

Projection operations are a typical computation
bottleneck in online learning. In this paper, we
enable projection-free online learning within the
framework of Online Convex Optimization with

Memory (OCO-M) —OCO-M captures how the
history of decisions affects the current outcome
by allowing the online learning loss functions to
depend on both current and past decisions. Par-
ticularly, we introduce the first projection-free
meta-base learning algorithm with memory that
minimizes dynamic regret, i.e., that minimizes
the suboptimality against any sequence of time-
varying decisions. We are motivated by artifi-
cial intelligence applications where autonomous
agents need to adapt to time-varying environ-
ments in real-time, accounting for how past de-
cisions affect the present. Examples of such ap-
plications are: online control of dynamical sys-
tems; statistical arbitrage; and time series predic-
tion. The algorithm builds on the Online Frank-
Wolfe (OFW) and Hedge algorithms. We demon-
strate how our algorithm can be applied to the
online control of linear time-varying systems in
the presence of unpredictable process noise. To
this end, we develop a controller with memory
and bounded dynamic regret against any optimal
time-varying linear feedback control policy. We
validate our algorithm in simulated scenarios of
online control of linear time-invariant systems.

1. Introduction

Online Convex Optimization (OCO)
(Shalev-Shwartz et al., 2012; Hazan et al., 2016) has
found widespread application in statistics, information
theory, and operation research (Cesa-Bianchi & Lugosi,
2006). OCO can be interpreted as a sequential game
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between an optimizer and an adversary over T time steps:
at each time step t = 1, . . . , T , first the optimizer chooses
a decision xt from a convex set X ; then, the adversary
reveals a convex loss function ft and the optimizer suffers
the loss ft(xt). The optimizer aims to minimize its
cumulative loss, despite knowing each ft only after xt has
been already decided.

Static regret is the standard approach to measure the subop-
timality of the optimizer’s decisions x1, . . . ,xT . Particu-
larly, given a decision x ∈ X to compare x1, . . . ,xT with,
the static regret of x1, . . . ,xT with respect to v is defined
as follows (Hazan et al., 2016):

S-RegT =
T∑

t=1

ft(xt)−
T∑

t=1

ft(v). (1)

That is, when v minimizes
∑T

t=1 ft(v), then S-RegT cap-
tures the suboptimality of x1, . . . ,xT against the optimal
static decision that would have been made in hindsight.

Algorithms that guarantee static no-regret have been
widely adopted in applications pertained to recommenda-
tion systems, communication-channel allocation, and ac-
tion prediction (Cesa-Bianchi & Lugosi, 2006).1

But the application of such algorithms to complex artifi-
cial intelligence tasks such as online control under unpre-

dictable disturbances (Shi et al., 2019) and collaborative

multi-robot motion planning (Xu et al., 2023) is hindered
by three main technological challenges:

• Challenge I: Dynamic Environments. Complex tasks
such as the above require decisions that adapt to chang-
ing environments. For example, target tracking with mul-

tiple robots requires the robots to continuously change
their position to track moving targets (Xu et al., 2023).
Therefore, measuring performance against a static (op-
timal) decision per the static regret in eq. (1) is insuffi-
cient. Instead, we need to measure performance against
time-varying (optimal) decisions.

• Challenge II: Past Decisions Affect the Present. In
complex tasks such as the aforementioned, past decisions

1An algorithm has static no-regret when S-Reg
T
/T tends to 0

when T tends to +∞, implying ft(xt) tends to ft(v) for t large.

http://arxiv.org/abs/2301.00497v3
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often affect the present outcome. Therefore, the OCO
framework we discussed above, where each loss function
ft depends on the most recent decision xt only, fails to
capture the effect of earlier decisions to the present. In-
stead, we need an OCO framework with memory, where
each loss function ft depends on xt as well as on the past
xt−m, . . . ,xt−1, for some m ≥ 0.

• Challenge III: Fast Decision-Making. Complex con-
trol tasks often require decisions to be made fast. For
example, such is the case for the effective online control

of quadrotors against wind disturbances (Romero et al.,
2022). But the current OCO algorithms typically rely
on projection operations which can be computationally
expensive since they require solving quadratic programs
(Kalhan et al., 2021). Instead, we need fast OCO algo-
rithms that are inevitably projection-free.

All in all, the above challenges give rise to the need below:

Need. We need online learning algorithms for OCO with

Memory (OCO-M) that are projection-free and guarantee

near-optimal decisions in dynamic environments. The deci-

sions’ near-optimality may be captured by bounding their

suboptimality with respect to optimal decisions that adapt

to the changing environment knowing its future evolution,

i.e., by bounding dynamic regret.

Dynamic regret for the classical OCO without memory is
defined as follows (Zinkevich, 2003): given a time-varying
comparator sequence v1, . . . ,vT , then2

D-RegT =

T∑

t=1

ft(xt)−
T∑

t=1

ft(vt). (2)

Dynamic regret contrasts static regret: static regret com-
pares (x1, . . . ,xT ) against a merely static v. Thus, when
v1, . . . ,vT minimize

∑T
t=1 ft(vt), then D-RegT captures

the suboptimality of x1, . . . ,xT against the optimal time-

varying decisions that would have been made in hindsight.
Hence, dynamic regret bounds are typically larger than
static regret bounds, depending on terms that capture the
change of the environment. Such terms are loss variation

VT , gradient variation DT , and path length CT :3

VT ,

T∑

t=1

sup
x∈X

|ft(x)− ft−1(x)| , (3)

DT ,

T∑

t=1

‖∇ft (xt)−∇ft−1 (xt−1)‖22 , (4)

2A related measure to dynamic regret is adaptive regret
(Hazan & Seshadhri, 2007). Adaptive regret captures the worst-
case static regret on any contiguous time interval. (Zhang, 2020)
studies the relation of dynamic regret to adaptive regret.

3Obtaining a no-regret algorithm hence requires the growth of
the metrics in eqs. (3) to (5) to be sublinear (Besbes et al., 2015;
Mokhtari et al., 2016; Kalhan et al., 2021). VT and DT are small
when the loss function and decisions change slowly.

CT ,

T∑

t=1

‖vt − vt−1‖2 . (5)

Dynamic regret for OCO-M with memory m, where
the loss function at each time step t takes the form
ft(xt−m, . . . ,xt) : Xm+1 7→ R, is defined as follows:

RegretDT =

T∑

t=1

ft(xt−m, . . . ,xt)−
T∑

t=1

ft(vt−m, . . . ,vt),

(6)
where it is assumed that xt−m = 0 for t ≤ m.

Contributions. We aim to address the Need by means of
the following contributions:

• Algorithmic Contributions: We introduce the first
projection-free algorithm for OCO-M with bounded dy-
namic regret (Sections 4 and 5) —the regret bound is pre-
sented in Table 1. The algorithm builds on the projection-
free algorithms Hedge (Freund & Schapire, 1997) and
OFW (Hazan & Kale, 2012; Kalhan et al., 2021).

We apply our algorithm to the online control of linear
time-varying systems in the presence of unpredictable
noise (Section 6). We thus introduce a projection-free
controller with memory and bounded dynamic regret
against any optimal time-varying linear feedback con-
trol gains. Particularly, our comparator class of op-
timal time-varying linear feedback control gains does
not require the a priori knowledge of stabilizing con-
trol gains. Instead, the state-of-the-art OCO-M controller
by (Zhao et al., 2022) requires a comparator class of op-
timal time-varying policies where an a priori knowledge
of stabilizing control gains is necessary.

• Technical Contributions: To enable aforementioned al-
gorithmic and regret bound contributions, we make the
following technical innovations:

– We analyze dynamic regret of the OFW algorithm (Sec-
tion 4). The analysis enables the state-of-the-art bound
in (Kalhan et al., 2021, Theorem 1) to hold true for any
convex loss functions in the evaluation of OFW’s re-
gret (see Table 1). Instead, (Kalhan et al., 2021, Theo-
rem 1) holds true for smooth convex functions only.

– We prove that the Disturbance-Action Control (DAC)
policy (Agarwal et al., 2019) —widely used in on-
line non-stochastic control to reduce the online
control problem to OCO-M (Agarwal et al., 2019;
Gradu et al., 2020; Hazan et al., 2020)— is able to
approximate time-varying linear feedback controllers
(Proposition 2 in Appendix D.5). Previous results
have established that a DAC policy can approxi-
mate time-invariant linear feedback controllers only
(Agarwal et al., 2019), instead of a time-varying con-
trollers.
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Table 1. Comparison of related work and our work on contributed algorithms with bounded dynamic regret bounds for Online

Convex Optimization. GO denotes the number of gradient oracle calls per iteration of the respective algorithm.
Reference Loss function Projection-free Memory GO Regret Rate

(Zinkevich, 2003) Convex No No O(1) O(
√
T (1 + CT ))

(Jadbabaie et al., 2015) Convex smooth No No O(1) O
(√

(1 +DT ) + min
{√

(1 +DT )CT , (1 +DT )
1
3 T

1
3V

1
3

T

})

(Mokhtari et al., 2016) Strongly convex No No O(1) O(1 + CT )

(Yang et al., 2016) Convex smooth No No O(1) O(CT )

(Zhang et al., 2018) Convex No No O(1) O(
√
T (1 + CT ))

(Kalhan et al., 2021) Convex smooth Yes No O(1) O
(√

T (1 + VT +
√
DT

)

Ours (Theorem 1 and Theorem 4) Convex Yes No O(1) O
(√

T (1 + VT +
√
DT

)
, O
(√

T (VT +DT )
)

(Zhao et al., 2022) Convex No Yes O(1) O(
√
T (1 + CT ))

Ours (Theorem 2) Convex Yes Yes O(1) O(
√
T (1 + VT + D̄T + CT ))

Numerical Evaluations. We validate our algorithm
in simulated scenarios of online control of linear time-
invariant systems (Appendix E). We compare our algorithm
with OGD (Zinkevich, 2003), Ader (Zhang et al., 2018),
and Scream (Zhao et al., 2022) algorithms. Our algorithm
is observed 3 times faster than the state-of-the-art OCO-M
algorithm Scream (Zhao et al., 2022) as system dimension
increases, and achieves comparable or superior loss perfor-
mance over all compared algorithms.

2. Related Work

We review the literature by first reviewing OCO without

Memory and OCO with Memory; then, we review Online

Learning for Control via OCO with Memory.

OCO without Memory. The OCO without Memory liter-
ature is vast (Hazan et al., 2016). We here focus on algo-
rithms that guarantee bounded dynamic regret; a represen-
tative subset is presented in Table 1.

(Zhang et al., 2018) prove that the optimal dynamic regret

for OCO without Memory is Ω
(√

T (1 + CT )
)

, and pro-

vide an algorithm matching this bound. The algorithm
is based on Online Gradient Descent (OGD), which is
a projection-based algorithm: at each time step t, OGD

chooses a decision xt by first computing an intermediate
decision x′

t = xt−1 − η∇ft−1(xt−1) —given the previ-
ous decision xt−1, the gradient of the previously revealed
loss ft−1(xt−1), and a step size η > 0— and then projects
x′
t back to the feasible convex set X to output the final de-

cision xt. This projection operation is often computation-
ally expensive since it requires solving a quadratic program
(Rockafellar, 1976). When the projection operation is in-
deed computationally expensive, the Online Frank-Wolfe

(OFW) algorithm is employed as a projection-free alter-
native (Frank & Wolfe, 1956; Hazan & Kale, 2012): OFW

seeks a feasible descent direction by solving the linear pro-
gram x′

t−1 = argminx∈X 〈∇ft−1(xt−1),x〉 and then up-
dating xt = (1 − η)xt−1 + ηx′

t−1. (Kalhan et al., 2021)
generalize the OFW method to OCO without Memory to
achieve a bounded dynamic regret and OFW has been ob-

served 20 times faster than OGD (Kalhan et al., 2021).4

OCO with Memory. (Zhao et al., 2022) prove that the
optimal dynamic regret for OCO-M is Ω(

√
T (1 + CT )),

and provide an algorithm matches thing bound based
on OGD. Earlier works have provided static regret
bounds for OCO-M, such as the bound O(T 2/3) by
(Weinberger & Ordentlich, 2002), and the bound O(

√
T )

by (Anava et al., 2015). We provide the first projection-
free algorithm for OCO-M that also guarantees bounded
dynamic regret.

Online Learning for Control via OCO-M. OCO-M
has been recently applied to the control of linear dy-
namical systems in the presence of adversarial (non-
stochastic) noise (Agarwal et al., 2019; Simchowitz et al.,
2020; Shalev-Shwartz et al., 2012). The noise is adversar-
ial in the sense that it may adapt to the system’s evolu-
tion. Generally, the noise can evolve arbitrarily, subject to a
given upper bound on its magnitude —the upper bound en-
sures problem feasibility. Thus, no stochastic model is as-
sumed regarding the noise’s evolution, in contrast to classi-
cal control that typically assumes Gaussian noise (Åström,
2012).

The current OCO-M algorithms for control prescribe con-
trol policies by optimizing linear feedback control gains.
The algorithms rely on projection-based methods such as
OGD, and guarantee bounded static regret (Agarwal et al.,
2019; Hazan et al., 2020; Simchowitz et al., 2020; Li et al.,
2021), adaptive regret (Gradu et al., 2020; Zhang et al.,
2022), or dynamic regret (Zhao et al., 2022). Specifically,
the said OCO-M regret bounds are against optimal static
feedback control gains with the exception of the bound
by (Zhao et al., 2022) which is against a class of opti-
mal time-varying policies; however, the definition of this

4Additional examples of works utilizing OFW for OCO
without Memory are: (Hazan & Kale, 2012; Jaggi, 2013;
Garber & Hazan, 2015; Wan & Zhang, 2021; Kalhan et al., 2021;
Kretzu & Garber, 2021; Garber & Kretzu, 2022; Wan et al.,
2023). Examples of works utilizing OGD for OCO with-
out Memory are: (Zinkevich, 2003; Jadbabaie et al., 2015;
Mokhtari et al., 2016; Yang et al., 2016; Zhang et al., 2018;
Chang & Shahrampour, 2020).
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class requires an a priori knowledge of linear feedback con-
trol gains that ensure stability. We provide a projection-
free controller with memory and bounded dynamic regret
against any optimal time-varying linear feedback control
policy without the need to specify to the optimal policy any
stabilizing feedback control gains.

3. Problem Formulation

We formally define the problem of Online Convex Opti-

mization with Memory (OCO-M) (Problem 1), along with
standard convexity (but non-smoothness) assumptions.

Problem 1 (Online Convex Optimization with Memory
(OCO-M) (Weinberger & Ordentlich, 2002)). There exist 2

players, an online optimizer and an adversary, who choose

decisions sequentially over a time horizon T . At each time

step t = 1, . . . , T , the online optimizer chooses a deci-

sion xt from a convex set X ; then, the adversary chooses

a loss ft : Xm+1 7→ R to penalize the optimizer’s most

recent m + 1 decisions. Particularly, the adversary re-

veals ft to the optimizer and the optimizer computes its

loss ft(xt−m, . . . ,xt), where xt−m is 0 for t ≤ m. The

optimizer aims to minimize
∑T

t=1 ft(xt−m, . . . ,xt).

The challenge in solving OCO-M optimally, i.e., in mini-
mizing

∑T
t=1 ft(xt−m, . . . ,xt), is that the optimizer gets

to know ft only after xt has been chosen, instead of before.

Despite the above challenge, our objective is to develop an
efficient (projection-free) online algorithm for OCO-M that
despite its efficiency still enjoys sublinear dynamic regret.

To achieve our objective, we adopt standard assump-
tions in online convex optimization (Hazan et al., 2016;
Anava et al., 2015; Agarwal et al., 2019; Simchowitz et al.,
2020; Zhang et al., 2018; Gradu et al., 2020; Zhao et al.,
2022):

Assumption 1 (Convex and Compact Bounded Domain,
Containing the Origin). The domain set X is convex and

compact, contains the zero point, and has diameter D,

where D is a given non-negative number; i.e., 0 ∈ X , and

‖x− y‖2 ≤ D for all x ∈ X ,y ∈ X .

Definition 1 (Unary Loss Function). Given ft : Xm+1 7→
R, the unary loss function is the f̃t(x) , ft(x, . . . ,x).

Assumption 2 (Convex Loss). The loss function ft :

Xm+1 7→ R is convex, i.e., the unary loss function f̃t(x)
is convex in x, where m is the memory length, and x ∈ X .

Assumption 3 (Bounded Loss). The loss function ft takes

values in [a, a+ c], where a and c are non-negative; i.e.,

0 ≤ a ≤ ft (x0, . . . ,xm) ≤ a+ c,

for all (x0, . . . ,xm) ∈ Xm+1 and t ∈ {1, . . . , T }.

Assumption 4 (Coordinate-Wise Lipschitz). The loss func-

tion ft is coordinate-wise L-Lipschitz, where L is a given

non-negative number; i.e.,

|ft (x0, . . . ,xm)− ft (y0, . . . ,ym)| ≤ L

m∑

i=0

‖xi − yi‖2 ,

for all (x0, . . . ,xm) ∈ Xm+1, and (y0, . . . ,ym) ∈ Xm+1,

and for all t ∈ {1, . . . , T }.

Assumption 5 (Bounded Gradient). The gradient norm of

f̃t is at most G, where G is a given non-negative number;

i.e.,
∥∥∥∇f̃t(x)

∥∥∥
2
≤ G for all x ∈ X and t ∈ {1, . . . , T }.

4. Meta-OFW Algorithm for OCO-M

We present Meta-OFW, the first projection-free algorithm
with bounded dynamic regret for OCO-M. Meta-OFW

leverages as subroutine the Online Frank-Wolfe (OFW) al-
gorithm. OFW is introduced by (Kalhan et al., 2021) for
the OCO problem without memory.

We next first present the OFW algorithm (Section 4.1), and
then present the Meta-OFW algorithm (Section 4.2).

4.1. The Online Frank-Wolfe (OFW) Algorithm for

OCO without Memory

We present the OFW algorithm (Algorithm 1) along with
its dynamic regret analysis (Theorem 1). Particularly, our
analysis results in the same regret bound as OFW’s state of
the art bound in (Kalhan et al., 2021, Theorem 1) but un-
der Assumption 1 and Assumption 2 only. Instead, OFW’s
bound in (Kalhan et al., 2021) holds true under the addi-
tional assumption of smooth loss functions.

Theorem 1 (Dynamic Regret Bound of OFW for OCO with
no memory). Consider the OCO problem with no memory,

i.e., Problem 1 with m = 0. Under Assumption 1 and As-

sumption 2, OFW achieves against any sequence of com-

parators (v1, . . . ,vT ) ∈ X T the dynamic regret

RegretDT ≤ O
(
1 + VT
η

+
√
TDT

)
. (7)

Particularly, when η is chosen such that η = O
(

1√
T

)
, then

RegretDT ≤ O
(√

T
(
1 + VT +

√
DT

))
. (8)

The OFW algorithm achieves Theorem 1 by executing the
following projection-free steps (Algorithm 1): OFW first
takes as input the time horizon T and a constant step size
η. Then, at each iteration t = 1, . . . , T , OFW chooses an
xt, after which the learner suffers a loss ft(xt) and eval-
uates the gradient ∇ft(xt) (lines 3-4). Afterwards, OFW

seeks a direction x′
t that is parallel to the gradient within

the feasible set X by solving a linear program only once
per iteration (line 5). Finally, the decision for next iteration
is then updated by xt+1 = (1− η)xt + ηx′

t (line 6).
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Algorithm 1 Online Frank-Wolfe Algorithm (OFW)
(Kalhan et al., 2021).

Input: Time horizon T ; step size η.
Output: Decision xt at each time step t = 1, . . . , T .

1: Initialize x1 ∈ X ;
2: for each time step t = 1, . . . , T do

3: Suffer a loss ft(xt);
4: Obtain gradient ∇ft(xt);
5: Compute x′

t = argminx∈X 〈∇ft(xt),x〉;
6: Update xt+1 = (1− η)xt + ηx′

t;
7: end for

Remark 1 (Efficiency due to only Projection-Free Oper-
ations). OFW in Algorithm 1 is projection-free: it finds

a descent direction within the feasible set via solving

a linear program once per iteration (line 5). Instead,

e.g., OGD requires solving a quadratic program for projec-

tions (Zinkevich, 2003). Thus, OFW is more efficient when

projections are costly. For example, (Kalhan et al., 2021)

demonstrates that OFW is 20 times faster than OGD in ma-

trix completion scenarios. In the numerical evaluations in

this paper (Appendix E), over online non-stochastic control

scenarios, we observe that the proposed OFW-based algo-

rithm is about 3 times faster than the OGD-based algorithm

(achieving comparable or superior loss performance).

4.2. Meta-OFW Algorithm for OCO-M

We present Meta-OFW (Algorithm 2). To this end, we start
with the intuition on how Algorithm 2’s steps achieve a
bounded dynamic regret (the rigorous dynamic regret anal-
ysis of Meta-OFW is given in Section 5).

Algorithm 2 utilizes multiple copies of the OFW algorithm
as base-learners —each one with a different step size η—
and the Hedge algorithm (Freund & Schapire, 1997) as a
meta-learner. The multiple copies of OFW aim to cope with
the a priori unknown loss variation VT via a trick reminis-
cent of the “doubling trick” (Shalev-Shwartz et al., 2012),
i.e., via covering the spectrum of step sizes such that there
exist a step size that approximately minimizes eq. (7) as if
VT was known; and Hedge fuses the decisions provided by
the base-learners to output a final decision xt at each step t.

We discuss in more detail the role of the base- and meta-
learners in Remark 2 and Remark 3 below, respectively. To
this end, we use the following notation and definitions:

• λ , m2L is a regularizing constant;
• N is the total number of the base-learners;
• Bi is the i-th base-learner running OFW with step size ηi

and output xt,i at each iteration t, where i ∈ {1, . . . , N};

• gt(x) ,
〈
∇f̃t (xt) ,x

〉
is the linearized loss of the unary

loss function f̃t(xt) over which each base-learner opti-

Algorithm 2 Meta OFW Algorithm (Meta-OFW).

Input: Time horizon T ; number of base-learners N per
eq. (11); step-size pool H per eq. (12); initial weight of
base-learners p1 per eq. (13); learning rate ǫ for meta-
algorithm per eq. (14).

Output: Decision xt at each time step t = 1, . . . , T .

1: Set xτ = 0, ∀τ ≤ 0;
2: Initialize x1,i ∈ X , ∀i ∈ {1, . . . , N};
3: for each time step t = 1, . . . , T do

4: Receive xt,i from base-learner Bi for all i;
5: Output the Decision xt =

∑N
i=1 pt,ixt,i;

6: Suffer loss ft(xt−m, . . . ,xt);
7: Observe the loss function ft : Xm+1 7→ R;
8: Construct linearized loss

gt(x) =
〈
∇f̃t (xt) ,x

〉
;

9: Construct the switching-cost-regularized surrogate
loss ℓt ∈ R

N with
ℓt,i = gt(xt,i) + λ ‖xt,i − xt−1,i‖2 ;

10: Update the weight of base-learners pt+1 ∈ ∆N by

pt+1,i =
pt,ie

−ǫℓt,i
∑N

j=1 pt,je
−ǫℓt,j

;

11: Base-learner Bi updates xt+1,i with step size ηi for
all i, per OFW in Algorithm 1;

12: end for

mizes via the OFW algorithm;

• ℓt,i , gt(xt,i) + λ ‖xt,i − xt−1,i‖2 is a surrogate
loss associated with the i-th base-learner Bi —the meta-
learner collects ℓt,i for all base-learners, i.e., for all i ∈
{1, . . . , N}, and optimizes xt via Hedge;

• pt,i is the assigned weight to the i-th base-learner Bi by
Hedge —each pt,i, i ∈ {1, . . . , N}, is used to output
Meta-OFW’s final decision xt as the weighted sum of
base-learners’ decisions xt,i; i.e., xt =

∑N
i=1 pt,ixt,i;

• ℓt ∈ R
N is the vector whose i-th entry is ℓt,i;

• pt is the vector with i-th entry as pt,i;

• α , 2(a+ c) is a constant introduced for notational sim-
plicity (a and c are per Assumption 3).

Remark 2 (Unknown Loss Variation VT Requires Multi-
ple OFW Base-Learners). The multiple OFW base-learners

aim to overcome the challenge of the a priori unknown loss

variation VT . To illustrate this, we first consider that VT
is known a priori, and show that a single OFW suffices

to achieve bounded dynamic regret for OCO-M. Then, we

consider that VT is unknown a priori, and show how multi-

ple base-learners with appropriate step sizes η can approx-

imate the case where VT is known a priori. To these ends,

we leverage the following dynamic regret bound for OCO-
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M (Anava et al., 2015, Proof of Theorem 3.1):

RegretDT ≤
T∑

t=1

f̃t (xt)−
T∑

t=1

f̃t (vt)

︸ ︷︷ ︸
unary cost

+ λ

T∑

t=2

‖xt − xt−1‖2
︸ ︷︷ ︸

switching cost

+λ

T∑

t=2

‖vt − vt−1‖2
︸ ︷︷ ︸

path length

,

(9)
which we can simplify to

RegretDT ≤ O
(√

T (1 + VT +DT + CT )
)
, (10)

when VT is known a priori. Particularly, assume that xt

is updated by an OFW algorithm applied to f̃1, . . . , f̃T

with the VT -dependent step size η∗ = O
(√

(1 + VT )/T
)

.

Then, eq. (10) results from eq. (9) since the three terms

in eq. (9) can be bounded respectively as follows: (i) the

unary cost can be bounded by eq. (7) where η = η∗; (ii)

the switching cost can be bounded by η∗TD due to OFW’s

line 6 and due to Assumption 1; and (iii) the path length

is by definition equal to CT . Then, an application of the

Cauchy-Schwarz inequality completes the proof of eq. (10).
All in all, when VT is known a priori, a single OFW suffices

to achieve bounded dynamic regret for OCO-M.

But VT is unknown a priori since it depends on the loss

functions, which are unknown a priori. Instead, an up-

per bound to VT is known, specifically, it holds true that

VT ≤ Tc under Assumption 3. Leveraging this, we can ap-

proximate the case where VT is known a priori by employ-

ing an appropriate number of OFW base-learners, each

with a different step size, per eq. (11) and eq. (12) below.

Intuitively, we can guarantee that way that there exists a

base-learner i with step size ηi close to the unknown step

size η∗ (the full justification of eq. (11) and eq. (12) is given

in Theorem 2’s proof in Appendix C.2). The challenge now

is to fuse the decisions of the multiple OFW base-learners

to a final decision xt.

Remark 3 (The Multiple OFW Require a Hedge Meta-
Learner). The Hedge meta-learner in Meta-OFW aims to

fuse the decisions of the multiple OFW base-learners to

a final decision xt. Specifically, the OFW base-learners

provide multiple decisions at each iteration, the xt,i, i ∈
{1, . . . , N} (line 4 in Algorithm 2). Then, Meta-OFW uti-

lizes the Hedge steps in lines 5, 9, and 10 to fuse those

decisions to a single decision, aiming to “track” the best

base-learner Bi.

We next formally describe Meta-OFW. First, the algorithm
specifies the number of base learners, their corresponding

step sizes, and their initial weights as follows, respectively:

N =

⌈
1

2
log2(1 +

Tc

α
)

⌉
+ 1 = O(log T ), (11)

H =

{
ηi | ηi = 2i−1

√
α

λTD
≤ 1, i ∈ {1, . . . , N}

}
,

(12)

p1,i =
1

i(i+ 1)
· N + 1

N
, for any i ∈ {1, . . . , N}. (13)

Also, Meta-OFW sets the meta-learner’s learning rate per
the following eq. (14):

ǫ =
√
2/((2λ+G)(λ+G)D2T ), (14)

where the dependence on T can be removed by a “doubling
trick” (Cesa-Bianchi et al., 1997), similarly to how Meta-

OFW copes with the unknown VT ,

At each iteration t = 1, . . . , T , Meta-OFW receives the
intermediate decisions xt,i from all the base-learners Bi,
i ∈ {1, . . . , N} (line 4) to fuse them into a final decision
xt =

∑N
i=1 pt,ixt,i (line 5). Then, Meta-OFW suffers a

loss of ft(xt−m, . . . ,xt) (lines 6-7). Afterwards, Meta-

OFW constructs the linearized loss gt(x) and switching-
cost-regularized loss ℓt (lines 8-9). To this end, Meta-OFW

needs to evaluate only once the gradient ∇f̃t(xt). Finally,
the meta-learner and base-learners update the weights pt+1

and xt+1,i for the next iteration (lines 10-11).

5. Dynamic Regret Guarantees of Meta-OFW

To present Meta-OFW’s dynamic regret bound, we define:

• DT,i ,
∑T

t=1 ‖∇ft (xt,i)−∇ft−1 (xt−1,i)‖22 is the
gradient variation associated with the base-learner i;

• D̄T , maxi∈{1,...,N}DT,i is the upper bound for DT,i.

We present Meta-OFW’s dynamic regret bound against any
comparator sequence (Theorem 2). Particularly, the bound
below holds true, even if the loss variation VT , gradient va-
riation D̄T , and path lengthCT are unknown to Meta-OFW.

Theorem 2 (Dynamic Regret Bound of Meta-OFW). For

any comparator sequence (v1, . . . ,vT ) ∈ X T , Meta-OFW

achieves a dynamic regret RegretDT that enjoys the bound:

RegretDT ≤ O
(√

T
(
1 + VT + D̄T + CT

))
. (15)

The dependency on VT and D̄T results from OFW being
a base-learner in Meta-OFW; similar dependencies, due to
projection-free subroutines in online algorithms, have been
observed in the literature: see, e.g., (Kalhan et al., 2021)
and the references in Table 1. The dependency on D̄T ,
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instead of DT in Theorem 1, is to upper bound the gra-
dient variation DT,i such that the base-learner i with step
size close to the unknown step size η⋆ (Remark 2) satisfies
DT,i ≤ D̄T .

The dependency on CT results from the sequence of com-
parators being time-varying. Specifically, (Zhang et al.,
2018) proved that any optimal dynamic regret bound for

OCO is Ω
(√

T (1 + CT )
)

, and thus the bound necessarily

depends on CT in the worst case.

Remark 4 (Trade-Off of Projection-Free Efficiency with
Regret Optimality). (Zhao et al., 2022) prove that the op-

timal dynamic regret for OCO-M is Ω(
√
T (1 + CT )),

and provide a projection-based algorithm using OGD that

matches this bound. In contrast, Meta-OFW’s regret bound

in Theorem 2 cannot match the bound Ω(
√
T (1 + CT ))

due to the presence of VT and D̄T in eq. (15). But

Meta-OFW is projection-free and thus is more efficient

than the OGD-based algorithm in (Zhao et al., 2022)

(Hazan & Kale, 2012). All in all, the dependence of eq. (15)
on VT and D̄T is the regret suboptimality cost we pay in

this paper to solve OCO-M efficiently via the projection-

free OFW.

6. Application to Non-Stochastic Control

We apply Meta-OFW to the online non-stochastic control
problem (Agarwal et al., 2019), and present a projection-
free controller with memory (Algorithm 3), and with
bounded dynamic regret against any linear time-varying
feedback control policy (Theorem 3). The results of the
numerical evaluations are present in Appendix E.

6.1. The Non-Stochastic Control Problem

We consider Linear Time-Varying systems of the form

xt+1 = Atxt +Btut + wt, t = 0, . . . , T, (16)

where xt ∈ R
dx is the state of the system, ut ∈ R

du is the
control input, and wt ∈ R

dx is the process noise. The sys-
tem and input matrices,At andBt, respectively, are known.

At each time step t, the controller chooses a control action
ut and then suffers a loss ct(xt, ut). The loss function ct
is revealed to the controller only after the controller has
chosen the control action ut, similarly to the OCO setting.

Assumption 6 (Convex and Bounded Loss Function with
Bounded Gradient). The cost function ct(xt, ut) : Rdx ×
R
du 7→ R is convex in xt and ut. Further, when ‖x‖2 ≤ D,

‖u‖2 ≤ D for some D > 0, then |ct(x, u)| ≤ βD2 and

‖∇xct(x, u)‖2 ≤ GcD, ‖∇uct(x, u)‖2 ≤ GcD, for given

positive numbers β and Gc.

Assumption 7 (Bounded System Matrices and Noise). The

system matrices and noise are bounded, i.e., ‖At‖op ≤ κA,

‖Bt‖op ≤ κB , and ‖wt‖2 ≤W for given positive numbers

κA, κB , and W , where ‖·‖op is the operator norm.

Per Assumption 7, we assume no stochastic model for the
process noise wt: the noise may even be adversarial, sub-
ject to the bounds prescribed by W .

Problem 2 (Non-Stochastic Control (NSC) Problem). At

each time step t = 0, . . . , T , first a control action ut is

chosen; then, a loss function ct : Rdx × R
du 7→ R is re-

vealed and the system suffers a loss ct(xt, ut). The goal is

to minimize the dynamic policy regret defined below.

Definition 2 (Dynamic Policy Regret). We define the dy-
namic policy regret as

Regret-NSCDT =

T∑

t=0

ct (xt, ut)−
T∑

t=0

ct (x
∗
t , u

∗
t ) , (17)

where (i) both sums in eq. (17) are evaluated with the

same noise {w0, . . . , wT }, which is the noise experienced

by the system during its evolution per the control input

{u0, . . . , uT }, (ii) u∗t = −K∗
t x

∗
t is the optimal linear feed-

back control input in hindsight, i.e., the optimal input given

a priori knowledge of ct and of the realized noise wt, and

(iii) x∗t is the state reached by applying the sequence of op-

timal control inputs {u∗0, . . . , u∗t−1}.

Reduction to OCO-M. We present the reduction of
the non-stochastic control problem to OCO-M, following
(Agarwal et al., 2019).

Per eq. (16), xt depends on the control actions chosen in
the past, i.e., {u0, . . . , ut−1}, and similarly, the control
action ut depends on xt−1, i.e., {u0, . . . , ut−2}. To re-
duce the non-stochastic control problem to OCO-M, there
are thus 2 challenges: (i) we need a control parameteri-
zation such that the cost function ct(xt, ut) is convex in
the parameters of the control actions{u0, . . . , ut−1}, since
ct(xt, ut) is implicitly a function of {u0, . . . , ut−1} via ut;
and, similarly, (ii) we need the memory length of ct(xt, ut),
i.e., its implicit dependence on the past control inputs
{u0, . . . , ut−1}, to stop growing as t increases; that is, we
need ct(xt, ut) to instead depend on the most recent con-
trol inputs only, in particular, on {ut−m, . . . , ut} for mem-
ory length m. To address these challenges, (Agarwal et al.,
2019) propose the Disturbance-Action Control policy and
the notion of truncated loss.

Definition 3 (Disturbance-Action Control Policy). A

Disturbance-Action Control (DAC) policy πt(Kt,Mt)
chooses the control action ut at state xt as ut = −Ktxt +∑H

i=1M
[i−1]
t wt−i,5 where Mt = (M

[0]
t , . . . ,M

[H−1]
t )

with

∥∥∥M [i]
t

∥∥∥
op

≤ κBκ
3(1− γ)i and horizon H ≥ 1, Kt is

5The DAC policy depends on the past noise, which can be
obtained from eq. (16) once the next state is observed; specifically,
at time t+ 1, it holds true that wt = xt+1 − Atxt −Btut.
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Algorithm 3 Meta-OFW for Non-Stochastic Control.

Input: Time horizon T ; number of base-learners N per
eq. (18); step size pool H per eq. (19); initial weight of
base-learners p0 per eq. (20); learning rate ǫ of meta-
algorithm per eq. (21).

Output: Control ut at each time step t = 1, . . . , T .

1: Set Mτ = 0 and wτ = 0, ∀τ < 0;
2: Initialize M0,i ∈ M, ∀i ∈ {1, . . . , N};
3: for each time step t = 0, . . . , T do

4: Receive Mt,i from base-learner Bi for all i;
5: Calculate Mt =

∑N
i=1 pt,iMt,i;

6: Output ut = −Ktxt +
∑H

i=1M
[i−1]
t wt−i;

7: Observe the loss function ct : Rdx × R
du 7→ R and

suffer the loss ct(xt, ut);
8: Construct the truncated loss ft(Mt−H−1, . . . ,Mt) :

MH+2 7→ R ;
9: Construct the linearized loss

gt(M) =
〈
∇M f̃t (Mt) ,M

〉
F
;

10: Construct the switching-cost-regularized surrogate
loss ℓt ∈ R

N with
ℓt,i = gt(Mt,i) + ζ ‖Mt,i −Mt−1,i‖F ;

11: Update the weight of base-learners pt+1 ∈ ∆N by

pt+1,i =
pt,ie

−ǫlt,i
∑N
j=1 pt,je

−ǫlt,j
;

12: for each base-learner Bi do

13: Compute

M ′
t,i = arg min

M∈M

〈
∇M f̃t(Mt),M

〉
F
;

14: Update Mt+1,i = (1 − ηi)Mt,i + ηiM
′
t,i;

15: end for

16: Observe the state xt+1 and calculate the noise wt =
xt+1 −Atxt −Btut;

17: end for

a (κ, γ)−strongly stable matrix which is calculated given

At and Bt, and wτ = 0 for all τ < 0.

Per Proposition 1 in Appendix D.4 (Gradu et al., 2020), xt
and ut are linear in {M0, . . . ,Mt}; therefore, the cost func-
tion ct(xt, ut) is convex in {M0, . . . ,Mt}.

To present the notion of truncated loss, we use the notation:

• xt (M0:t−1) is the state reached by applying the DAC
policy {πτ (Kτ ,Mτ )}τ=0,...,t−1;

• ut (M0:t) is the control action at state xt (M0:t−1) per
the DAC policy πt(Kt,Mt);

• yt (Mt−1−H:t−1) is the state reached from xt−1−H = 0
by applying {πτ (Kτ ,Mτ )}τ=t−H−1,...,t−1 and experi-
encing the noise sequence {wτ}τ=t−H−1,...,t−1;

• vt (Mt−1−H:t) is the control input that would have been
executed if the state at time t was the yt (Mt−1−H:t−1).

Definition 4 (Truncated Loss). Given DAC policies

{πτ (Kτ ,Mτ )}τ=0,...,t with memory lengthH , the induced

truncated loss ft : MH+2 7→ R is defined as

ft (Mt−1−H:t) , ct (yt (Mt−1−H:t−1) , vt (Mt−1−H:t)) .

Thereby, the truncated loss ft (Mt−1−H:t) depends only on
the last H +2 time steps of the DAC policy. That is, ft has
a fixed memory length H + 2, for all t = 1, . . . , T .

All in all, Problem 2 can be reduced to OCO-M when the
decision variables are theMt, and the loss functions are the
truncated losses ft (Mt−1−H:t), for all t = 1, . . . , T .

6.2. Meta-OFW for Online Non-Stochastic Control

We present Meta-OFW’s application to the online non-
stochastic control problem (Algorithm 3). Particularly, Al-
gorithm 3 initializes the number of base-learners, their cor-
responding step sizes, and their initial weights, per the fol-
lowing equations, similarly to Meta-OFW:

N =

⌈
1

2
log2(

2βD2T + φ

σ
)

⌉
+ 1 = O(log T ), (18)

H =

{
ηi | ηi = 2i−1

√
σ

ζTDf
≤ 1, i ∈ {1, . . . , N}

}
,

(19)

p0,i =
1

i(i+ 1)
· N + 1

N
, for any i ∈ {1, . . . , N}, (20)

where σ , 4βD2, φ , σ + 2βD2, ζ , (H + 2)2Lf , and
Lf , Gf defined as in Lemma 9 in Appendix D.7.

The algorithm also sets the step size of meta-learner as

ǫ =

√
2/
(
(2ζ +Gf )(ζ +Gf )D2

fT
)
. (21)

At each iteration t, Algorithm 3 receives Mt,i from all
base-learners (line 4). Then, Algorithm 3 calculates
Mt =

∑N
i=1 pt,iMt,i and outputs the control actions ut =

−Ktxt +
∑H
i=1M

[i−1]
t wt−i (lines 5-6), after which the

cost function is revealed and the algorithm suffers a loss of
ct(xt, ut) (line 7). Next, Algorithm 3 constructs the trun-
cated loss ft(Mt−H−1, . . . ,Mt), linearized loss gt(M),
and switching-cost-regularized loss ℓt (lines 8-10). The
meta-learner and base-learners update the weights pt+1

and Mt+1,i for the next iteration (lines 11-15). Finally, the
noise wt is calculated when xt+1 is observed (line 16).
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6.3. Dynamic Regret Guarantee of Algorithm 3

Theorem 3 (Dynamic Policy Regret Bound of Algo-
rithm 3). Algorithm 3 ensures that 6

Regret-NSCDT ≤ Õ
(√

T
(
1 + VT + D̄T + CT

))
.

(22)

Remark 5 (Novelty of Theorem 3). Theorem 3 guar-

antees a dynamic regret bound against an optimal time-
varying linear feedback policy in hindsight, i.e., against

{πτ (K∗
τ , 0)}τ=0,...,t, per Definition 2. This is different than

competing against an optimal time-varying DAC policy

{πτ (Kτ ,M
∗
τ )}τ=0,...,t with pre-specified stabilizing con-

trol gains Kτ as in (Zhao et al., 2022), or an optimal time-

invariant linear feedback policy {π(K∗, 0)} over the entire

horizon or any time interval as in (Agarwal et al., 2019;

Li et al., 2021; Gradu et al., 2020; Simchowitz et al., 2020;

Zhang et al., 2022). To achieve this, we show a DAC policy

{πτ (Kτ ,Mτ )}τ=0,...,t can approximate any time-varying

linear feedback policy (Proposition 2 in Appendix D.5)

without the need to specify to the optimal policy any sta-

bilizing feedback control gains.

7. Conclusion

We provided Meta-OFW (Algorithm 2), the first projection-
free algorithm with bounded dynamic regret for OCO with
memory in time-varying environments (Theorem 2). To
develop Meta-OFW, we employed the projection-free algo-
rithm OFW along with Hedge. Further, we applied Meta-

OFW to the online non-stochastic control problem to con-
trol linear time-varying systems that are corrupted with un-
known and unpredictable noise (Algorithm 3). We thus
developed a projection-free controller with memory and
bounded dynamic regret against any linear time-varying
control policy (Theorem 3), instead of against only static
linear control policies. To this end, we also proved that the
DAC policy class (Agarwal et al., 2019) can approximate
linear time-varying feedback controllers (Proposition 2 in
Appendix D.5).
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A. Dynamic Regret Analysis of OFW in OCO without Memory

Theorem 4 (Dynamic Regret Bound of OFW). Consider the OCO problem with no memory, i.e., Problem 1 with m = 0.

Under Assumption 1 and Assumption 2, OFW achieves against any sequence of comparators (v1, . . . ,vT ) ∈ X T the

dynamic regret

RegretDT ≤ O
(
1 + VT
η

+
√
TDT

)
. (23)

Under step size η = O
(

1√
T

)
, we have the following dynamic regret bound,

RegretDT ≤ O
(√

T
(
1 + VT +

√
DT

))
. (24)

Further, select η =
√

c
b with c < b, we have the following dynamic regret bound,

RegretDT ≤ O
(√

T (VT +DT )
)
. (25)

A.1. Proof of Theorem 4

Proof. The proof follows the steps of (Kalhan et al., 2021, Proof of Theorem 1) but removes the assumption that the loss
function ft must be smooth per the original proof in (Kalhan et al., 2021).

Additionally, the proof concludes with the novel bound in eq. (25), which is enabled with a constant step size (eq. (36))
under Assumption 3.

In more detail, to prove Theorem 1, we take summation on both sides from t = 1 to T of eq. (37) in Lemma 1:

T∑

t=1

(ft (xt)− ft (vt)) ≤
T∑

t=1

(
f sup
t,t−1 + ft−1 (vt−1)− ft (vt)

)

+ (1− η)

(
T−1∑

t=1

(ft (xt)− ft (vt)) + f0 (x0)− f0 (v0)

)

+ ηD

T∑

t=1

‖∇ft (xt)−∇ft−1 (xt−1)‖2 ,

(26)

where f sup
t,t−1 is defined in Lemma 1. Moving (1 − η)

∑T−1
t=1 (ft (xt)− ft (vt)) to the left side of eq. (26), and noting∑T

t=1 (ft−1 (vt−1)− ft (vt)) = f0 (v0)− fT (vT ), we get

η

T−1∑

t=1

(ft (xt)− ft (vt)) + (fT (xT )− fT (vT )) ≤
T∑

t=1

f sup
t,t−1 + (1− η) (f0 (x0)− f0 (v0)) + f0 (v0)− fT (vT )

+ ηD

T∑

t=1

‖∇ft (xt)−∇ft−1 (xt−1)‖2 .
(27)

Subtracting (1− η) (fT (xT )− fT (vT )) from both side of eq. (27), we obtain

ηRegretDT ≤
T∑

t=1

f sup
t,t−1 + (1− η) (f0 (x0)− fT (xT )− f0 (v0) + fT (vT ))

+ f0 (v0)− fT (vT ) + ηD

T∑

t=1

‖∇ft (xt)−∇ft−1 (xt−1)‖2

=

T∑

t=1

f sup
t,t−1 + η (−f0 (x0) + fT (xT ) + f0 (v0)− fT (vT ))

+ f0 (x0)− fT (xT ) + ηD

T∑

t=1

‖∇ft (xt)−∇ft−1 (xt−1)‖2 .

(28)
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By Assumption 3 and the Cauchy-Schwarz inequality, it holds true that: f0 (x0)− fT (xT ) ≤ 2(a+ c), and −f0 (x0) +
fT (xT ) + f0 (v0) − fT (vT ) ≤ 4(a + c). Divide both sides of eq. (28) by η and substitute the following inequality,
which holds true due to the Cauchy-Schwarz inequality,

T∑

t=1

‖∇ft (xt)−∇ft−1 (xt−1)‖2 ≤

√√√√T

T∑

t=1

‖∇ft (xt)−∇ft−1 (xt−1)‖22 =
√
TDT (29)

into eq. (28) with the definition of VT to obtain

RegretDT ≤ 1

η
VT +

2

η
(a+ c) +D

√
TDT + 4(a+ c). (30)

Selecting η = O( 1√
T
) we get

RegretDT ≤ O
(√

T
(
1 + VT +

√
DT

))
. (31)

Further, by selecting η =
√

c
b with c < b, the dynamic regret in eq. (30) becomes

RegretDT ≤
√
b

c
VT +D

√
TDT +

(√
4b

c
+ 4

)
(a+ c)

=
√
Tb

VT√
Tc

+D
√
TDT +

(√
4b

c
+ 4

)
(a+ c)

=
√
TVT b

√
VT√
Tc

+D
√
TDT +

(√
4b

c
+ 4

)
(a+ c).

(32)

From Assumption 3, we have the following bound of VT ,

0 ≤ VT =

T∑

t=1

sup
x∈X

|ft(x)− ft−1(x)| ≤ Tc, (33)

which implies
√
VT√
Tc

≤ 1. Substituting it into eq. (32) gives

RegretDT ≤
√
TVT b +D

√
TDT +

(√
4b

c
+ 4

)
(a+ c). (34)

Hence, the dynamic regret is bounded as

RegretDT ≤ O
(√

T
(√

VT +
√
DT

))
. (35)

Equivalently, due to the Cauchy-Schwarz inequality, the bound can be written as

RegretDT ≤ O
(√

T (VT +DT )
)
, (36)

A.2. Proof of Lemma 1

Lemma 1. Under Assumption 1 and Assumption 2, Algorithm 1 satisfies the following descent relations against any

sequence of comparators (v1, . . . ,vT ) ∈ X T ,

ft (xt)− ft (vt) ≤ f sup
t,t−1 + (1− η) (ft−1 (xt−1)− ft−1 (vt−1))

+ ft−1 (vt−1)− ft (vt) + ηD ‖∇ft (xt)−∇ft−1 (xt−1)‖2
(37)

where f sup
t,t−1 , sup

x∈X |ft(x) − ft−1(x)| is the instantaneous maximum cost variation.
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Proof. The proof follows similar steps of (Kalhan et al., 2021, Proof of Lemma 1) but removes the assumption that the
loss function ft must be smooth per the original proof in (Kalhan et al., 2021).

By convexity of ft(·), we have
ft (xt) ≤ ft (xt−1) + 〈∇ft (xt) ,xt − xt−1〉 . (38)

Substituting the update step xt = (1 − η)xt−1 + ηx′
t−1 in Algorithm 1, i.e., xt − xt−1 = η

(
x′
t−1 − xt−1

)
, into eq. (38),

ft (xt) ≤ ft (xt−1) + η
〈
∇ft (xt) ,x′

t−1 − xt−1

〉
. (39)

Adding and subtracting the terms η
〈
∇ft−1 (xt−1) ,x

′
t−1 − xt−1

〉
to the right hand side of eq. (39), we obtain

ft (xt) ≤ft (xt−1) + η
〈
∇ft (xt)−∇ft−1 (xt−1) ,x

′
t−1 − xt−1

〉

+ η
〈
∇ft−1 (xt−1) ,x

′
t−1 − xt−1

〉
.

(40)

Next, by the optimality condition of x′
t−1, i.e.,

〈
x′
t−1,∇ft−1 (xt−1)

〉
= min

x∈X
〈x,∇ft−1 (xt−1)〉 ≤ 〈vt−1,∇ft−1 (xt−1)〉 , (41)

and substituting into eq. (40) leads to

ft (xt) ≤ ft (xt−1) + η
〈
∇ft (xt)−∇ft−1 (xt−1) ,x

′
t−1 − xt−1

〉

+ η 〈∇ft−1 (xt−1) ,vt−1 − xt−1〉 .
(42)

By convexity of ft−1(·) in eq. (42), we have

ft (xt) ≤ ft (xt−1) + η
〈
∇ft (xt)−∇ft−1 (xt−1) ,x

′
t−1 − xt−1

〉

+ η (ft−1 (vt−1)− ft−1 (xt−1)) .
(43)

Subtracting ft (vt) from both sides of eq. (43) gives

ft (xt)− ft (vt) ≤ ft (xt−1)− ft (vt) + η
〈
∇ft (xt)−∇ft−1 (xt−1) ,x

′
t−1 − xt−1

〉

+ η (ft−1 (vt−1)− ft−1 (xt−1)) .
(44)

Next, consider the term ft (xt−1)− ft (vt) from the right hand side of eq. (44). We can bound it as follows:

ft (xt−1)− ft (vt) = ft (xt−1)− ft−1 (xt−1) + ft−1 (xt−1)− ft−1 (vt−1) + ft−1 (vt−1)− ft (vt)

≤ f
sup
t,t−1 + ft−1 (xt−1)− ft−1 (vt−1) + ft−1 (vt−1)− ft (vt) ,

(45)

where f sup
t,t−1 , sup

x∈X |ft(x) − ft−1(x)|. Substituting eq. (45) into eq. (44), we obtain

ft (xt)− ft (vt) ≤f sup
t,t−1 + η

〈
∇ft (xt)−∇ft−1 (xt−1) ,x

′
t−1 − xt−1

〉

+ (1− η) (ft−1 (xt−1)− ft−1 (vt−1)) + ft−1 (vt−1)− ft (vt) .
(46)

Applying the Cauchy-Schwarz inequality, we get

ft (xt)− ft (vt) ≤f sup
t,t−1 + η ‖∇ft (xt)−∇ft−1 (xt−1)‖2

∥∥x′
t−1 − xt−1

∥∥
2

+ (1− η) (ft−1 (xt−1)− ft−1 (vt−1)) + ft−1 (vt−1)− ft (vt) .
(47)

Utilizing now Assumption 1 provides the result in Lemma 1.

B. Dynamic Regret Analysis of OFW in OCO-M

Theorem 5 (Dynamic Regret Bound of OFW with Loss Variation Dependent Step Size). Under Assumption 1 to As-

sumption 5, running OFW over unary functions f̃1, . . . , f̃T with step size η = O
(√

(1 + VT )/T
)

achieves against any

sequence of comparators (v1, . . . ,vT ) ∈ X T the dynamic regret in eq. (9)

RegretDT ≤ O
(√

T (1 + VT +DT ) + CT

)

≤ O
(√

T (1 + VT +DT + CT )
)
.

(48)
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Proof. From the dynamic regret analysis in eq. (30), we know that running OFW over unary function gives

T∑

t=1

f̃t (xt)−
T∑

t=1

f̃t (vt) ≤
1

η
(VT + α) +D

√
TDT + ρ, (49)

where α , 2(a+ c) and ρ , 4(a+ c).

Next, we consider the switching cost of the decisions, i.e.,
∑T

t=2 ‖xt−1 − xt‖2. By the update rule of OFW, we can derive
an upper bound for the switching cost,

T∑

t=1

‖xt − xt−1‖2 = η

T∑

t=1

∥∥x′
t−1 − xt−1

∥∥
2
≤ ηTD. (50)

Combining eqs. (49) and (50), and given the definition of path length CT ,
∑T

t=2 ‖vt − vt−1‖2, we have

RegretDT ≤ ηλTD +
1

η
(VT + α) +D

√
TDT + λCT + ρ. (51)

Substituting η =
√
(1 + VT )/T into the above equation, we directly obtain

RegretDT ≤ O
(√

T (1 + VT ) +
√
TDT + CT

)

≤ O
(√

T (1 + VT +DT ) + CT

)

≤ O
(√

T (1 + VT +DT ) + C2
T

)

≤ O
(√

T (1 + VT +DT ) + TCT

)

= O
(√

T (1 + VT +DT + CT )
)
,

(52)

where the second and third inequalities hold due to the Cauchy-Schwarz inequality, and the fourth inequality holds due to
Assumption 1, i.e., 0 ≤ CT =

∑T
t=2 ‖vt − vt−1‖2 ≤ TD.

C. Dynamic Regret Analysis of Meta-OFW

C.1. Preliminaries: Online Mirror Descent

We present useful results of Online Mirror Descent (OMD), which enables the dynamic regret analysis for meta-algorithm,
i.e.,Hedge. Consider the standard OCO setting, and the sequence of online convex functions are {ht}t=1,...,T with ht :
X 7→ R. OMD starts from any x1 ∈ X , and at iteration t, the OMD algorithm performs the following update

xt+1 = argmin
x∈X

η 〈∇ht (xt) ,x〉+Dψ (x,xt) , (53)

where η > 0 is the step size. The regularizer ψ : X 7→ R is a differentiable convex function defined on X and is assumed
(without loss of generality) to be 1-strongly convex w.r.t. some norm ‖·‖ over X . The induced Bregman divergence Dψ is
defined by Dψ(x,y) = ψ(x) − ψ(y) − 〈∇ψ(y),x − y〉.
The following generic result gives an upper bound of dynamic regret with switching cost of OMD, which can be regarded
as a generalization of OGD from gradient descent (for Euclidean norm) to mirror descent (for general primal-dual norm).

Theorem 6. (Dynamic Regret Bound of OMD with Switching Cost (Zhao et al., 2022, Theorem 9); (Zhao et al., 2020,

Theorem 2)) Provided that Dψ(x, z) − Dψ(y, z) ≤ γ‖x− y‖ for any x,y, z ∈ X , OMD in eq. (53) achieves against any

sequence of comparators (v1, . . . ,vT ) ∈ X T that

T∑

t=1

ht (xt)−
T∑

t=1

ht (vt) + λ

T∑

t=2

‖xt − xt−1‖ ≤ 1

η

(
R2 + γCT

)
+ η

(
λG+G2

)
T, (54)

where R2 , sup
x,y∈X Dψ(x,y), G , sup∀t ‖∇ht(·)‖∗, and ‖·‖∗ is the dual norm, and λ is a positive constant term.
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Remark 6. Theorem 6 provides a way to analysis the dynamic regret and switching cost of OMD algorithm. By flexibly

choosing the regularizer ψ and comparator sequence v1, . . . ,vT , we can obtain the following two corollary (Zhao et al.,

2022), which correspond to dynamic regret with switching cost of OGD (Corollary 1) and static regret with switching cost

of Hedge (meta-regret) (Corollary 2), respectively.

Corollary 1. Setting the ℓ2 regularizer ψ(x) = 1
2‖x‖22 and step size η > 0 for OMD, suppose

∥∥∥∇f̃t(x)
∥∥∥
2
≤ G and

‖x− y‖2 ≤ D hold for all x,y ∈ X and t ∈ {1, . . . , T }, then we have

T∑

t=1

f̃t (xt)−
T∑

t=1

f̃t (vt) + λ

T∑

t=2

‖xt − xt−1‖2 ≤ 1

2η

(
D2 + 2DCT

)
+ η

(
G2 + λG

)
T, (55)

which holds for any comparator sequence v1, . . . ,vT ∈ X , and CT =
∑T
t=2 ‖vt−1 − vt‖2 is the path-length that mea-

sures the cumulative movements of the comparator sequence.

Further, we present a corollary regarding the static regret with switching cost for the meta-algorithm, which is essentially
a specialization of OMD algorithm by setting the negative-entropy regularizer.

Corollary 2. Setting the negative-entropy regularizer ψ(p) =
∑N
i=1 pi log pi and learning rate ε > 0 for OMD, suppose

‖ℓt‖∞ ≤ G holds for any t ∈ {1, . . . , T } and the algorithm starts from the initial weight p1 ∈ ∆N , then we have

T∑

t=1

〈pt, ℓt〉 −
T∑

t=1

ℓt,i + λ

T∑

t=2

‖pt − pt−1‖1 ≤ ln (1/p1,i)

ε
+ ε

(
λG+G2

)
T. (56)

Before presenting the proof of Theorem 6, we first present three useful lemmas.
Lemma 2. (Chen & Teboulle, 1993, Lemma 3.2) Let X be a convex set in a Banach space B. Let f : X 7→ R be a closed

proper convex function on X . Given a convex regularizer ψ : X 7→ R, we denote its induced Bregman divergence by

Dψ(·, ·). Then, any update of the form

xk = arg min
x∈X

{f(x) +Dψ (x,xk−1)} (57)

satisfies the following inequality for any u ∈ X ,

f (xk)− f(u) ≤ Dψ (u,xk−1)−Dψ (u,xk)−Dψ (xk,xk−1) . (58)

Lemma 3. ((Duchi et al., 2010, Lemma 1);(Vishnoi, 2021)) If the regularizer ψ : X 7→ R is λ-strongly convex with respect

to a norm ‖·‖, then we have the following lower bound for the induced Bregman divergence: Dψ(x,y) ≥ λ
2 ‖x− y‖2.

Lemma 4. (Switching Cost of OMD (Zhao et al., 2022, Lemma 10)) For OMD in eq. (53), the instantaneous switching cost

is at most

‖xt − xt+1‖ ≤ η ‖∇ht (xt)‖∗ . (59)

Remark 7. There is an earlier result in (Zhao et al., 2020, Lemma 3) that establishes ‖xt − xt+1‖ ≤ 2η ‖∇ht (xt)‖∗ for

the switching cost of OMD, instead of the inequality in eq. (59) where the multiplicative factor 2 is instead absent.

Based on Lemma 4, we can now prove Theorem 6.

Proof of Theorem 6. The following proof is given in (Zhao et al., 2022, Theorem 9). The dynamic regret of OMD with
switching cost can be bounded by following (Zhao et al., 2020, Theorem 2). The differences of (Zhao et al., 2022, The-
orem 9) and (Zhao et al., 2020, Theorem 2) are that: i) (Zhao et al., 2020, Theorem 2) bound the switching cost by
‖xt − xt+1‖ ≤ 2η ‖∇ht (xt)‖∗, instead of Lemma 4 where the multiplicative factor 2 is absent; ii) (Zhao et al., 2020,
Theorem 2) derives a tighter bound on term (b) in eqs. (60) and (62) using Lemma 3.

Notice that the dynamic regret can be decomposed in the following way:

T∑

t=1

ht (xt)−
T∑

t=1

ht (vt) ≤
T∑

t=1

〈∇ht (xt) ,xt − vt〉

=
T∑

t=1

〈∇ht (xt) ,xt − xt+1〉
︸ ︷︷ ︸

term (a)

+
T∑

t=1

〈∇ht (xt) ,xt+1 − vt〉
︸ ︷︷ ︸

term (b)

.
(60)
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From Hölder’s inequality and Lemma 4, we can bound term (a) as

term (a) ≤
T∑

t=1

‖∇ht (xt)‖∗ ‖xt − xt+1‖ ≤ η

T∑

t=1

‖∇ht (xt)‖2∗ . (61)

For term (b), we have

term (b) ≤ 1

η

T∑

t=1

(Dψ (vt,xt)−Dψ (vt,xt+1)−Dψ (xt+1,xt))

≤ 1

η

T∑

t=2

(Dψ (vt,xt)−Dψ (vt−1,xt)) +
1

η
Dψ (v1,x1)

≤ γ

η

T∑

t=2

‖vt − vt−1‖+
1

η
R2,

(62)

where the first inequality holds by Lemma 2, the second inequality holds by the non-negativity of the Bregman divergence,
and the last inequality holds due to Dψ(x, z)−Dψ(y, z) ≤ γ‖x− y‖ for any x,y, z ∈ X .

By Lemma 3, the switching cost is bounded as

T∑

t=2

‖xt − xt−1‖ ≤ η

T∑

t=2

‖∇ht−1 (xt−1)‖∗ . (63)

Combining eqs. (61) to (63), we obtain

T∑

t=1

ht (xt)−
T∑

t=1

ht (vt) + λ

T∑

t=2

‖xt − xt−1‖ ≤1

η

(
R2 + γCT

)
+ η

T∑

t=1

(
λ ‖∇ht (xt)‖∗ + ‖∇ht−1 (xt−1)‖2∗

)

≤1

η

(
R2 + γCT

)
+ η

(
λG+G2

)
T.

(64)

C.2. Proof of Theorem 2

Proof. According to (Anava et al., 2015, Proof of Theorem 3.1), the coordinate-Lipschitz continuity of ft (Assumption 4)
implies that

∣∣∣ft (xt−m, . . . ,xt)− f̃t (xt)
∣∣∣ ≤ L

m∑

i=1

‖xt − xt−i‖2

≤ L

m∑

i=1

i∑

l=1

‖xt−l+1 − xt−l‖2

≤ mL

m∑

i=1

‖xt−i+1 − xt−i‖2 .

(65)

Taking the summation from t = 1 to T gives
∣∣∣∣∣

T∑

t=1

ft (xt−m, . . . ,xt)−
T∑

t=1

f̃t (xt)

∣∣∣∣∣ ≤ mL

T∑

t=1

m∑

i=1

‖xt−i+1 − xt−i‖2 ≤ m2L

T∑

t=1

‖xt − xt−1‖2 , (66)

and the dynamic regret can be thus upper bounded by

RegretDT =

T∑

t=1

ft (xt−m, . . . ,xt)−
T∑

t=1

ft (vt−m, . . . ,vt)

≤
T∑

t=1

f̃t (xt)−
T∑

t=1

f̃t (vt)

︸ ︷︷ ︸
dynamic regret over unary loss

+λ

T∑

t=1

‖xt − xt−1‖2
︸ ︷︷ ︸
switching cost of decisions

+ λ

T∑

t=1

‖vt − vt−1‖2
︸ ︷︷ ︸

switching cost of comparators

,
(67)
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where xτ and vτ can be set as 0 for all τ ≤ 0, and λ , m2L.

By Lemma 5, we aim to bound the meta-regret and base-regret terms.

Meta-regret bound. Denote by ei the i-th standard basis of RN -space. Since the meta-algorithm performs Hedge over
the switching-cost-regularized loss ℓt ∈ R

N , Corollary 2 implies that for any i ∈ {1, . . . , N},

T∑

t=1

〈pt, ℓt〉 −
T∑

t=1

ℓt,i + λD

T∑

t=2

‖pt − pt−1‖1 ≤ ε
(
λDGmeta +G2

meta

)
T +

Dψ (ei,p1)

ε

= ε(2λ+G)(λ+G)D2T +
ln (1/p1,i)

ε

≤ ε(2λ+G)(λ+G)D2T +
2 ln(i + 1)

ε
.

(68)

where the first inequality holds due toGmeta = maxt∈{1,...,T} ‖ℓt‖∞ ≤ (λ+G)D, and the last inequality holds by plugging
in the initialization of weights i.e., p1 ∈ ∆N with p1,i = 1

i(i+1) · N+1
N for any i ∈ {1, . . . , N}. By choosing the optimal

learning rate ε = ε∗ =
√

2
(2λ+G)(λ+G)D2T , we can obtain the following upper bound for the meta-regret,

T∑

t=1

〈pt, ℓt〉 −
T∑

t=1

ℓt,i + λD

T∑

t=2

‖pt − pt−1‖1 ≤ D
√
2(2λ+G)(λ+G)T (1 + ln(i + 1)). (69)

Base-regret bound. As specified by Meta-OFW, there are multiple base-learners, each performing OFW over the linearized
loss with a particular step size ηi ∈ H for base-learner Bi. As a result, eqs. (49) and (50) and the definition of D̄T imply
that the base-regret satisfies

T∑

t=1

gt (xt,i)−
T∑

t=1

gt (vt) + λ

T∑

t=2

‖xt,i − xt−1,i‖2 ≤ ηiλTD +
1

ηi
(VT + α) +D

√
T D̄T + ρ, (70)

which holds for any comparator sequence v1, . . . ,vT ∈ X as well as any base-learner i ∈ {1, . . . , N}.

Dynamic regret bound. Due to the boundedness of the loss variation VT , we know that the optimal step size η∗ provably
lies in the range of [η1, ηN ]. In particular, given eq. (70), the optimal step size η∗ is

√
α

λTD
≤ η∗ =

√
VT + α

λTD
≤
√
Tc+ α

λTD
. (71)

Furthermore, by the construction of the step size pool in eq. (12), there exists an index i∗ ∈ {1, . . . , N}, such that
ηi∗ ≤ η∗ ≤ ηi∗+1 = 2ηi∗ , with

i∗ ≤
⌈
1

2
log2

(
1 +

VT
α

)⌉
+ 1. (72)

Notice that the meta-base decomposition in Lemma 5 holds for any index of base-learners i. Thus, in particular, we can
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choose the index i∗ and achieve the following result by using the meta-regret and base-regret bounds in eqs. (69) and (70),

T∑

t=1

f̃t (xt)−
T∑

t=1

f̃t (vt) + λ
T∑

t=2

‖xt − xt−1‖2

≤
T∑

t=1

(〈pt, ℓt〉 − ℓt,i∗) + λD

T∑

t=2

‖pt − pt−1‖1
︸ ︷︷ ︸

meta-regret

+

T∑

t=1

(gt (xt,i∗)− gt (vt)) + λ

T∑

t=2

‖xt,i∗ − xt−1,i∗‖2
︸ ︷︷ ︸

base-regret

≤D
√
2(2λ+G)(λ +G)T (1 + ln (i∗ + 1)) +

(
ηi∗λTD +

1

ηi∗
(VT + α) +D

√
T D̄T + ρ

)

≤D
√
2(2λ+G)(λ +G)T (1 + ln (i∗ + 1)) + η∗λTD +

2

η∗
(VT + α) +D

√
T D̄T + ρ

≤ 2D(λ+G)
√
T

(
1 + ln

(⌈
1

2
log2

(
1 +

VT
α

)⌉
+ 2

))

︸ ︷︷ ︸
≤O(

√
T (1+log log VT ))

+ 3
√
λTD (VT + α) +D

√
T D̄T︸ ︷︷ ︸

≤O
(

√

T(1+VT +D̄T )
)

+ρ

≤O
(√

T
(
1 + VT + D̄T

))
.

(73)

Combining eq. (9) and eq. (73) gives

RegretDT ≤
T∑

t=1

f̃t (xt)−
T∑

t=1

f̃t (vt) + λ
T∑

t=2

‖xt − xt−1‖2 + λ
T∑

t=2

‖vt − vt−1‖2

≤O
(√

T
(
1 + VT + D̄T

))
+O (CT )

≤O
(√

T
(
1 + VT + D̄T

)
+ C2

T

)

≤O
(√

T
(
1 + VT + D̄T

)
+ TCT

)

=O
(√

T
(
1 + VT + D̄T + CT

))
,

(74)

where the third inequality holds due to Cauchy-Schwartz inequality, and the fourth inequality holds due to Assumption 1,
i.e., 0 ≤ CT =

∑T
t=2 ‖vt − vt−1‖2 ≤ TD.

C.3. Decomposition of Unary Cost and Switching Cost (Zhao et al., 2022)

Lemma 5 (Decomposition of Unary Cost and Switching Cost (Zhao et al., 2022)). The unary and switching costs in eq. (9)
can be decomposed as follows:

T∑

t=1

f̃t (xt)−
T∑

t=1

f̃t (vt) + λ

T∑

t=2

‖xt − xt−1‖2 ≤
T∑

t=1

(〈pt, ℓt〉 − ℓt,i) + λD

T∑

t=2

‖pt − pt−1‖1
︸ ︷︷ ︸

meta-regret

+
T∑

t=1

(gt (xt,i)− gt (vt)) + λ
T∑

t=2

‖xt,i − xt−1,i‖2
︸ ︷︷ ︸

base-regret

,

(75)

which holds for any i ∈ {1, . . . , N}.

Proof. By the meta-base structure, the final decision of each round is xt =
∑N

i=1 pt,ixt,i. Therefore, we can expand the
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switching cost of the final prediction sequence as

‖xt − xt−1‖2 =

∥∥∥∥∥

N∑

i=1

pt,ixt,i −
N∑

i=1

pt−1,ixt−1,i

∥∥∥∥∥
2

≤
∥∥∥∥∥

N∑

i=1

pt,ixt,i −
N∑

i=1

pt,ixt−1,i

∥∥∥∥∥
2

+

∥∥∥∥∥

N∑

i=1

pt,ixt−1,i −
N∑

i=1

pt−1,ixt−1,i

∥∥∥∥∥
2

≤
N∑

i=1

pt,i ‖xt,i − xt−1,i‖2 +D
N∑

i=1

|pt,i − pt−1,i|

=

N∑

i=1

pt,i ‖xt,i − xt−1,i‖2 +D ‖pt − pt−1‖1 ,

(76)

where the first inequality holds due to the triangle inequality and the second inequality is true owing to the boundedness of
the feasible domain (Assumption 1).

By eq. (76) and convexity of f̃t(·), we have

T∑

t=1

f̃t (xt)−
T∑

t=1

f̃t (vt) + λ
T∑

t=2

‖xt − xt−1‖2

≤
T∑

t=1

〈
∇f̃t (xt) ,xt − vt

〉
+ λD

T∑

t=2

‖pt − pt−1‖1 + λ

T∑

t=2

N∑

i=1

pt,i ‖xt,i − xt−1,i‖2 .
(77)

Next, we manipulate eq. (77) using the definition of linearized loss gt(x) =
〈
∇f̃t (xt) ,x

〉
,

T∑

t=1

f̃t (xt)−
T∑

t=1

f̃t (vt) + λ

T∑

t=2

‖xt − xt−1‖2

≤
T∑

t=1

N∑

i=1

pt,i

(〈
∇f̃t (xt) ,xt,i

〉
+ λ ‖xt,i − xt−1,i‖2

)
−

T∑

t=1

(〈
∇f̃t (xt) ,xt,i

〉
+ λ ‖xt,i − xt−1,i‖2

)

+ λD

T∑

t=2

‖pt − pt−1‖1 +
T∑

t=1

(〈
∇f̃t (xt) ,xt,i

〉
−
〈
∇f̃t (xt) ,vt

〉)
+ λ

T∑

t=2

‖xt,i − xt−1,i‖2

=

T∑

t=1

(〈pt, ℓt〉 − ℓt,i) + λD

T∑

t=2

‖pt − pt−1‖1
︸ ︷︷ ︸

meta-regret

+

T∑

t=1

(gt (xt,i)− gt (vt)) + λ

T∑

t=2

‖xt,i − xt−1,i‖2
︸ ︷︷ ︸

base-regret

.

(78)

C.4. Proof of Corollary 2 (Zhao et al., 2022)

Proof. From the proof of Theorem 6, we can obtain that

T∑

t=1

〈pt, ℓt〉 −
T∑

t=1

ℓt,i + λ

T∑

t=2

‖pt − pt−1‖1 ≤ Dψ (ei,p1)

ε
+ ε

(
λG+G2

)
T, (79)

where ei the i-th standard basis of R
N -space. When choosing the negative-entropy regularizer, the induced Breg-

man divergence becomes Kullback-Leibler divergence, i.e., Dψ(q,p) = KL(q,p) =
∑N
i=1 qi ln (qi/pi). Therefore,

Dψ (ei,p1) = ln (1/p1,i), which implies the desired result.

D. Dynamic Regret Analysis of Non-Stochastic Control

D.1. Definition of Strongly Stable Controller

Definition 5. A linear policy K is (κ, γ)-strongly stable if there exist matrices L and Q satisfying A − BK = QLQ−1,

such that following two conditions are satisfied:
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1. The spectral norm of L is strictly smaller than one, i.e., ‖L‖op≤ 1− γ;

2. The controller and the transforming matrices are bounded, ‖K‖op, ‖Q‖op, and ‖Q‖−1
op ≤ κ.

D.2. Proof of Theorem 3

Proof. We decompose the dynamic regret as follows,

T∑

t=0

ct (xt, ut)−
T∑

t=0

ct (x
∗
t , u

∗
t )

=

T∑

t=0

ct (xt (M0:t−1) , ut (M0:t))−
T∑

t=0

ct (x
∗
t (0) , u

∗
t (0))

=

T∑

t=0

ct (xt (M0:t−1) , ut (M0:t))−
T∑

t=0

ft (Mt−1−H:t)

︸ ︷︷ ︸
term (a)

+

T∑

t=0

ft (Mt−1−H:t)−
T∑

t=0

ft
(
M∗
t−1−H:t

)

︸ ︷︷ ︸
term (b)

+

T∑

t=0

ft
(
M∗
t−1−H:t

)
−

T∑

t=0

ct
(
xt
(
M∗

0:t−1

)
, ut (M

∗
0:t)
)

︸ ︷︷ ︸
term (c)

+

T∑

t=0

ct
(
xt
(
M∗

0:t−1

)
, ut (M

∗
0:t)
)
−

T∑

t=0

ct (x
∗
t (0) , u

∗
t (0))

︸ ︷︷ ︸
term (d)

,

(80)
where term (a) and term (c) are the approximation errors induced by truncation of loss function, term (b) is the dynamic
regret over the truncated loss functions {ft}t=0,...,T , and term (d) is the approximation error of DAC controller.

By Theorem 8, term (a) and term (c) are bounded by

term (a) + term (c) ≤ 4TGcD
2κ3(1− γ)H+1. (81)

Then by Proposition 2, we can bound term (d) as

term (d) ≤ 4TGcDWHκ2Bκ
6(1− γ)H−1

γ
. (82)

Next, we focus on the term (b). Similar to eq. (9), we decompose term (b) as follows,

term (b) =
T∑

t=0

ft (Mt−1−H:t)−
T∑

t=0

ft
(
M∗
t−1−H:t

)

≤
T∑

t=0

f̃t (Mt)−
T∑

t=0

f̃t (M
∗
t ) + ζ

T∑

t=1

‖Mt−1 −Mt‖F + ζ

T∑

t=1

∥∥M∗
t−1 −M∗

t

∥∥
F

≤
T∑

t=0

〈
∇M f̃t (Mt) ,Mt −M∗

t

〉
+ ζ

T∑

t=1

‖Mt−1 −Mt‖F + ζ
T∑

t=1

∥∥M∗
t−1 −M∗

t

∥∥
F

=

T∑

t=0

gt (Mt)−
T∑

t=0

gt (M
∗
t ) + ζ

T∑

t=1

‖Mt−1 −Mt‖F
︸ ︷︷ ︸

Dynamic Regret with Switching Cost over {gt}t=0,...,T

+ ζ

T∑

t=1

∥∥M∗
t−1 −M∗

t

∥∥
F

︸ ︷︷ ︸
Path Length of Comparators

,

(83)

where ζ = (H + 2)2Lf and gt(M) =
〈
∇M f̃t (Mt) ,M

〉
is the surrogate linearized loss.

We now aim to analyze the dynamic regret with switching cost in eq. (83), which can be decomposed into meta-regret and
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base-regret similar to Lemma 5:

T∑

t=0

gt (Mt)−
T∑

t=0

gt (M
∗
t ) + ζ

T∑

t=1

‖Mt−1 −Mt‖F

=

T∑

t=0

〈pt, ℓt〉 −
T∑

t=0

ℓt,i + ζDf

T∑

t=1

‖pt−1 − pt‖1
︸ ︷︷ ︸

meta-regret

+

(
T∑

t=0

gt (Mt,i)−
T∑

t=0

gt (M
∗
t )

)
+ ζ

T∑

t=1

‖Mt−1,i −Mt,i‖F
︸ ︷︷ ︸

base-regret

,
(84)

where ℓt ∈ ∆N is the surrogate loss vector of the meta-algorithm with ℓt,i = ζ ‖Mt−1,i −Mt,i‖F + gt (Mt,i) , for i ∈
{1, . . . , N}. Note that the regret decomposition holds for any base-learner Bi.
Meta-regret bound. By Corollary 2, we obtain

meta-regret ≤ ε (2ζ +Gf ) (ζf +Gf )D
2
f (T + 1) +

ln (1/p1,i)

ε

= Df

√
2 (2ζ +Gf ) (ζ +Gf ) (T + 1)(1 + ln(1 + i)),

(85)

where the equality holds by choosing the optimal learning rate ε = ε∗ =
√

2
D2

f
(2ζ+Gf )(ζ+Gf )(T+1)

.

Base-regret bound. By Theorem 7 and the definition of D̄T , we have

base-regret ≤ ηiζTDf +
1

ηi
(VT + σ) +Df

√
(T + 1)DT + θ

≤ ηiζTDf +
1

ηi
(VT + σ) +Df

√
(T + 1)D̄T + θ,

(86)

where VT ,
∑T
t=0 supM∈M |ft(M)− ft−1(M)|, DT ,

∑T
t=0 ‖∇Mft (Mt)−∇Mft−1 (Mt−1)‖2F, σ , 4βD2, and

θ , 8βD2.

Overall regret bound. Due to the boundedness of the loss variation VT , the optimal step size η∗ provably lies in the range
of [η1, ηN ]. In particular, the optimal step size η∗ is

√
σ

ζTDf
≤ η∗ =

√
VT + σ

ζTDf
≤
√

2βD2T + φ

ζTDf
, (87)

where φ = σ + 2βD2.

Furthermore, by the construction of the step size pool in eq. (12), there exists an index i∗ ∈ {1, . . . , N}, such that
ηi∗ ≤ η∗ ≤ ηi∗+1 = 2ηi∗ , with

i∗ ≤
⌈
1

2
log2

(
1 +

VT
σ

)⌉
+ 1. (88)

Since the meta-base decomposition in eq. (84) holds for any index i, we can choose the index i∗ and achieve the following
result by using the meta-regret and base-regret bounds in eqs. (85) and (86),

T∑

t=0

gt (Mt)−
T∑

t=0

gt (M
∗
t ) + ζ

T∑

t=1

‖Mt−1 −Mt‖F

≤Df

√
2 (2ζ +Gf ) (ζ +Gf ) (T + 1)(1 + ln(i∗ + 1)) +

(
ηi∗TDf +

1

ηi∗
(VT + σ) +Df

√
(T + 1)D̄T + θ

)

≤Df

√
2 (2ζ +Gf ) (ζ +Gf ) (T + 1)(1 + ln(i∗ + 1)) + η∗TDf +

2

η∗
(VT + σ) +Df

√
(T + 1)D̄T + θ

≤Df

√
2 (2ζ +Gf ) (ζ +Gf ) (T + 1)(1 + ln(i∗ + 1))

(
1 + ln

(⌈
1

2
log2

(
1 +

VT
σ

)⌉
+ 2

))

+ 3
√
T (VT + k3) +Df

√
(T + 1)D̄T + θ.

(89)
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Algorithm 4 OFW for Non-Stochastic Control.

Input: Time horizon T ; step size η.
Output: Prediction Mt at each time step t = 1, . . . , T .

1: Initialize M0 ∈ M;
2: for each time step t = 1, . . . , T do

3: Obtain gradient ∇Mft(Mt);
4: Compute M ′

t = argminM∈M 〈∇Mft(Mt),M〉F;
5: Update Mt+1 = (1− η)Mt + ηM ′

t ;
6: end for

Combining eqs. (81) to (83) and (89), and CT ,
∑T
t=2

∥∥M∗
t−1 −M∗

t

∥∥
F

gives

T∑

t=0

ct (xt, ut)−
T∑

t=0

ct (x
∗
t , u

∗
t )

≤4TGcD
2κ3(1− γ)H+1 +

4TGcDWHκ2Bκ
6(1− γ)H−1

γ

+Df

√
2 (2ζ +Gf ) (ζ +Gf ) (T + 1)(1 + ln(i∗ + 1))

(
1 + ln

(⌈
1

2
log2

(
1 +

VT
σ

)⌉
+ 2

))

+ 3
√
T (VT + k3) +Df

√
(T + 1)D̄T + θ + ζCT .

(90)

Finally, by setting H = O(log T ), the final dynamic policy regret is bounded by Õ
(√

T
(
1 + VT + D̄T + CT

))
.

D.3. Dynamic Regret Analysis of OFW over M-space

In Theorem 1, we have analyzed the dynamic regret of Meta-OFW over the Euclidean space. To utilize Meta-OFW for
non-stochastic control, we need to generalized the result to M-space, i.e.,, generalize the previous results from Euclidean
norm to Frobenius norm over M-space. To this end, we first present the dynamic regret analysis of OFW over M-space.

Theorem 7. Suppose the function f̃ : M 7→ R is convex, with bounded the gradient norm Gf , i.e.,
∥∥∥∇M f̃t(M)

∥∥∥
F
≤ Gf

for any M ∈ M and t ∈ {1, . . . , T }, and bounded Euclidean diameter of M-spaceDf , i.e., supM,M ′∈M ‖M −M ′‖F ≤
Df . Then for any comparator sequence M1, . . . ,MT ∈ M, Algorithm 4 satisfies that

T∑

t=1

f̃t (Mt)−
T∑

t=1

f̃t (M
∗
t ) + ζ

T∑

t=2

‖Mt−1 −Mt‖F ≤ ηT ζDf +
1

η
(VT + σ) +Df

√
TDT + θ, (91)

where VT ,
∑T

t=1 supM∈M |ft(M)− ft−1(M)|, and DT ,
∑T

t=1 ‖∇Mft (Mt)−∇Mft−1 (Mt−1)‖2F, σ , 4βD2,

and θ , 8βD2.

Proof. Consider the term
∑T

t=1 f̃t (Mt) −
∑T

t=1 f̃t (M
∗
t ). The bound can be developed similar to Theorem 1, replacing

vector inner product 〈·, ·〉 by matrix inner product 〈·, ·〉F and replacing vector norm ‖·, ·‖2 by Frobenius norm ‖·, ·‖F. Then
from eq. (30), we directly obtain

T∑

t=1

f̃t (Mt)−
T∑

t=1

f̃t (M
∗
t ) ≤

1

η
(VT + σ) +Df

√
TDT + θ. (92)

On the other hand, the switching cost can be bounded by

T∑

t=2

‖Mt −Mt−1‖F = η

T∑

t=2

∥∥M ′
t−1 −Mt−1

∥∥
F
≤ η(T − 1)Df ≤ ηTDf . (93)

We complete the proof by combining the above equations.
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D.4. State Transition under DAC Controller

Proposition 1 (State Transition under DAC Controller). Suppose the initial state is x0 = 0, and one chooses the DAC

controller π (Mt,Kt) at iteration t, the reaching state is

xt+1 = ÃKt:t−h
xt−h +

H+h∑

i=0

ΨKt,h
t,i (Mt−h:t)wt−i, (94)

where ΨK,ht,i (Mt−h:t) is the transfer matrix defined as

ΨKt,h
t,i (Mt−h:t) = ÃKt:t−i+11i≤h +

h∑

j=0

ÃKt:t−j+1Bt−jM
[i−j−1]
t−j 11≤i−j≤H , (95)

where ÃKt:t−i
,
∏t−i
τ=t (Aτ −BτKτ ), and we define ÃKt:t−i

, I if i < 0. The evolving equation holds for any

h ∈ {0, . . . , t}.

Proof. The proof follows the same step as in (Agarwal et al., 2019, Lemma 4.3). We aim to show

xt+1 = ÃKt:t−h
xt−h +

H+h∑

i=0

ΨKt,h
t,i (Mt−h:t)wt−i, (96)

where ΨK,ht,i (Mt−h:t) is the transfer matrix defined as

ΨKt,h
t,i (Mt−h:t) = ÃKt:t−i+11i≤h +

h∑

j=0

ÃKt:t−j+1Bt−jM
[i−j−1]
t−j 11≤i−j≤H . (97)

For any time t, we will prove the claim by induction. For h = 0, we have

xt+1 = ÃKt
xt +

H∑

i=1

BtM
[i−1]
t wt−i + wt

= ÃKt
xt +

H∑

i=0

ΨKt,0
t,i (Mt)wt−i.

(98)

Suppose that eq. (96) holds for some h ≥ 0, then for h+ 1 we have

xt+1 = ÃKt:t−h
xt−h +

H+h∑

i=0

ΨKt,h
t,i (Mt−h:t)wt−i

= ÃKt:t−h

(
ÃKt−h−1

xt−h−1 +

H∑

i=1

Bt−h−1M
[i−1]
t−h−1wt−h−1−i + wt−h−1

)
+

H+h∑

i=0

ΨKt,h
t,i (Mt−h:t)wt−i

= ÃKt:t−h−1
xt−h−1 +

H+h+1∑

i=0

(
ΨKt,h
t,i (Mt−h:t) + ÃKt:t−i+11i=h+1 + ÃKt:t−h

Bt−h−1M
[i−h−2]
t−h−1 11≤i−h−1≤H

)
wt−i

= ÃKt:t−h−1
xt−h−1 +

H+h+1∑

i=0

ΨKt,h+1
t,i (Mt−h−1:t)wt−i.

(99)
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D.5. Sufficiency of DAC Policy

Proposition 2 (Sufficiency of DAC Policy). Suppose the initial state is x0 = 0, for a sequence of (κ, γ) strongly stable time-

varying controllers K∗
0 , . . . ,K

∗
t , there exist a policy πt(Kt,M

∗
t ), with M

∗,[i]
t , (Kt −K∗

t )ÃK∗

t−1:t−i
, where ÃK∗

t:t−i
,

∏t−i
τ=t (Aτ −BτK

∗
τ ) and ÃK∗

t:t−i
, I if i < 0, such that

T∑

t=0

(ct (xt (M
∗
0:t) , ut (M

∗
0:t))− ct (x

∗
t (0) , u

∗
t (0))) ≤

4TGcDWHκ2Bκ
6(1− γ)H−1

γ
. (100)

Proof. The proof is analogous to (Agarwal et al., 2019, Lemma 5.2), but adjusts the definition of M∗
0:t to handle the time-

varying controllers.

By definition, the state propagated by the sequence of time-varying controller K∗
1 , . . . ,K

∗
t is

x∗t+1 (0) =

t∑

i=0

ÃK∗

t:t−i+1
wt−i. (101)

Consider the state transition matrix ΨKt,h
t,i

(
M∗
t−h:t

)
for any i ≤ H and H ≤ h. With eq. (97), we have

ΨKt,h
t,i

(
M∗
t−h:t

)
= ÃKt:t−i+1 +

i∑

j=1

ÃKt:t−i+j+1Bt−i+j
(
Kt−i+j −K∗

t−i+j
)
Ã∗
Kt−i+j−1:t−i+1

= ÃKt:t−i+1 +

i∑

j=1

ÃKt:t−i+j+1

(
ÃK∗

t−i+j
− ÃKt−i+j

)
Ã∗
Kt−i+j−1:t−i+1

= ÃKt:t−i+1 +

i∑

j=1

(
ÃKt:t−i+j+1ÃK∗

t−i+j:t−i+1
− ÃKt:t−i+j

Ã∗
Kt−i+j−1:t−i+1

)

= ÃK∗

t:t−i+1
,

(102)

where the last equality holds by telescoping the summation. Therefore, by setting h = t in eq. (94), we have

xt+1 (M
∗
0:t) =

H∑

i=0

ÃK∗

t:t−i+1
wt−i +

t∑

i=H+1

ΨKt,t
t,i (M∗

0:t)wt−i. (103)

Combine eqs. (101) and (103), we get

∥∥x∗t+1 (0)− xt+1 (M
∗
0:t)
∥∥
2
≤W

(
t∑

i=H+1

∥∥∥ΨKt,t
t,i (M∗

0:t)
∥∥∥
op

+

t∑

i=H+1

∥∥∥ÃK∗

t:t−i+1

∥∥∥
op

)

≤W

(
t∑

i=H+1

(
2κ2(1− γ)i +Hκ2Bκ

5(1− γ)i−1
)
)

≤W
(
2κ2(1− γ)H+1γ−1 +Hκ2Bκ

5(1− γ)Hγ−1
)

≤ κ2W (1− γ)H+1γ−1
(
2(1− γ) +Hκ2Bκ

3
)

≤ Hκ2Bκ
5W (1− γ)Hγ−1 (2(1− γ) + 1)

≤ 2Hκ2Bκ
5W (1− γ)Hγ−1,

(104)

where the second inequality holds due to Lemma 7.
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Similarly, we analyze the difference in control input,

∥∥u∗t+1 (0)− ut+1

(
M∗

0:t+1

)∥∥
2
=

∥∥∥∥∥−K
∗
t+1x

∗
t+1 −

(
−Kt+1xt+1(M

∗
0:t) +

H∑

i=1

M
∗,[i−1]
t+1 wt+1−i

)∥∥∥∥∥
2

=

∥∥∥∥∥−K
∗
t+1x

∗
t+1 +Kt+1xt+1(M

∗
0:t)−

H∑

i=1

(Kt+1 −K∗
t+1)ÃK∗

t:t−i+2
wt+1−i

∥∥∥∥∥
2

=

∥∥∥∥∥−K
∗
t+1

(
x∗t+1 −

H−1∑

i=0

ÃK∗

t:t−i+1
wt−i

)
+Kt+1

(
xt+1(M

∗
0:t)−

H−1∑

i=0

ÃK∗

t:t−i+1
wt−i

)∥∥∥∥∥
2

=

∥∥∥∥∥−K
∗
t+1

t∑

i=H

ÃK∗

t:t−i+1
wt−i +Kt+1

t∑

i=H

ΨKt,t
t,i (M∗

0:t)wt−i

∥∥∥∥∥
2

≤ 2Hκ2Bκ
6W (1− γ)Hγ−1.

(105)
Using eqs. (104) and (105), the Lipschitz assumption (Assumption 6), and the boundedness result (Lemma 8), we complete
the proof.

D.6. Approximation of Truncated Loss

Theorem 8 (Approximation of Truncated Loss: Theorem 5.3 of (Agarwal et al., 2019)). Define D ,
Wκ3(1+HκBτ)
γ(1−κ2(1−γ)H+1) +

Wτ
γ . For any (κ, γ) strongly stable linear controllerKt at iteration t, and any τ > 0 such that the sequence ofM0, . . . ,MT

satisfies

∥∥∥M [i]
t

∥∥∥
op

≤ τ(1 − γ)i, the approximation error between original loss and truncated loss is at most

∣∣∣∣∣

T∑

t=0

(ct (xt (M0:t−1) , ut (M0:t))− ft (Mt−1−H:t))

∣∣∣∣∣ ≤ 2TGcD
2κ3(1− γ)H+1. (106)

Proof. By the Lipschitz continuity and definition of the truncated loss, we get that

ct (xt (M0:t−1) , ut (M0:t))− ft (Mt−H−1:t)

=ct (xt (M0:t−1) , ut (M0:t))− ct (yt (Mt−H−1:t−1) , vt (Mt−H−1:t))

≤GcD (‖xt (M0:t−1)− yt (Mt−H−1:t−1)‖2 + ‖ut (M0:t)− vt (Mt−H−1:t)‖2)
≤GcD

(
κ2(1 − γ)H+1D + κ3(1− γ)H+1D

)

≤2GcD
2κ3(1 − γ)H+1,

(107)

where the first inequality uses the Lipschitz assumption Assumption 6 and the second inequality uses boundedness in
Lemma 8. The result in eq. (106) is obtained by summing over the iterations from t = 1 to T .

D.7. Supporting Lemmas

In this part, we provide supporting lemmas used in the analysis of online non-stochastic control. In particular,

• Lemma 6 presents the relationship between the ℓ1, op norm and Frobenius norm in the M-space.

• Lemma 7 shows the norm of transfer matrix in eq. (95) is upper bounded.

• Lemma 8 provides the boundedness of several variables of interest.

• Lemma 9 shows properties of the truncated functions {ft} and the feasible set M.

Lemma 6 (Norm Relations over M-space). For anyM =
(
M [0], . . . ,M [H−1]

)
∈ M ⊆

(
R
du×dx

)H
, its ℓ1, op norm and

Frobenius norm are defined by

‖M‖ℓ1,op,
H−1∑

i=0

∥∥∥M [i]
∥∥∥
op
, and ‖M‖F,

√√√√
H−1∑

i=0

∥∥M [i]
∥∥2
F
. (108)
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We then have the following inequalities on their relations:

‖M‖ℓ1,op≤
√
H‖M‖F, and ‖M‖F≤

√
d‖M‖ℓ1,op, (109)

where d = min {du, dx}.

Proof. For any matrix X ∈ R
m×n,

‖X‖op≤ ‖X‖F≤
√
min{m,n}‖X‖op. (110)

Therefore, by definition and Cauchy-Schwarz inequality, we obtain

‖M‖ℓ1,op=
H−1∑

i=0

∥∥∥M [i]
∥∥∥
op

≤
H−1∑

i=0

∥∥∥M [i]
∥∥∥
F
≤

√
H‖M‖F. (111)

On the other hand, we have

‖M‖F=

√√√√
H−1∑

i=0

∥∥M [i]
∥∥2
F
≤

H−1∑

i=0

∥∥∥M [i]
∥∥∥
F
≤

H−1∑

i=0

√
d
∥∥∥M [i]

∥∥∥
op

=
√
d‖M‖ℓ1,op. (112)

Lemma 7 (Bounded Transfer Matrix). Suppose Kt is (κ, γ)-strongly stable at each iteration t. Suppose that for every

i ∈ {0, . . . , H − 1} and every t ∈ {1, . . . , T }, we have

∥∥∥M [i]
t

∥∥∥
op

≤ τ(1 − γ)i for some τ > 0. Then, the transfer matrix

is bounded as ∥∥∥ΨK,ht,i

∥∥∥
op

≤ κ2(1 − γ)i1i≤h +HκBκ
2τ(1 − γ)i−1. (113)

Proof. We follow the proof of (Agarwal et al., 2019, Lemma 5.4). By definition of the transfer matrix ΨK,ht,i in eq. (95),
we have

∥∥∥ΨK,ht,i

∥∥∥
op

=

∥∥∥∥∥∥
ÃKt:t−i+11i≤h +

h∑

j=0

ÃKt:t−j+1Bt−jM
[i−j−1]
t−j 11≤i−j≤H

∥∥∥∥∥∥
op

≤
∥∥∥ÃKt:t−i+1

∥∥∥
op

1i≤h +
h∑

j=0

∥∥∥ÃKt:t−j+1

∥∥∥
op

‖Bt−j‖op
∥∥∥M [i−j−1]

t−j

∥∥∥
op

11≤i−j≤H

≤ κ2(1 − γ)i1i≤h +
H−1∑

j=0

κ2(1 − γ)jκBτ(1 − γ)i−j−1

≤ κ2(1 − γ)i1i≤h + κ2κBτ

H∑

j=1

(1 − γ)i−1

= κ2(1 − γ)i1i≤h +Hκ2κBτ(1 − γ)i−1.

(114)

Lemma 8 (Bounded State and Control). SupposeKt andK∗
t are (κ, γ)-strongly stable linear controllers at each iteration

t ∈ {1, . . . , T }. Suppose that for every i ∈ {0, . . . , H − 1} and every t ∈ {1, . . . , T }, we have

∥∥∥M [i]
t

∥∥∥
op

≤ τ(1 − γ)i for

some τ > 0. Define D ,
W(κ3+HκBκ

3τ)
γ(1−κ2(1−γ)H+1) +

Wτ
γ . Then, we have

‖xt (M0:t−1)‖2 ≤ D, ‖yt (Mt−H−1:t−1)‖2 ≤ D,
∥∥∥xK

∗

t

∥∥∥
2
≤ D; (115)

‖ut (M0:t)‖2 ≤ D, ‖vt (Mt−H−1:t)‖2 ≤ D; (116)

‖xt (M0:t−1)− yt (Mt−1−H:t−1)‖2 ≤ κ2(1− γ)H+1D; (117)

‖ut (M0:t)− vt (Mt−1−H:t)‖2 ≤ κ3(1− γ)H+1D. (118)
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Proof. The proof is analogous to (Agarwal et al., 2019, Lemma 5.5). We first consider eq. (115):

‖xt (M0:t−1)‖2 =

∥∥∥∥∥ÃKt−1:t−H−1xt−H−1 (M0:t−H−2) +

2H∑

i=0

ΨKt,H
t−1,i (Mt−H−1:t−1)wt−i−1

∥∥∥∥∥
2

≤ κ2(1− γ)H+1 ‖xt−H−1 (M0:t−H−2)‖2 +W

2H∑

i=0

∥∥∥ΨKt,H
t−1,i (Mt−H−1:t−1)

∥∥∥
op

≤ κ2(1− γ)H+1 ‖xt−H−1 (M0:t−H−2)‖2 +W

2H∑

i=0

(
κ2(1 − γ)i +HκBκ

2τ(1− γ)i−1
)

≤ κ2(1− γ)H+1 ‖xt−H−1 (M0:t−H−2)‖2 +W
κ2 +HκBκ

2τ

γ

≤ W
(
κ2 +HκBκ

2τ
)

γ (1− κ2(1− γ)H+1)
≤ D,

(119)

where the fourth inequality is a summation of geometric series and the ratio of this series is κ2(1− γ)H+1.

Similarly, we have

‖yt (Mt−H−1:t−1)‖2 =

∥∥∥∥∥

2H∑

i=0

ΨKt,H
t−1,i (Mt−H−1:t−1)wt−i−1

∥∥∥∥∥
2

≤W

2H∑

i=0

∥∥∥ΨKt,H
t−1,i (Mt−H−1:t−1)

∥∥∥
op

≤W
2H∑

i=0

(
κ2(1 − γ)i +HκBκ

2τ(1 − γ)i−1
)

≤W
κ2 +HκBκ

2τ

γ

≤ W
(
κ2 +HκBκ

2τ
)

γ
≤ D,

(120)

and

‖x∗t ‖2 =

∥∥∥∥∥

t−1∑

i=0

ÃK∗

t−1:t−i
wt−i−1

∥∥∥∥∥
2

≤W

t−1∑

i=0

κ2(1− γ)i ≤ Wκ2

γ
≤ D. (121)

Next, we can show eq. (117) as follows,

‖xt (M0:t−1)− yt (Mt−H−1:t−1)‖2 =
∥∥∥ÃKt−1:t−H−1xt−H−1 (M0:t−H−2)

∥∥∥
2
≤ κ2(1− γ)H+1D. (122)

We now consider eqs. (116) and (118):

‖ut (M0:t)‖2 =

∥∥∥∥∥−Ktxt (M0:t−1) +

H∑

i=1

M
[i−1]
t wt−i

∥∥∥∥∥
2

≤ κ ‖xt (M0:t−1)‖2 +
H∑

i=1

Wτ(1 − γ)i−1

≤ W
(
κ3 +HκBκ

3τ
)

γ (1− κ2(1 − γ)H+1)
+
Wτ

γ
≤ D,

(123)

‖vt (Mt−H−1:t)‖2 ≤ κ ‖yt (Mt−H−1:t−1)‖2 +
H∑

i=1

Wτ(1 − γ)i−1 ≤ D, (124)
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and

‖ut (M0:t−1)− vt (Mt−H−1:t−1)‖2 = ‖−Kt (xt (M0:t−1)− yt (Mt−H−1:t−1))‖2 ≤ κ3(1 − γ)H+1D. (125)

Lemma 9. Define D ,
Wκ3(1+HκBτ)
γ(1−κ2(1−γ)H+1) +

Wτ
γ . The truncated loss ft : MH+2 7→ R is Lf -coordinate-wise Lipschitz

and has bounded gradient norm Gf . In addition, the radius of feasible set in M-space is bounded by Df . Formally,

1. The truncated loss function is Lf -coordinate-wise Lipschitz with respect to the Euclidean (i.e., Frobenius) norm, i.e.,

∣∣∣ft (Mt−H−1, . . . ,Mt−k, . . . ,Mt)− ft

(
Mt−H−1, . . . , M̃t−k, . . . ,Mt

)∣∣∣ ≤ Lf

∥∥∥Mt−k − M̃t−k
∥∥∥
F
, (126)

where Lf ≤ 3GcD
√
HκBκ

3(1 − γ)k−1W .

2. The gradient norm of surrogate loss f̃t : M 7→ R is bounded byGf , i.e.,
∥∥∥∇M f̃t(M)

∥∥∥
F
≤ Gf holds for anyM ∈ M

and any t ∈ {1, . . . , T }, where Gf ≤ 3HdxduGcWκBκ
3γ−1.

3. The diameter of the feasible set is at most Df , i.e., ‖M −M ′‖F ≤ Df holds for any M,M ′ ∈ M, where Df ≤
2
√
dκBκ

3γ−1 .

Proof. The proof follows the steps in (Agarwal et al., 2019, Lemma 5.6 and 5.7) and (Zhao et al., 2022, Lemma 20). We
first prove claim 1. To this end, we use the following notations:

Mt−H−1:t , {Mt−H−1 . . .Mt−k . . .Mt} ;
Mt−H−1:t−1 , {Mt−H−1 . . .Mt−k . . .Mt−1} ;
M̃t−H−1:t ,

{
Mt−H−1 . . . M̃t−k . . .Mt

}
;

M̃t−H−1:t−1 ,

{
Mt−H−1 . . . M̃t−k . . .Mt−1

}
;

yt , yt (Mt−H−1:t−1) ;

ỹt , yt

(
M̃t−H−1:t−1

)
;

vt , vt (Mt−H−1:t) ;

ṽt , vt

(
M̃t−H−1:t

)
.

(127)

By definition of ft, we have

ft (Mt−H−1:t)− ft

(
M̃t−H−1:t

)
= ct (yt, vt)− ct (ỹt, ṽt) ≤ GcD ‖yt − ỹt‖2 +GcD ‖vt − ṽt‖2 . (128)

Then consider ‖yt − ỹt‖ and ‖vt − ṽt‖:

∥∥yKt − ỹKt
∥∥
2
=

∥∥∥∥∥

2H∑

i=0

(
ΨKt,H
t−1,i (Mt−H−1:t−1)−ΨKt,H

t−1,i

(
M̃t−H−1:t−1

))
wt−1−i

∥∥∥∥∥
2

=

∥∥∥∥∥ÃKt−1:t−k+1
Bt−k

2H∑

i=0

(
M

[i−k]
t−k − M̃

[i−k]
t−k

)
10≤i−k≤H−1wt−1−i

∥∥∥∥∥
2

≤ κBκ
2(1− γ)k−1W

H∑

i=1

∥∥∥M [i−1]
t−k − M̃

[i−1]
t−k

∥∥∥
op

≤
√
HκBκ

2(1− γ)k−1W
∥∥∥Mt−k − M̃t−k

∥∥∥
F
,

(129)
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and we have

‖vt − ṽt‖2 =

∥∥∥∥∥−K (yt − ỹt) + 1{k=0}

H∑

i=1

(
M

[i−1]
t−k − M̃

[i−1]
t−k

)
wt−i

∥∥∥∥∥
2

≤
(√

HκBκ
3(1− γ)k−1W +

√
HW

)∥∥∥Mt−k − M̃t−k
∥∥∥
F

≤ 2
√
HκBκ

3(1− γ)k−1W
∥∥∥Mt−k − M̃t−k

∥∥∥
F
.

(130)

Combining the above equations, we obtain

ft (Mt−H−1:t)− ft

(
M̃t−H−1:t

)
≤ GcD

∥∥yKt − ỹKt
∥∥
2
+GcD

∥∥vKt − ṽKt
∥∥
2

≤ GcD
√
HκBκ

2(1 − γ)k−1W
∥∥∥Mt−k − M̃t−k

∥∥∥
F

+ 2GcDκBκ
3(1− γ)k−1W

∥∥∥Mt−k − M̃t−k
∥∥∥
F

≤ 3GcD
√
HκBκ

3(1− γ)k−1W
∥∥∥Mt−k − M̃t−k

∥∥∥
F
.

(131)

Therefore, we have Lf ≤ 3GcD
√
HκBκ

3(1− γ)k−1W .

Now consider claim 2. We need to bound ∇
M

[r]
p,q
f̃t(M) for every p ∈ {1, . . . , du}, q ∈ {1, . . . , dx}, and r ∈ {0, . . . , H −

1},
∣∣∣∇M

[r]
p,q
f̃t(M)

∣∣∣ ≤ Gc

∥∥∥∥∥
∂yt(M)

∂M
[r]
p,q

∥∥∥∥∥
F

+Gc

∥∥∥∥∥
∂vt(M)

∂M
[r]
p,q

∥∥∥∥∥
F

. (132)

Now we aim to bound the two terms of the right-hand side respectively:

∥∥∥∥∥
∂yt(M)

∂M
[r]
p,q

∥∥∥∥∥
F

≤

∥∥∥∥∥∥

2H∑

i=0

H∑

j=0

[
∂ÃKt:t−j+1Bt−jM

[i−j−1]

∂M
[r]
p,q

]
wt−1−i10≤i−j≤H−1

∥∥∥∥∥∥
F

≤WκBκ
2

∥∥∥∥∥
∂M [r]

∂M
[r]
p,q

∥∥∥∥∥
F

r+H+1∑

i=r+1

(1 − γ)i−r−1

≤ WκBκ
2

γ

∥∥∥∥∥
∂M [r]

∂M
[r]
p,q

∥∥∥∥∥
F

≤ WκBκ
2

γ
;

∥∥∥∥∥
∂vt(M)

∂M
[r]
p,q

∥∥∥∥∥
F

≤ κ

∥∥∥∥∥
∂yt(M)

∂M
[r]
p,q

∥∥∥∥∥
F

+

H∑

i=1

∥∥∥∥∥
∂M [i−1]

∂M
[r]
p,q

wt−i

∥∥∥∥∥
F

≤ WκBκ
3

γ
+W

∥∥∥∥∥
∂M [r]

∂M
[r]
p,q

∥∥∥∥∥
F

≤W

(
κBκ

3

γ
+ 1

)
.

(133)

Therefore, we have

∣∣∣∇M
[r]
p,q
f̃t(M)

∣∣∣ ≤ Gc
WκBκ

2

γ
+GcW

(
κBκ

3

γ
+ 1

)
≤ 3GcWκBκ

3γ−1. (134)

Thus,
∥∥∥∇M f̃t(M)

∥∥∥
F

is at most 3HdxduGcWκBκ
3γ−1.



Efficient Online Learning with Memory via Frank-Wolfe Optimization

Table 2. Comparison of the OGD (Zinkevich, 2003), Ader (Zhang et al., 2018), Scream (Zhao et al., 2022), and Meta-OFW algo-
rithms in terms of cumulative loss for 10000 time steps. The blue numbers correspond to the best performance and the red numbers
correspond to the worse.

Noise Distribution
Sinusoidal Weights (eq. (137)) Step Weights (eq. (138))

Meta-OFW Scream Ader OGD Meta-OFW Scream Ader OGD

Gaussian 15625 19725 21052 33574 9496 10704 11453 26790

Uniform 18299 93987 107096 30419 13395 39057 35313 39885
Gamma 16239 16138 18039 17484 9184 61989 75505 45398

Beta 21448 34146 30990 30253 15982 29301 30799 28859
Exponential 10621 254815 252227 28859 4366 227860 204844 53626

Weibull 14068 91474 94040 38549 5623 182887 993734 92341

Table 3. Comparison of the Scream (Zhao et al., 2022) and Meta-OFW algorithms in terms of computational time and cumulative loss
over 200 time steps for the case of Gaussian noise in eq. (136), sinusoidal weights in eq. (137), and across varying system dimensions
dx and du.

(dx, du)
Time (seconds) Cumulative Loss

Meta-OFW Scream Meta-OFW Scream

(2, 1) 52.49 17.64 915.52 1819.41
(4, 2) 135.04 177.47 1388.56 3231.89

(6, 3) 287.67 605.48 1235.83 2021.47
(8, 4) 504.82 1351.29 1421.05 1873.79
(10, 5) 786.87 2219.85 1202.43 1439.22
(12, 6) 998.22 3029.89 893.17 984.96
(14, 7) 2022.5 5531.36 797.80 958.09

Finally, we prove claim 3. By construction ofM [i], ∀i ∈ {0, . . . , H− 1}, we require ‖M [i]‖op≤ κBκ
3(1−γ)i. Therefore,

utilizing Lemma 6 we have

max
M1,M2∈M

‖M1 −M2‖F ≤
√
d max
M1,M2∈M

‖M1 −M2‖ℓ1,op

≤
√
d max
M1,M2∈M

(
‖M1‖ℓ1,op + ‖M2‖ℓ1,op

)

=
√
d max
M1,M2∈M

(
H−1∑

i=0

∥∥∥M [i]
1

∥∥∥
op

+
∥∥∥M [i]

2

∥∥∥
op

)

≤
√
d max
M1,M2∈M

(
2

H−1∑

i=0

κBκ
3(1− γ)i

)

= 2
√
dκBκ

3
H−1∑

i=0

(1− γ)i

≤ 2
√
dκBκ

3γ−1.

(135)

Hence, we finish the proof of all three claims in the statement.

E. Numerical Evaluations

We evaluate Meta-OFW (Algorithm 3) in simulated scenarios of online control of linear time-invariant systems.
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Compared Algorithms. We compare Meta-OFW with the OGD (Zinkevich, 2003), Ader (Zhang et al., 2018), and Scream

(Zhao et al., 2022) algorithms. All algorithms rely on the DAC policy (Agarwal et al., 2019).

Simulation Setup. We follow the setup as (Zhao et al., 2021) and consider linear systems of the form

xt+1 = Axt +But + wt

= Axt +But + (∆t,Axt +∆t,But + w̃t),
(136)

where w̃t and the elements of ∆t,A and ∆t,B are sampled from various distributions, specifically, Gaussian, Uniform,
Gamma, Beta, Exponential, and Weibull distributions. We use memory length H = 10. The loss function has the form
ct(xt, ut) = qtx

⊤
t xt + rtu

⊤
t ut, where qt ∈ R and rt ∈ R are time-varying weights. Particularly, we consider two cases:

1. Sinusoidal weights defined as
qt = sin(t/10π), rt = sin(t/20π). (137)

2. Step weights defined as

(qt, rt) =





(
log(2)

2 , 1
)
, t ≤ T/5,

(1, 1) , T/5 < t ≤ 2T/5,(
log(2)

2 , log(2)2

)
, 2T/5 < t ≤ 3T/5,(

1, log(2)2

)
, 3T/5 < t ≤ 4T/5,(

log(2)
2 , 1

)
, 4T/5 < t ≤ T.

(138)

Results. We first compare Meta-OFW with the OGD, Ader, and Scream algorithms in terms of cumulative loss. The
results are summarized in Table 2, showing that Meta-OFW achieved the lowest cumulative loss across all tested cases,
except under gamma distribution with sinusoidal weights; in the best-case —exponential distribution with step weights—
Meta-OFW is 52 times better than Scream.

We also vary the dimensions of the state xt and input the ut, and compare Meta-OFW and Scream in terms of cumulative
loss and computation time. The results are summarized in Table 3. As dx and du increase, Meta-OFW is computationally
three times faster than Scream, achieving also lower cumulative loss than Scream in all cases.


