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Abstract— In this paper, we analyze the infection spread-
ing dynamics of malware in a population of cyber nodes
(i.e., computers or devices). Unlike most prior studies where
nodes are reactive to infections, in our setting some nodes
are active defenders meaning that they are able to clean up
malware infections of their neighboring nodes, much like how
spreading malware exploits the network connectivity properties
in order to propagate. We formulate these dynamics as an
Active Susceptible-Infected-Susceptible (A-SIS) compartmental
model of contagion. We completely characterize the system’s
asymptotic behavior by establishing conditions for the global
asymptotic stability of the infection-free equilibrium and for
an endemic equilibrium state. We show that the presence of
active defenders counter-acts infectious spreading, effectively
increasing the epidemic threshold on parameters for which
an endemic state prevails. Leveraging this characterization,
we investigate a general class of problems for finding optimal
investments in active cyber defense capabilities given limited
resources. We show that this class of problems has unique
solutions under mild assumptions. We then analyze an Active
Susceptible-Infected-Recovered (A-SIR) compartmental model,
where the peak infection level of any trajectory is explicitly
derived.

I. INTRODUCTION

The spread of computer malware and viruses remains a
major cause for concern, despite the tremendous amount of
effort by academia, industry, and government. This is true
despite the substantial progresses in certain areas of cyber-
security such as cryptography, intrusion detection, firewalls,
and anti-malware tools. These traditional cyber defense
approaches are preventive and reactive in nature because
they strive to prevent attacks from succeeding and react to
recognized attacks [1], [2]. However, it is known that cyber
attacks cannot be be completely prevented, for reasons that
include undecidability [3] and human factors [4]. Moreover,
reactive defenses are limited because there may be substantial
delays before attacks are detected and cleaned up.

The limitation of traditional defenses is characterized by
an asymmetry that benefits attackers. Namely, the effect of
attacks is amplified by the network’s connectivity (malware
spreading), but the effect of preventive and reactive defenses
are not [1], [2], [5]–[7]. This asymmetry has led to an emerg-
ing class of countermeasures called active cyber defenses
[5]–[9], which leverage the same interconnections exploited
by attacks to actively identify and clean up compromised
nodes. This is achieved by endowing uncompromised nodes
the ability to “hunt” compromised nodes to clean up their
infection status (or “remotely delivering cures”).
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This paper investigates the impact that active defenders
have on the spread of malware. The spreading dynamics
of malware draws parallels to the spread of an infectious
disease in a human population, and as such, basic models
in epidemiology are often utilized to study cybersecurity
dynamics [2], [10]–[14]. The dynamics of these models often
follow an epidemic threshold, such that parameter instances
that lie below the threshold characterize an infection-free
equilibrium, and instances above the threshold exhibits an
endemic equilibrium, where a constant fraction is infected
over long periods of time. In this paper, we formulate
cybersecurity dynamics as the A-SIS compartmental model,
where nodes are either susceptible to, or infected by, the
malware, and some nodes are active defenders.

There have been studies on characterizing the effectiveness
of active defenders, mainly from a holistic (i.e., network-
oriented) perspective [5]–[7]. A main focus has been on
studying their advantage over preventive and reactive cy-
ber defenses [5], and their potential side-effects [7]. These
characterization works study mean-field approximations and
provide conditions for the existence or absence of equilibria.
A prescription study has derived optimal control strategies
for active cyber defenses in a population contagion model
[6], where it is assumed that every node in the network
has active defense capabilities and no nodes are equipped
with reactive defenses. This motivates us to consider more
realistic scenarios, where nodes are equipped with reactive
defense capabilities and some nodes can be equipped with
active defense capabilities. From a practical standpoint in
terms of materializing the potential of active defenses in the
real world, ongoing work explores competent architectures
for implementing active defense approaches [9], and sys-
tematizing the challenges that must be tackled before its full
potential can be realized [15].

In relation to the literature on epidemics, our work is
similar to the dynamics of competitive bi-virus models
[16]–[18], though the mathematical equations differ in two
respects. First, there are only two compartments (susceptible
and infected) in our model of active defenses, whereas bi-
virus models must account for three compartments. Second,
active cyber defenses have inherent asymmetries, since it is
possible that only a fraction of the nodes may implement
them. In bi-virus models, any node that is infected with a
given virus type may spread it.

Contributions: Our study abstracts away the underlying
complex network structures originally considered in [5], [7].
Our A-SIS (Active SIS) model is based on a well-mixed
population of nodes, where each node has the same rate of
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interaction with others. Under these assumptions, our paper
provides a full characterization of the dynamical properties
of the A-SIS contagion model. We precisely characterize
its epidemic threshold, which increases in the fraction and
effectiveness of active defenders (Theorem 3.1). We note that
this is in contrast to many other studies of epidemic models
with reactive population behaviors, i.e. non-pharmaceutical
interventions such as social distancing, where the epidemic
threshold remains unchanged from classic non-behavioral
models [19]–[21]. Additionally, we fully characterize the
global stability properties of the equilibrium states of the
system by identifying suitable Lyapunov functions (Section
III). Specifically, these equilibria are the infection-free equi-
librium (IFE) and the endemic equilibrium states, where we
provide precise infection levels for the latter. Based on these
characterizations, we then consider how a designer should
optimize system security by investing monetary assets in
increasing the fraction of active defense nodes and their
effectiveness (Section IV). We show that there is a unique
optimal investment profile, given concave return functions.

II. THE A-SIS CONTAGION MODEL

Our model of active cyber defense is built upon the classic
compartmental SIS model, which we first review below.

A. The SIS Epidemic Model

A malware spreads through a population of nodes, where
each node is either susceptible or infected with the malware..
We denote s(t) ∈ [0, 1] as the fraction of nodes in the
network that are susceptible at time t, and i(t) ∈ [0, 1]
as the fraction that are infected. The malware can only be
transmitted from an infected node to a susceptible node upon
contact. The per-contact infection rate is β > 0. Infected
nodes are able to independently recover at the rate α > 0
by using reactive defenses, e.g. by using recovery software,
intrusion-detection system, or anti-malware tool. The states
s and i evolve according to the following dynamical system:

ds

dt
= −βsi+ αi

di

dt
= βsi− αi

(1)

Under these dynamics, the mass of the population is in-
variant, and we must have s(t) + i(t) = 1 for all times
t. Therefore, the SIS dynamics may be reduced to a single
state variable,

di

dt
= βi(1− i)− αi (2)

with initial condition i(0) ∈ [0, 1]. The infection-free equi-
librium (IFE) iIFE = 0 is an equilibrium of the system. The
endemic equilibrium i∗ = 1− α

β ∈ (0, 1] is an equilibrium of
the system if and only if β

α > 1. The solution to this system
is well-known. Its asymptotic properties are summarized.

Theorem 2.1 ( [22]). Consider the SIS model (2).
• If β

α ≤ 1, then i(t) converges to iIFE for any initial
condition i(0) ∈ [0, 1].

Susceptible Infected
infection

recovery, active defense
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ia, ir

Fig. 1: State transition diagram under active cyber defense dynamics
(A-SIS). Each node is one of two types that describe its equipped
defense technology. Active nodes (subscript a) have both active and
reactive defenses, whereas reactive nodes (subscript r) have only
recovery capability. An infected node can transition to susceptible
either through traditional recovery, or by interactions with active
defenders that are susceptible.

• If β
α > 1, then i(t) converges to the endemic state i∗ =

1− α/β for any initial condition i(0) ∈ (0, 1].

From the above result, the dynamics of the SIS model
follow a threshold on the parameter β

α , which is often
referred to as the basic reproduction number.

B. A-SIS: Active cyber defense dynamics

We now formulate our dynamical model of active cyber
defense. Like in the SIS model, every node comes equipped
with recovery software (and thus recover from infection at
rate α). Now, suppose a fixed fraction xa ∈ [0, 1] of the
nodes are active defenders. In addition to reactive defenses,
they are able to employ active defenses against the spreading
malware. Upon contact with any infected node, an active
susceptible node is able to clean up the malware at the
infected node with rate βa > 0. We assume that an active
defender can only clean up other infected nodes when it
is itself not infected, which is natural. Thus, a susceptible
state is required to implement active defenses. The remaining
fraction 1−xa of the nodes are not active defenders. We refer
to these nodes as reactive nodes.

Let sa(t), sr(t), ia(t), and ir(t) be the fraction of suscep-
tible active, susceptible reactive, infected active, and infected
reactive nodes, respectively. We denote i(t) ≜ ia(t) + ir(t)
as the total infected fraction at time t. The dynamics are
given by

dsa
dt

= −βsai+ βasaia + αia

dia
dt

= βsai− βasaia − αia

dsr
dt

= −βsri+ βasair + αir

dir
dt

= βsri− βasair − αir

(3)

A state transition diagram is shown in Figure 1. From the
above equations, dsa

dt + dia
dt = 0 and dsr

dt + dir
dt = 0, and

therefore we have sa(t) + ia(t) = xa and sr(t) + ir(t) =
1 − xa for any time t ≥ 0. The dynamics in (3) is thus a
planar system with state i ≜ (ia, ir) ∈ [0, xa] × [0, 1 − xa]



governed by the dynamics

dia
dt

= Fa(i) ≜ β(xa − ia)i− βa(xa − ia)ia − αia

dir
dt

= Fr(i) ≜ β(1− xa − ir)i− βa(xa − ia)ir − αir
(A-SIS)

We will denote the state space as Γ ≜ [0, xa] × [0, 1 − xa].
The initial condition is specified by i0 = (ia(0), ir(0)) =
(ia0, ir0) ∈ Γ. We seek to characterize the equilibria of sys-
tem (A-SIS) and their stability properties. We immediately
see that the infection-free equilibrium iIFE ≜ (0, 0) is an
equilibrium point of system (A-SIS). We say an equilibrium
i∗ is interior if i∗ ∈ (0, xa)× (0, 1−xa). We will study the
stability properties of A-SIS in the next section.

III. STABILITY ANALYSIS OF A-SIS DYNAMICS

We consider the following stability notions. Let E = {i ∈
Γ : F (i) = (0, 0)} be the set of equilibrium points.

Definition 1. An equilibrium point i∗ ∈ Γ is globally
asymptotically stable (GAS) with respect to Γ if for all
i0 ∈ Γ\E , i(t) converges to i∗.

Since we are considering the particular system (A-SIS),
we will simply say an equilibrium point is globally asymp-
totically stable (GAS). The stability properties of iIFE is
summarized in our main result below.

Theorem 3.1. Consider system (A-SIS).
1) The equilibrium iIFE is globally asymptotically stable if

and only if β
α ≤ 1 + βaxa

α .
2) When β

α > 1 + βaxa

α , there exists a unique interior
equilibrium i∗ = (xa

λ+

λ++α , (1 − xa)
λ+

λ++α ) that is
globally asymptotically stable, where

λ+ ≜ β − βaxa − α. (4)

Here, i∗ is referred to as the endemic equilibrium.

Note that Theorem 3.1 degenerates to Theorem 2.1 by
setting xa = 0, meaning that all nodes only have reactive
defenses. The presence of active defenders increases the
threshold for which the IFE is GAS in comparison to the
condition in Theorem 2.1.

A. Global asymptotic stability of the IFE
Before establishing the GES result of iIFE, we first estab-

lish GAS of iIFE in this subsection. The Jacobian is

J(i) =

[
∂Fa

∂ia
∂Fa

∂ir
∂Fr

∂ia
∂Fr

∂ir

]
(5)

where
∂Fa

∂ia
= (β − βa)(xa − 2ia)− βir − α

∂Fa

∂ir
= β(xa − ia)

∂Fr

∂ia
= βair + β(1− xa − ir)

∂Fr

∂ir
= β(1− xa − 2ir − ia)− βa(xa − ia)− α

(6)

Evaluated at iIFE, we have

J(iIFE) =

[
(β − βa)xa − α βxa

β(1− xa) β(1− xa)− βaxa − α

]
(7)

The characteristic equation is

(λ− ((β − βa)xa − α))(λ− (β(1− xa)− βaxa − α))

− β2xa(1− xa) = 0
(8)

and the eigenvalues are given by

λ+ ≜ β − βaxa − α, λ− ≜ −(βaxa + α). (9)

Since λ− < 0, it is required that λ+ < 0 for the IFE to be
locally stable. This is the case under the condition

xa >
β − α

βa
. (10)

If xa < β−α
βa

, then the IFE is unstable.

Now, let us consider the two nullclines of system (A-SIS),

Ia ≜ {i ∈ Γ : Fa(i) = 0}

=

{
i ∈ Γ :

(
α

β(xa − ia)
−
(
1− βa

β

))
ia = ir

}
Ir ≜ {i ∈ Γ : Fr(i) = 0}

=

{
i ∈ Γ : ia =

(
α− β(1− xa − ir) + βaxa

β(1− xa − ir) + βair

)
ir

}
.

(11)
The intersection of the nullclines yields the set of equilibrium
points. Observe that iIFE is always an equilibrium. We may
define functions

Ia(ia) ≜

(
α

β(xa − ia)
−
(
1− βa

β

))
ia

Ir(ir) ≜

(
α− β(1− xa − ir) + βaxa

β(1− xa − ir) + βair

)
ir

(12)

whose graphs (ia, Ia(ia)) and (Ir(ir), ir) are the a- and r-
nullclines, respectively. The following convexity properties
hold.

Lemma 3.1. Function Ia(ia) for ia ∈ [0, xa) is convex and
strictly increasing in ia. Function Ir(ir) for ir ∈ [0, 1−xa)
is convex in ir. It is strictly increasing on ir ∈ [0, 1 − xa)

if xa ≥ β−α
β+βa

, and on ir ∈ [β(1−xa)−βaxa−α
β , 1 − xa) if

xa < β−α
β+βa

.

Note that Ia(ia) (ia ∈ [0, xa]) and Ir(ir) (ir ∈ [0, 1−xa])
are functions defined on different domains. It will be more
convenient to have them on the same domain, ia ∈ [0, xa].
Such a representation for the r-isocline is given below.

Lemma 3.2. The r-nullcline can explicitly be represented as



a function of ia ∈ [0, xa] with

Îr(ia) ≜

1

2

[
−
(
d+ ia(β − βa)

β

)
+

+

√(
d+ ia(β − βa)

β

)2

+ 4ia(1− xa)


(13)

where d ≜ α+ βaxa − β(1− xa).

Proof. To obtain this representation, we must solve the
equation Ir(ir) = ia for ir. After rearranging terms, it
becomes a quadratic equation in ir. Applying the quadratic
formula, we obtain (13). ■

The representation Îr(ia) is the inverse function of Ir(ir).
Because Ir(ir) is convex and strictly increasing with respect
to ir, it follows that Îr(ia) is concave and strictly increasing
in ia ∈ [0, xa]. These properties allow us to establish
conditions for the existence of a unique interior equilibrium.

Lemma 3.3. If λ+ ≤ 0, then iIFE is the only isolated
equilibrium in Γ. A unique interior fixed point exists if and
only if λ+ > 0.

Proof. We will consider two cases.
When λ+ ≤ 0, we have that Ia(0) = Îr(0) = 0, and can

directly calculate

∂Ia
∂ia

=

(
α

β(xa − ia)
−
(
1− βa

β

))
+ia

α

β(xa − ia)2
(14)

to obtain
∂Ia
∂ia

(0) =
α

βxa
−
(
1− βa

β

)
≤ 1− xa

xa
. (15)

Similarly, we calculate

∂Îr
∂ia

=

1

2

[
βa

β
− 1 +

2(β − βa)(d+ ia(β − βa))/β
2 + 4(1− xa)

2
√
(d+ ia(β − βa))2/β2 + 4ia(1− xa)

]
(16)

and consequently obtain

∂Îr
∂ia

(0) =
β(1− xa)

α+ βaxa − β(1− xa)
≥ 1− xa

xa
. (17)

Due to the convexity of Ia and concavity of Îr, the only
point at which the nullclines can intersect is the IFE.

When λ+ > 0, the system possesses a unique in-
terior equilibrium, which we can solve for algebraically.
We seek the non-zero solution of the system of equations
[Fa(ia, ir), Fr(ia, ir)]

⊤ = [0, 0]⊤. We obtain the unique
solution

i∗a = xa ·
λ+

λ+ + α
, i∗r = (1− xa) ·

λ+

λ+ + α
. (18)

■

Now, let us consider the candidate Lyapunov function V :

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4
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Ir(ir)

Fig. 2: Nullclines of system (A-SIS). The arrows depict the di-
rections of the flow of system (A-SIS). The dashed line is ir =
1−xa
xa

ia. Here, we have set β = 0.3, βa = 0.35, α = 0.1, and
xa = 0.6.

Γ → R≥0 defined by

V (i) ≜ max

{
1− xa

xa
ia, ir

}
. (19)

It holds that V (i) ≥ 0 for all i, with equality if and only if
i = iIFE. Observe that when xa > β−α

βa
(λ+ < 0), the line

1−xa

xa
ia is a lower bound for Ia(ia) and an upper bound for

Îr(ia) (see proof of Lemma 3.3). Therefore, when λ+ < 0,
we have
dV

dt
= 1{ir> 1−xa

xa
ia}Fr(i) + 1{ir≤ 1−xa

xa
ia}Fa(i) ≤ 0 (20)

with equality if and only if i = iIFE. Hence, V (i) serves as
a Lyapunov function that establishes the global asymptotic
stability (w.r.t. Γ) of iIFE. This concludes the proof of
Theorem 3.1 part 1.

A few remarks regarding the choice of V : the function
V (i) is of the form of a state max-separable Lyapunov
function [23]. Therein, sufficient conditions on the Jacobian
matrix on a forward-invariant convex set (here, Γ) are
specified for which V serves as a Lyapunov function of the
equilibrium point. Specifically,

Fact 3.1 (Corollary 5 from [23]). Suppose there exists a
vector w > 0 such that J(i)w ≤ 0 for all i ∈ Γ, and
J(iIFE)w < 0. Then

max

{
1

w1
|ia|,

1

w2
|ir|

}
(21)

serves as a Lyapunov function and iIFE is GAS w.r.t Γ.

The choice of max-separable Lyapunov function V in
(19) is induced from vector w = [ xa

1−xa
, 1]⊤. However, the

sufficient conditions of Fact 3.1 are not necessarily met.
In particular, the second entry of J((xa, 0))w is given by
β − βxa − α, which can be positive even when λ+ < 0.



B. Global stability of the endemic equilibrium

The system possesses a unique interior equilibrium when
xa < β−α

βa
(λ+ > 0) (Lemma 3.3), which is given by

i∗a = xa ·
λ+

λ+ + α
, i∗r = (1− xa) ·

λ+

λ+ + α
. (22)

We will refer to this interior equilibrium as the endemic
equilibrium, i∗ = (i∗a, i

∗
r). To establish global asymptotic

stability (part 2 of Theorem 3.1), we will consider the
candidate Lyapunov function VR : Γ → R≥0,

VR(i) ≜ max {|ia − xaf |, R · |ir − (1− xa)f |} (23)

for some R > 0, where f ≜ λ+

λ++α ∈ (0, 1). We can write it
more explicitly as

VR(i) =


xaf − ia, if i ∈ Γ<

a

ia − xaf, if i ∈ Γ≥
a

R((1− xa)f − ir), if i ∈ Γ<
r

R(ir − (1− xa)f), if i ∈ Γ≥
r

(24)

where the regions are defined as

Γ<
a ≜ {i : VR(i) = |ia − xaf |, ia − xaf < 0}

Γ≥
a ≜ {i : VR(i) = |ia − xaf |, ia − xaf ≥ 0}

Γ<
r ≜ {i : VR(i) = R|ir − (1− xa)f |, ir − (1− xa)f < 0}

Γ≥
r ≜ {i : VR(i) = R|ir − (1− xa)f |, ir − (1− xa)f ≥ 0}

(25)
It holds that VR(i) ≥ 0 for all i ∈ Γ, and equality is satisfied
if and only if i = i∗. An illustration of the regions is shown
in Figure 3.
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Îr(ia)

Fig. 3: The regions defined in the Lyapunov function VR (24). We
set β = 0.3, βa = 0.28, α = 0.1, xa = 0.2, which is in the regime
xa ≤ β−α

β+βa
. Here we set R = 0.5, which satisfies the condition of

(26), 0.25 ≤ R < min{0.8746, 0.6143}.

In the case xa ≤ β−α
β+βa

, we will select any R in the range

xa

1− xa
≤ R < min

{
1

Î ′r(i∗a)
,

βxaf

d+ βf(1− xa)

}
. (26)

The condition R < 1/Î ′r(i
∗
a) ensures that the graph of Îr,

for ia ≥ xaf , is contained in Γ≥
a . The condition R <

βxaf
d+βf(1−xa)

ensures that the graph of Îr, for ia < xaf , is
contained in Γ<

a . The condition xa

1−xa
≤ R ensures that the

graph of Ia in Γ is contained only in either Γ<
r (for ia < xaf )

or Γ≥
r (for ia ≥ xaf ). Under (26), the following properties

hold:
• Any i ∈ Γ<

a satisfies Fa(i) > 0.
• Any i ∈ Γ≥

a satisfies Fa(i) ≤ 0 with equality if and
only if ia = xaf .

• Any i ∈ Γ<
r satisfies Fr(i) > 0.

• Any i ∈ Γ≥
r Fr(i) ≤ 0 with equality if and only if

ir = (1− xa)f .
We thus obtain

dVR

dt
(i) =


−dia

dt , if i ∈ Γ<
a

dia
dt , if i ∈ Γ≥

a

−R dir
dt , if i ∈ Γ<

r

R dir
dt , if i ∈ Γ≥

r

≤ 0, (27)

with equality if and only if i = i∗. Similar arguments can be
applied in the case xa > β−α

β+βa
. In this case, the arguments

hold for the choice R = 1. This establishes global asymptotic
stability (w.r.t. Γ) of i∗ , which concludes the proof of
Theorem 3.1 part 2.

IV. OPTIMAL INVESTMENTS IN ACTIVE DEFENSE

We have now fully characterized the global asymptotic
behavior of system A-SIS. It may be summarized by the
limiting infected fraction

L(xa, βa) ≜ lim
t→∞

i(t) =

{
1− α

β−βaxa
, if βaxa < β − α

0, else
.

(28)
In this section, we consider a system operator that makes in-
vestment decisions to promote the active defense capabilities
of the network. Suppose the operator has a limited monetary
budget M > 0. It decides to invest an amount of money a ≥
0 in increasing the total fraction xa of active defenders, with
a return function h : R≥0 → [0, 1] that is increasing. This
reflects a plausible scenario since active defenses are new
tools and capabilities which would incur extra costs to install
on network nodes. Likewise, it decides to invest an amount
b ≥ 0 in increasing the effectiveness of active defenders, with
an expected return function g : R≥0 → R≥0. This reflects the
costs associated with improving active defense tactics, where
more advanced tactics incur higher costs (e.g., requiring the
active defender to collect and process more data from its
neighboring node it is trying to help out). The optimization
problem that the operator faces is thus formulated as

min
y=(a,b)

L(h(a), g(b))

s.t. a, b ≥ 0

a+ b ≤ M

(29)

This problem becomes trivial if there is a feasible pair (a, b)
that satisfies g(b)h(a) ≥ β − α. In this case, the infection
can be eradicated. As such, we will consider the cases where
no feasible pair achieves this, i.e. g(b)h(a) < β − α for all
a, b with a+ b ≤ M .

We will proceed by defining the following structural
properties for the return functions.



Definition 2. We denote the family of functions D as the set
of single-variable functions f : R≥0 → R≥0 that are strictly
increasing, twice continuously differentiable, concave, and
satisfies f(0) = 0.

For the formulation of optimization problem (29), we place
the following assumptions on the return functions h, g.

Assumption 1. The function g ∈ D. The function h(a) is of
the form h(a) = min{ĥ(a), 1}, where ĥ ∈ D.

Concavity is a common assumption that describes
marginal diminishing returns on investment. For the function
h(a), there is a value t > 0 for which monetary investments
larger than t will convert the entire population to become
active defenders. It can be the case that t = ∞, in which
case h ∈ D. The assumption h(0) = g(0) = 0 asserts
that zero investment yields zero returns. The following result
establishes that there exists a unique optimal investment that
solves (29).

Theorem 4.1. Suppose g, h satisfy the properties of Assump-
tion 1. Suppose t ≥ M . Then (29) has a unique solution
y∗ = (a∗, b∗), where a∗ ∈ (0,M) satisfies

g(M − a∗)h′(a∗) = g′(M − a∗)h(a∗) (30)

and b∗ = M − a∗. Suppose t < M . If g′(M − t) ≥ g(M −
t)ĥ′(t), then the unique solution is given by the same y∗.
If g′(M − t) < g(M − t)ĥ′(t), then the unique solution is
given by a∗ = t, b∗ = M − t.

Proof. First, observe that an investment profile with a = 0
and b > 0, or a > 0 and b = 0 cannot be optimal.
Thus, an optimal investment must satisfy a, b > 0. By
complementary slackness, the two multipliers associated with
the non-negativity constraints on a, b must be zero.

Let λ be the multiplier associated with the inequality
constraint, a + b ≤ M . Note that if λ = 0, the first-order
conditions become g(b) = 0 and h(a) = 0, which has the
unique solution a = b = 0. However, this cannot be an
optimal solution. Thus, we suppose λ > 0. Here, the budget
must be met, i.e. a + b = M . We obtain the first-order
condition

H1(a) = H2(a) (31)

where H1(a) = g(M−a)h′(a) and H2(a) = g′(M−a)h(a).
To see this, we must have

αg(M − a)h′(a)
(β − g(M − a)h(a))2

= λ =
αh(a)g′(M − a)

(β − g(M − a)h(a))2
(32)

Since we are considering the cases where β − g(b)h(a) >
α > 0, the denominator may be eliminated.

Case 1: M ≤ t. For a ∈ (0,M), H1(a) is strictly decreasing
because

H ′
1(a) = −g′(M − a)h′(a) + g(M − a)h′′(a) < 0, (33)

which follows from the assumptions that h and g are strictly
increasing, concave, and twice differentiable (Assumption 1).

For a ∈ (0,M), H2(a) is strictly increasing because

H ′
2(a) = −g′′(M − a)h(a) + g′(M − a)h′(a) > 0, (34)

which follows similarly. Moreover, H1(0) > 0, H1(M) = 0,
and H2(0) = 0, H2(M) > 0. By the intermediate value
theorem and by strict monotonicity of H1 and H2, there
exists a unique solution a∗ to (31).

Because Slater’s condition holds for (29), the KKT con-
ditions are necessary and sufficient for optimality. Taking
b∗ = M−a∗ and λ∗ in (32), we have showed that (a∗, b∗, λ∗)
uniquely satisfy the KKT conditions.
Case 2: M > t. In this case, no optimal solution will
allocate a > t, since any excess allocation here may be
invested in b. Let us re-formulate (29) with the additional
constraint a ≤ t, and denote λa ≥ 0 as its associated
multiplier. If g′(M − t) ≥ g(M − t)ĥ′(t), a unique solution
a∗ ∈ (0, t] satisfies (32), which is the same solution as Case
1. Now suppose g′(M − t) < g(M − t)ĥ′(t). Here, note
that no solution a ∈ (0, t) to (32) exists. Thus, considering
λa > 0 (a = t), the first-order condition now becomes

αg(M − t)∂h(t) = αg′(M − t)

+ λa(β − g(M − t))2,
(35)

where ∂h(t) ∈ [0, ĥ′(t)] is any sub-derivative of h at a = t,
and we used the fact that h(t) = 1. Taking any ∂h(t) such
that g(M−t)∂h(t)−g′(M−t) > 0 (possible by assumption),
we obtain

λ∗
a =

α(g(M − t)∂h(t)− g′(M − t))

(β − g(M − t))2
> 0. (36)

Lastly, we recover λ∗ = αh(t)g′(M−t)
(β−g(M−t))2 . Thus, a∗ = t, b∗ =

M − t, λ∗, and λ∗
a satisfy the KKT conditions, and thus

a∗, b∗ are solutions of (29). ■

Example 1. For linear returns on investment, h(a) =
min{c1a, 1} and g(b) = c2b for constants c1, c2 > 0. From
Theorem 4.1, if 1/c1 > M , we have a∗ = b∗ = M/2. If
M/2 ≤ 1/c1 < M , we also obtain a∗ = b∗ = M/2. If
1/c1 < M/2, then a∗ = 1/c1 and b∗ = M − 1/c1.

Example 2. Suppose h(a) = a
a+c1

and g(b) = β̄ b
b+c2

for constants c1, c2, β̄ > 0. From (30), we obtain a∗ =
c1(M+c2)

c1−c2

[
1−

√
1− (c1−c2)M

c1(M+c2)

]
< M if c1 ̸= c2, and

a∗ = M/2 if c1 = c2.

V. A-SIR DYNAMICS OF ACTIVE CYBER DEFENSE

In this section, we investigate the impact of active defend-
ers in the SIR (susceptible-infected-recovered) epidemics
model. Here, a node that has been cleared of infectious
malware obtains permanent protection against any future
infection. The protection can be conferred either through
reactive defenses (with rate α), or through active defenses
(with rate βa). As such, we keep track of the five states sa(t),
sr(t), ia(t), ir(t), and r(t). Note that we need not differen-
tiate between active and reactive protected nodes, since they
are effectively removed from any further interactions.



dsa
dt

= −β · sai
dsr
dt

= −β · sri
dia
dt

= β · sai︸ ︷︷ ︸
malware infection

− βa · saia︸ ︷︷ ︸
active defense

− αia︸︷︷︸
reactive defense

dir
dt

= β · sri− βa · sair − αir

dr

dt
= βa · sai+ αi

(A-SIR)

with initial conditions (sa0, sr0, ia0, ir0) ∈ [0, 1]4 that satisfy
sa0 + sr0 + ia0 + ir0 = 1. Here, we are assuming that no
node is initially fully protected from the malware, meaning
r(0) = 0. We consider the class of initial value problems
with the above dynamics (A-SIR) parameterized by a fixed
fraction of initially infected nodes i0 and the fraction of
active defenders in the population, namely sa0. Note that
since no node is initially fully protected, we have s0 =
sa0 + sr0 = 1− i0. Also, observe that the roles of infected
active or infected reactive nodes are indistinguishable (both
types infect susceptibles at the same rate, and both attain
protection at the same rates). Indeed, the total infected
fraction i depends only on i, but not on (ia, ir):

di

dt
= β · si− βa · sai− αi. (37)

Therefore, we only consider the initial fraction of active
susceptible nodes, namely sa0.

The following Theorem characterizes the peak infection
level for any initial value problem of the A-SIP dynamics.

Theorem 5.1. Consider any initial value problem of the A-
SIP dynamics, and denote by i(t), t ≥ 0 the resulting state
trajectory for the total infected fraction of nodes. Then ipk ≜
maxt≥0 i(t) is characterized by

ipk =

{
1− α

β − βa

β sa0 +
α
β log α

βs0−βasa0
, if sa0 < βs0−α

βa

i0, if sa0 ≥ βs0−α
βa

.

(38)

Proof. We can characterize the trajectory of i as a function
of sa as follows. Observe that

dsa
dsr

=
sa
sr

. (39)

Integrating this equation, we obtain the relation

sa(sr) =
sa(sr0)

sr0
· sr =

sa0
s0 − sa0

· sr, (40)

where we denote s0 = sa0 + sr0. Using this relation, we
may write

di

dt
=

(
β
s0
sa0

− βa

)
sai− αi, (41)

and subsequently,

di

dsa
= −A

β
+

α

βsa
, (42)

where A := β s0
sa0

− βa. Observe that function i(sa) is
concave in sa ∈ (0,∞). The peak of the trajectory i(sa)
is obtained by setting the above equation to 0, and solving
for sa.

In the case A ≤ 0, or equivalently sa0 ≥ βs0
βa

, function
i(sa) does not have a peak for any sa ≥ 0. Therefore, the
infected fraction i(t) is monotonically decreasing in time
until eradication, and hence maxt≥0 i(t) = i0.

In the case A > 0, function i(sa) peaks precisely at s∗a =
α
A . Since it must hold that sa ∈ [0, sa0) throughout the entire
trajectory, the infected fraction i(t) peaks after the initial time
if and only if α

A < sa0. This is equivalent to the condition
sa0 < βs0−α

βa
. To determine the peak infection level, we

integrate (42) to obtain

i(sa) = i0 −
A

β
(sa − sa0) +

α

β
log

sa
sa0

. (43)

Evaluating at s∗a = α
A , the peak value is

i∗ = 1− α

β
− βa

β
sa0 +

α

β
log

α

βs0 − βasa0
(44)

where we have used the fact that s0+ i0 = 1. Lastly, if α
A ≥

sa0, or equivalently sa0 ≥ βs0−α
βa

, then the infected fraction
i(t) is monotonically decreasing, and hence i∗ = i0. ■

The above result indicates that the infection level will not
exceed ipk for any time t ≥ 0. Thus, if the objective of a
system operator is to ensure the network never reaches an
infectivity level above a certain desired threshold τ , then
equation (38) can help specify design parameters (e.g. βa,
sa0, α) on defense that meet this requirement. A precise
characterization will be left for future work.

VI. CONCLUSION

Active cyber defense is an emerging technology. We
have proposed a novel active cyber defense model based
on the epidemiological SIS population dynamics. We fully
characterized the behavior of the dynamics, establishing
global asymptotic stability of infection-free and endemic
fixed points. We show that deploying active cyber defenses
has an impact on the epidemic threshold, unlike other mitiga-
tion approaches studied in epidemic models such as reactive
social distancing. We further leverage the characterization to
determine optimal investments in active cyber defense. As
a side-product, we also characterize the effect of deploying
active cyber defense in an SIR model. We hope this study
will inspire more investigations on the effectiveness of active
cyber defense, which is a new paradigm in cyber defense that
could be a game-changer in cybersecurity.
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[4] R. Montañez, E. Golob, and S. Xu, “Human cognition through the lens
of social engineering cyberattacks,” Frontiers in psychology, vol. 11,
p. 1755, 2020.

[5] S. Xu, W. Lu, and H. Li, “A stochastic model of active cyber defense
dynamics,” Internet Mathematics, vol. 11, no. 1, pp. 23–61, 2015.

[6] W. Lu, S. Xu, and X. Yi, “Optimizing active cyber defense,” in
Decision and Game Theory for Security: 4th International Confer-
ence, GameSec 2013, Fort Worth, TX, USA, November 11-12, 2013.
Proceedings 4. Springer, 2013, pp. 206–225.

[7] R. Zheng, W. Lu, and S. Xu, “Active cyber defense dynamics ex-
hibiting rich phenomena,” in Proceedings of the 2015 Symposium and
Bootcamp on the Science of Security, 2015, pp. 1–12.
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