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Abstract—This paper addresses the problem of determining the
minimum set of state variables in a network that need to be blocked
from direct measurements in order to protect functional privacy
with respect to any output matrices. The goal is to prevent adver-
sarial observers or eavesdroppers from inferring a linear functional
of states, either vector-wise or entry-wise. We prove that both
problems are NP-hard. However, by assuming a reasonable constant
bound on the geometric multiplicities of the system’s eigenvalues,
we present an exact algorithm with polynomial time complexity
for the vector-wise functional privacy protection problem. Based on
this algorithm, we then provide a greedy algorithm for the entry-
wise privacy protection problem. Our approach is based on relating
these problems to functional observability and leveraging a PBH-
like criterion for functional observability. Finally, we provide an
example to demonstrate the effectiveness of our proposed approach.

Index Terms—Observability blocking, network privacy preserva-
tion, functional observability, algorithms

I. INTRODUCTION

In recent years, research on the privacy preservation of control

systems has gained increasing attention due to the growing

use of networked control systems, cyber-physical systems and

the increasing concerns over the privacy and security of these

systems [1–3].

One area of research has focused on developing privacy-

preserving control algorithms that can achieve the desired con-

trol objectives while protecting sensitive information about the

system’s states and inputs [4, 5]. Another area of research has

explored the use of differential privacy techniques to protect the

privacy of data collected from control systems [6, 7]. Recently,

encryption techniques, including homomorphic and nonhomo-

morphic encryptions, have also been adopted to preserve data

privacy in the process of network transmissions and third-

party computations [2, 3, 8]. Additionally, researchers have also

investigated the impact of cyber-attacks on the privacy and

proposed secure and privacy-preserving communication protocols

to mitigate these attacks [9].

Apart from the above research perspectives, there has been a

natural relationship between the privacy preservation of control

systems and system observability [10–13]. Observability refers to

the ability to estimate the state of a system based on its output.

In the context of privacy preservation, the idea is to make it

difficult for an adversary to infer sensitive information about the

system by limiting their ability to observe the system’s state. In

this line, privacy preservation through system design has attracted

much interest. To name a few, [10] considered the problem of

designing communication networks so that the average consensus

is achieved while the observable subspace each individual agent

can infer from shared information of its neighbors is as small as
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possible. The design of local state-feedback control systems in

dynamical networks to block observability at remote nodes was

studied in [11]. Leveraging the notion of non-strong observability,

[12] considered adding perturbations to system inputs and outputs

to protect partial entries of the initial states and inputs. The

problem of blocking a minimum set of state variables from

being measured by existing sensors to destroy observability was

considered in [13]. The basic idea in these works to achieve

privacy preservation is to design control systems with reduced

observability. This means that the system state cannot be easily

inferred from its output, making it more difficult for an adversary

to infer sensitive information.

In this paper, we take a step further in the direction of

protecting network privacy by considering functional privacy, i.e.,

linear functionals of states that need to be kept confidential to

adversarial observers. The goal is to identify the minimum set of

state variables (nodes) in a network that need to be blocked from

direct measurements to prevent the inference of a given functional

privacy with respect to any output matrices. We consider two

different privacy protection levels: vector-wise protection and

entry-wise protection, meaning that the functional privacy in

the vector form cannot be inferred as a whole and that every

component (entry) of it cannot be inferred, respectively.

By relating functional privacy protection to the notion of

functional observability and leveraging a PBH-like criterion

for functional observability [14–16], we make the following

contributions. First, we prove that both functional privacy pro-

tection problems are NP-hard. Second, assuming a reasonable

constant bound on the geometric multiplicities of the system’s

eigenvalues, we provide an exact algorithm with polynomial time

complexity for the vector-wise problem. Third, we provide a

greedy algorithm for the entry-wise problem. Our results reveal

the role of node measurements in protecting the functional

privacy of linear dynamic networks and enable us to identify

which set of nodes can be protected at a lower cost to preserve

functional privacy more efficiently. These nodes can be regarded

as “critical nodes” that may leak confidential information and

require specific protection measures.

The rest is organized as follows. Section II presents the

problem formulation, and Section III provides preliminaries on

functional observability. The complexity of the considered prob-

lems is given in the next section. Section V presents algorithms

for these problems, followed by an illustrative example in Section

VI. The last section concludes this paper.

Notations: For a set, | · | denotes its cardinality. The symbol

[n] = {1, 2, ..., n}. A matrix L is also denoted by L = [lij ] or

L = [Lij ], which means lij or Lij is the entry in the ith row and

jth column of L. By eig(M) we denote the set of eigenvalues of

the square matrix M . Let diag{Xi|ni=1} be the block diagonal

matrix whose ith diagonal block is Xi, and col{Xi|ni=1} be the

matrix stacked by Xi|ni=1. In denotes the n dimensional identify
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matrix, where the subscript n may be omitted if it can be inferred

from the context. By ei we denote the ith column of In, and

1m×n the m × n matrix with entries all being one. Given an

m× n matrix M and a set S ⊆ [n], MS denotes the sub-matrix

of M formed by rows indexed by S, and MS denotes the matrix

obtained from M by preserving its columns indexed with S and

zeroing the rest. If M = I , MS and MS coincide.

II. PROBLEM FORMULATION

Consider a network of n nodes. The ith node evolves according

to the following dynamics

ẋi(t) = aiixi(t) +
∑

j∈[n]\{i}

aijxj(t) +
m
∑

j=1

bijuj(t), (1)

where xi(t) ∈ R is the state variable of the ith node, uj(t) ∈ R

is the jth input, aii ∈ R is the self-damping coefficient, aij ∈
R is the coupling strength from node j to node i, and bij ∈
R stands for the affection from the jth input to the ith node.

The topology of this network can be described by a directed

graph G = (V , E), where V = {1, ..., n} denotes the node set

and E = {(i, j) : aji 6= 0} denotes the edge set. Let x(t) =
[x1(t), · · · , xn(t)]

⊺, u(t) = [u1(t), · · · , um(t)]⊺, A = [aij ] and

B = [bij ]. The lumped form of (1) can be written as

ẋ(t) = Ax(t) +Bu(t). (2)

System (1) can describe the dynamics of a linear time-invariant

network system. A typical example is the multi-agent system

where each agent is a single integrator running the consensus

protocol [17]. In this case, aii = −
∑

j∈[n]\{i} aij , meaning

that −A is the weighted Laplacian matrix of G. Other examples

include interacted liquid tanks [18], synchronizing networks of

linear oscillators [19], opinion propagation in social networks

[20], etc.

The output of system (2) is given by

y(t) = Cx(t), (3)

with C ∈ Rp×n the output matrix. Let y(x, u, t) be the output

signal of system (2)-(2) at time t generated from the initial state x
by the input u. Each nonzero row of C corresponds to a sensor.

If there is only one nonzero entry in a row of C, we call the

sensor associated with this row a dedicated sensor, meaning that

this sensor measures only one state variable.

Suppose an adversarial observer or eavesdropper intends to

infer the information

z(t) = Fx(t), (4)

where F ∈ Rr×n. Write F as F = col{fi|ri=1}, fi ∈ R1×n.

As commonly assumed, the observer knows system parameters

(A,C, F ) and has access to the signals u(t) and y(t) for a

sufficiently long time horizon [4, 10, 12]. The vector z(t) can be

some private or confidential information that the network wants

to protect from being inferred by the observer, and is called

functional privacy since it is a linear combination of the state

x(t). Typical examples of z(t) include:

• the full state x(t) when F = In;

• the vector formed by a set of target states indexed by S ⊆
[n] when F = col{e⊺i |i∈S};

• the average of all states when F = 1
n
11×n;

• the vector consisting of averages of states of clusters indexed

by S1, ...,Sl ⊆ [n] when F = col{ 1
|Si|

1Si |li=1}.

We remark that designing observers to infer the average state or

average cluster states has been considered in [21, 22].

There are typically several ways to protect the functional

privacy z(t), for example, adding noise to the output y(t) in the

spirit of differential privacy [23], or using certain encryption tech-

niques to encrypt y(t) [8]. In this paper, however, we consider

the structure requirement on the output matrix C, under which

adversarial observers cannot infer the functional privacy z(t).
The advantage of doing so is that by designing an appropriate

measurement structure we can preserve the functional privacy

without using any privacy-preserving techniques.

Definition 1 (Vector-wise functional privacy protection): The

functional privacy z(t) = Fx(t) is inferable, if for any initial

state x(0) and input u(t), there exists a finite time tf such that the

initial value of the function Fx(0) can be uniquely determined

from the observation y(t) and input u(t), 0 ≤ t ≤ tf . The

functional privacy z(t) is said to be (vector-wisely) protected

if it is not inferable.

Definition 2 (Entry-wise functional privacy protection): The

functional privacy z(t) = Fx(t) is said to be entry-wisely

protected if every component of z(t), i.e., zi(t) = fix(t), is

protected for i = 1, ..., r.

Remark 1: The case that z(t) is not inferable does not imply

that every component of it is not inferable. There may exist

scenarios where z(t) is not inferable but its partial components

are. Therefore, the entry-wise protection is stricter than the

vector-wise protection. From Definition 1, with the knowledge

of (A,C, F ) and u(t), y(t), t ∈ [0, tf ], if an observer can infer

z(0), then it can infer z(t) for t ∈ [0, tf ].

In the network context, the structure of C can be dominantly

determined by the state variables (nodes) it directly measures.

We say a set of state variables indexed by S ⊆ [n] is blocked

from direct measurement with respect to the output matrix C
(blocked w.r.t. C for short) if the columns of C indexed by S
are turned to zeros (i.e., C is turned to C [n]\S). To see how many

state variables should be blocked w.r.t. whatever output matrices

C to protect the functional privacy, we consider the following

two problems:

Problem 1: How can we select the minimum set of state

variables to be blocked w.r.t. any output matrix C such that z(t)
is protected?

Problem 2: How can we select the minimum set of state

variables to be blocked w.r.t. any output matrix C such that every

component of z(t) is protected?

A trivial solution to Problems 1 and 2 is the full state set,

under which y(t) cannot convey any information of z(t). This

implies these two problems are well-defined. Problems 1 and 2

enable a better understanding of the role of nodal measurements

in the preservation of the given functional privacy z(t). Note the

problems do not depend on a specific output matrix C, meaning

that the solutions are properties of the network system matrix

A and the functional privacy characterized by F . The solutions

to these problems can somehow tell us the set of nodes that we

can protect with less cost to preserve functional privacy more

efficiently (since blocking more nodes from direct measurement

means that more energy or additional effort is needed). System

(2)-(4) may be represented by the pair (A,F ) when Problems 1
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and 2 are considered.

It is obvious that in Problems 1 and 2, it suffices to consider

the case with dedicated sensors, i.e., C = In. This is because,

for any output matrix C ∈ R
m×n and a given S ⊆ [n], even

m > n, upon defining S̄ = [n]\S, the new output matrix CS̄

after blocking state variables S means that at most n− |S| state

variables are measured so that we can extract no more than n−|S|
individual states indexed by S̄.

III. FUNCTIONAL OBSERVABILITY

In this section, we investigate Problems 1 and 2 in the spirit

of functional observability, resulting in reformulations for them.

We shall denote the system described by (2)-(4) as the triple

(A,C, F ). Before introducing the definition of functional ob-

servability, we give an equivalent definition of being inferable as

follows.

Lemma 1: The functional privacy z(t) = Fx(t) is inferable

(by an adversarial observer), if and only if for any initial states

x1 and x2 and input u, y(x1, u, t) = y(x2, u, t) for all t ≥ 0
implies that Fx1 = Fx2.

Proof: The sufficiency is obvious since this condition implies

for any output y(t) and input u(t), there is a unique initial func-

tion Fx(0) that obeys the system dynamics. For the necessity,

suppose there exist two initial states x1, x2 and input u such that

y(x1, u, t) = y(x2, u, t) for all t ≥ 0 but Fx1 6= Fx2. Then, the

initial function Fx(0) cannot be determined uniquely. �

Definition 3 (Observability): [24] System (2)-(3) is said to be

observable, if for any initial states x1, x2 and the zero input,

y(x1, 0, t) = y(x2, 0, t) for all t ≥ 0 implies that x1 = x2.

Definition 4 (Functional observability): [15, 16] System (2)-

(4) is said to be functionally observable, if for any initial states

x1, x2 and input u, y(x1, u, t) = y(x2, u, t) for all t ≥ 0 implies

that Fx1 = Fx2.

In other words, functional observability is the ability to infer

linear functions of states Fx(t) from the knowledge of external

inputs u(t) and outputs y(t) of a system [14]. When F = In,

functional observability collapses to conventional observability.

Based on functional observability and Lemma 1, the functional

privacy z(t) = Fx(t) is inferable for a system (A,C, F ), if and

only if (A,C, F ) is functionally observable. In addition, Fx(t) is

entry-wisely protected, if and only if (A,C, fi) is not functionally

observable for i = 1, ..., r, recalling fi is the ith row of F .

Therefore, Problems 1 and 2 can be equivalently formulated as

Problem 1 :
minS⊆[n] |S|
s.t. (A, I[n]\S , F ) not functionally observable.

Problem 2 :
minS⊆[n] |S|
s.t. (A, I[n]\S , fi) not functionally observable, ∀i ∈ [r].

The following lemma is a revised version of [15, Theo. 4],

[16, Theo.2], and [25, Lem. 2.3], which gives a necessary

and sufficient condition for functional observability under the

diagonalization assumption on A. This revision is of independent

interest of this paper and is scheduled to be elaborated sepa-

rately.

Lemma 2: [Revising [15, Theo. 4]] Suppose that A is diago-

nalizable. The triple (A,C, F ) is functionally observable if and

only if

rank





A− λIn
C
F



 = rank

[

A− λIn
C

]

, ∀λ ∈ C. (5)

It can be seen that when F = In, the above condition

collapses to the PBH test for the conventional observability.

When (A,C, F ) is functionally observable, one can find a matrix

F0 satisfying two additional conditions (see [14, Theo. 2]), based

on which a functional observer with arbitrary poles can be

constructed to estimate z(t) asymptotically; see [14] for details.

IV. COMPLEXITY ANALYSIS

In this section, we prove that both Problems 1 and 2 are NP-

hard. When F is a row vector, Problem 1 reduces to Problem 2.

This indicates to show the NP-hardness of Problem 1, it suffices

to show the NP-hardness of Problem 2 with a scalar functional

privacy. To proceed with our proof, the following lemmas are

needed.

Lemma 3: [26, Chap. 0.2.7] Let M = col{M1,M2} be a

composite matrix and M⊥
1 (if exists) consist of a set of linearly

independent column vectors spanning the null space of M1 (M⊥
1

is called a basis matrix). Then, M is of full column rank, if and

only if M2M
⊥
1 is of full column rank.

Lemma 4 (Cauchy bound): [27] All roots of the polynomial

f(z) = anz
n + an−1z

n−1 + · · · + a1z + a0 with an 6= 0 lie in

the disk

|z| < 1 + max
0≤k≤n−1

|ak/an|.

Lemma 5: Let W = col{wi|ni=1} be an n×k (k < n) integer

matrix with full column rank, where wi ∈ R1×k is a row vector

with integral entries. Moreover, let βmax = max{|wij |}, in which

wij is the (i, j)th entry of W . Then, for any α ≥ 1 + kkβk
max,

and any S ⊆ [n] with |S| = k − 1 such that rankWS = k − 1,

the following matrix has full column rank

W (α)
.
=

[

αw1 + α2w2 + · · ·+ αnwn

WS

]

.

Proof: By the property of determinant,

detW (α) =
∑n

i=1
αi detW{i}∪S ,

where W{i}∪S
.
= col{wi,WS}. Since W has full column

rank, for any S with the property mentioned above, there exists

j ∈ [n]\S such that W{j}∪S is non-singular. This means, at

least one item, say αj , has a nonzero coefficient detW{j}∪S

in detW (α). Therefore, detW (α) cannot be identically zero.

Notice that the determinant of any k × k submatrix of W is no

more than βk
maxk! ≤ βk

maxk
k. This is due to the fact that the

determinant of a k × k matrix is the sum of signed products

of all k entries with the property that any two of them come

from different rows and columns of this matrix. Consequently,

all coefficents of αi, 1 ≤ i ≤ n, have absolute values bounded

by kkβk
max. Since the polynomial detW (α) is not identically

zero and the leading coefficient (the nonzero coefficient of the

monomial αi with the maximum degree i) is integral, by Lemma

4, all its roots have absolute values less than 1+kkβk
max for any

S. The required result then follows immediately. �

Definition 5 (Linear degeneracy problem, [28]): Given an

n × k (k < n) matrix W , the linear degeneracy problem is
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to determine whether there exist k rows of W that are linearly

dependent, i.e., whether a set S ⊆ [n] with |S| = k exists such

that detWS = 0.

The linear degeneracy problem is NP-complete even when W
in Definition 5 are restricted to be integer matrices [28].

Theorem 1: Both Problems 1 and 2 are NP-hard.

Proof: As analyzed above, it suffices to prove the NP-hardness

of Problem 2 with a scalar functional privacy. In this case, F
becomes a row vector f . We shall present a reduction from the

linear degeneracy problem to Problem 2.

Let W = col{wi|ni=1} be an n × k (k < n) integer matrix

with full column rank, with wi ∈ R1×k. Denote the maximum

absolute value of entries in W by βmax. Let W⊥ be an n×(n−k)
integer matrix with full column rank such that (W⊥)⊺W = 0.

Such a W⊥ can be determined in polynomial time as shown

in [29, Coros.3.2d], and each entry of W⊥ can have a size (the

number of bits needed to express a number in binary format, also

called encoding length) polynomially bounded by k and βmax.

Let β′
max = max{|W⊥

ij |}.
Define an n× n matrix as

H(η) = [W,W⊥ + η1n×(n−k)].

Since (W⊥)⊺ forms a basis for the left null space of W , it follows

that H(0) is non-singular. Note the coefficient matrix of η in

H(η) is of rank one. As a result, the polynomial detH(η) in

η has a degree of at most one. As detH(η) is not identically

zero (detH(0) 6= 0), detH(η) has at most one zero for η.

Observing this, let η∗ ∈ {β′
max + 1, β′

max + 2} be such that

makes detH(η∗) 6= 0. To determine η∗, one just needs to let

η = β′
max + 1 and η = β′

max + 2 and then check whether

detH(η) 6= 0. Since each entry of H(η) for η = β′
max + 1

or β′
max + 2 has a size polynomially bounded by k and βmax,

so does the corresponding detH(η) [29, Coro 3.3a]. In addition,

detH(η) can be computed in polynomial time. Therefore, η∗

can be determined in polynomial time.

Let P = H(η∗), Γ = diag{Ik, 2, 3, ..., n− k + 1}, and α =
1 + kkβk

max. We construct the system parameters (A, f) as

A = PΓP−1, f = [α, α2, · · · , αn].

The maximum entry of f is of size log2 α
n = n log2(1 +

kkβk
max) = n(k log2 k + k log2 βmax + o(1)), which is polyno-

mially bounded by k and n.1 Moreover, P−1 can be determined

in polynomial time and is of the size polynomially bounded by

k and n [29, Coro 3.3a]. Therefore, the parameters A, f can be

constructed in polynomial time and have polynomially bounded

sizes.

We shall prove that the optimal value of Problem 2 associated

with (A, f) is no more than n− k, if and only if there exists a

k×k singular submatrix in W . Let us keep in mind that from the

construction, W consists of k linearly independent eigenvectors

of A associated with the eigenvalue 1. The (k + i)th column of

P , given by Pk+i, is the eigenvector of A associated with the

eigenvalue i+ 1, i = 1, ..., n− k.

For the one direction, suppose there is a k × k singular sub-

matrix in W , whose rows are indexed by S1 ⊆ [n]. Since W has

full column rank, by the property of matrix rank, there must be

1The little-o notation f(n) = o(g(n)) means f(n) becomes insignificant
relative to g(n) as n approaches infinity.

another set S2 ⊆ [n] with |S2| = k such that rankWS2
= k−1.2

Consider the eigenvalue λ = 1. Since W is a basis matrix of the

null space of A− In and rankWS2
< k, it follows from Lemma

3 that col{A−In, IS2
} is of column rank deficient. On the other

hand, Lemma 5 yields

rank col{fW,WS2
} = k,

noting that a set S ⊆ S2 must exist satisfying rankWS = k−1 =
|S|. Again from Lemma 3, col{A − I, IS2

, f} has full column

rank. As a result,

rank col{A− I, IS2
, f} = n > rank col{A− I, IS2

},

which means the system (A, IS2
, f) is not functionally observ-

able from Lemma 2. Consequently, upon letting S∗ = [n]\S2,

S∗ is a feasible solution to Problem 2 associated with (A, f).
Since |S∗| = n− k, the optimal value of Problem 2 is no more

than n− k.

For the other direction, suppose S∗ ⊆ [n] is a feasible solution

to Problem 1 associated with (A, f) such that |S∗| ≤ n− k. Let

S̄∗ = [n]\S∗. Notice that for each eigenvalue λi = i + 1 of A,

i = 1, ..., n − k, all entries in its eigenvector Pk+i are positive

since η∗ > β′
max. Therefore, to make col{A−λiI, IS̄∗} column

rank deficient, which is equivalent to making [Pk+i]S̄∗ = 0 by

Lemma 3, it must hold S∗ = [n]. Hence, the only case to make

(A, IS̄∗ , f) fail to be functionally observable while |S∗| ≤ n−k
is that the following relation should hold

n ≥ rank col{A− I, IS̄∗ , f} > rank col{A− I, IS̄∗}.

This requires rank col{A − I, IS̄∗} < n, which is equivalent

to rankWS̄∗ < k from Lemma 3. Since |S̄∗| = n − |S∗| ≥ k,

it follows that every k × k submatrix of WS̄∗ must be singular,

indicating the linear degeneracy problem on matrix W is yes.

The above analysis indicates that verifying whether the optimal

solution to Problem 2 on (A, f) is no more than n − k is

equivalent to the linear degeneracy problem on W . Since the

latter problem is NP-complete and all the reductions are in

polynomial time and the involved parameters have polynomially

bounded sizes, we conclude that Problem 2 is NP-hard. �

Remark 2: We remark that the NP-hardness of Problem 1 can

also be obtained from [13, Theo. 1], which established the NP-

hardness of determining the minimum number of sensors whose

removal can destroy system observability with dedicated sensors

(i.e., C = In). This means Problem 1 is NP-hard with F = In,

under which circumstance the functional observability collapses

to the conventional observability.

V. ALGORITHMS

In this section, we give exact algorithms for Problem 1

under a reasonable assumption that the eigenvalue geometric

multiplicities of A are bounded by a constant. We also present a

greedy algorithm for Problem 2.

2 More precisely, this is due to the property that, for two sets S3,S4 ⊆ [n]
such that rankWS3

= |S3|, rankWS4
= |S4|, and |S4| > |S3|, there must be

some i ∈ S4\S3 satisfying rankW{i}∪S3
= |S3|+ 1; see [30, Page 73]. Let

S0 ⊆ [n] be such that rankMS0
= |S0| = k, and suppose rankMS1

= k−k0,
where k0 > 1. Using this property, we know there exists i ∈ S0\S1 such that
rankMS1∪{i} = k − k0 + 1. Repeat this process k0 − 1 times, and we get

that there exists S′
0 ⊆ S0\S1 making rankMS1∪S′

0

= k − 1. Hence, a set

S2 ⊆ S1 ∪ S′
0 exists satisfying the proposed requirement.
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The following assumption on the computational availability of

eigenvalues and eigenvectors of A is adopted.

Assumption 1: Suppose that the eigenvalues and eigenvectors

of A are computationally available. Moreover, suppose there are

q distinct eigenvalues in eig(A), the ith one denoted by λi,

and Xi ∈ Cn×ki consists of the maximum number of linearly

independent eigenvectors (i.e., Xi is the eigenbasis) associated

with λi.

Remark 3: It is worth mentioning that, while eigenvalues and

eigenvectors of a matrix can be computed to any prescribed

precision in theory, the practical limitations of numerical methods

and the conditioning of the matrix may sometimes make it

difficult to achieve high precision in practice [31]. On the other

hand, the eigenvalues and eigenvectors of adjacency or Laplacian

matrices of large-scale sparse graphs have been extensively

studied [17], and there are specialized algorithms for computing

eigenvalues of sparse matrices more efficiently and accurately

than general-purpose algorithms [32]. This makes Assumption 1

reasonable for studying sparsely-connected networks.

Assumption 2: The state matrix A is diagonalizable.

Remark 4: Equivalently, this assumption requires that
∑q

i=1 ki = n. Diagonalizable matrices are quite common in

system modeling and control. For example, all symmetric ma-

trices, naturally arising in Laplacian matrices and adjacency

matrices of undirected graphs, are diagonalizable. Moreover,

the weighted Laplacian matrices of strongly connected directed

graphs and adjacency matrices of random networks are mostly

diagonalizable [17, 33].

A. Algorithms for Problem 1

According to Lemma 2, under Assumption 2, a natural idea to

find a minimum set (i.e., a set with the minimum cardinality) S ⊆
[n] such that (A, I [n]\S , F ) fails to be functionally observable is

to determine the minimum set Si for each eigenvalue λi ∈ eig(A)
such that

rank





A− λiIn
I [n]\Si

F



 > rank

[

A− λiIn
I [n]\Si

]

, (6)

and then find the minimum |Si| over i ∈ [q]. In the following,

we characterize the minimum set Si that satisfies (6).

Proposition 1: Let S∗i be a set with the minimum cardinality

that satisfies (6). Then, it holds that

rank





A− λiIn
I [n]\S

∗

i

F



 = n, (7)

rank

[

A− λiIn
I [n]\S

∗

i

]

= n− 1. (8)

Moreover, S∗i (if exists) must be a minimal set that satisfies (8)

(by ‘minimal set’ we mean S∗i satisfies (8), but any proper subset

S̄∗i ⊆ S
∗
i cannot satisfy (8)).

Proof: First, suppose that S∗i makes

rank





A− λiIn
I [n]\S

∗

i

F



 = n− k0 > rank

[

A− λiIn
I [n]\S

∗

i

]

= n− k′0,

where k′0 > k0 > 0. Since col{A − λiIn, I, F} has full

column rank, there exists Sa ⊆ S∗i with |Sa| = k0, such that

rank col{A−λiI, I
([n]\S∗

i )∪Sa , F} = n (see footnote 2). Notice

that rank col{A − λiI, I
([n]\S∗

i )∪Sa} ≤ n − k′0 + k0 < n.

Therefore, S∗i \Sa also satisfies (6). However, |S∗i \Sa| < |S
∗
i |,

contradicting the optimality of S∗i . Hence, (7) must be satisfied.

Now suppose S∗i satisfies

rank





A− λiIn
I [n]\S

∗

i

F



 = n > rank

[

A− λiIn
I [n]\S

∗

i

]

= n− k′0,

where k′0 ≥ 2. Since rank col{A − λiI, I} = n, again

from the same reasoning in footnote 2, there exists Sa ⊆ S∗i
such that rank col{A − λiI, I

([n]\S∗

i )∪Sa} = n − 1. No-

tice that rank col{A − λiI, I
([n]\S∗

i )∪Sa , F} ≥ rank col{A −
λiI, I

[n]\S∗

i , F} = n. This indicates S∗i \Sa also satisfies (6), still

contradicting the optimality of S∗i . Hence, (8) must be satisfied.

If S∗i exists, it must satisfy (7) and (8) simultaneously. If S∗i
is not a minimal set satisfying (8), by definition, one can remove

some elements ∆ from S∗i so that (8) is maintained. Meanwhile,

(7) still holds since adding more rows cannot reduce the rank.

A new set S∗i \∆ is obtained that satisfies (6), contradicting the

optimality of S∗i . �

By virtue of Proposition 1, to determine S∗i for each λi ∈
eig(A), one can determine all minimal sets that satisfy (8), and

then find out those that satisfy (7). Then, S∗i is such a set with

the minimum cardinality. Note that S∗i may be empty for some

λi ∈ eig(A). But with Assumption 2, there is at least one λi ∈
eig(A) such that S∗i is not empty. Indeed, the worst-case solution

to Problem 1 is the full state set [n]. After determining S∗i for

each λi ∈ eig(A), the optimal solution is the set S∗i with the

minimum cardinality over i ∈ [q].

1) Simple dynamic case: We first consider the case where A
has no repeated eigenvalues, i.e., the simple dynamic case. In

this situation, ki = 1 ∀i and q = n. If a set Si satisfies (8), by

Lemma 3, it holds that

[Xi][n]\Si
= 0.

Hence, the minimal set satisfying (8) is unique, which is the

support of Xi, given by

S̄∗i = suppXi
.
= {j ∈ [n] : [Xi]j 6= 0}.

Let S∗i be such S̄∗i that satisfies (7). For ease of description, if

S̄∗i does not satisfy (7), we assign S∗i = [n]. As a result, the

optimal solution to Problem 1 (denoted by S∗P1
) is

S∗P1
= argi∈[n] min |S∗i |.

2) Bounded eigenvalue geometric multiplicity case: We now

generalize the simple dynamic case to systems with bounded

eigenvalue geometric multiplicities. More precisely, we consider

systems satisfying the following assumption:

Assumption 3: The geometric multiplicities of eigenvalues of

A are bounded by some fixed constant kc, i.e., ki ≤ kc ∀i ∈ [q]
as n increases.

The above assumption can be satisfied by most practical

systems. The simple dynamic case is one such with kc = 1.

Besides, when modeling networks of coupled oscillators, power

grids, diffusively couple networks, epidemiological networks

using graphs, a common setting is that each node has a self-

loop [17–20], under which these networks can be controllable

using some constant number of inputs regardless of the network
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size [34, 35]. This indicates the above assumption is satisfied

for these networks, since the minimum number of inputs for

achieving controllability equals the maximum eigenvalue geo-

metric multiplicities of system state matrices [36].

From the previous analysis, the key step for solving Problem

1 is to determine the collection Ωi of all minimal sets that

satisfy (8) for a given λi ∈ eig(A). We provide Algorithm

1 for this purpose. In this algorithm, W ′
j is a maximal set

satisfying rank[Xi]W′

j
= ki − 1, meaning that adding additional

rows to [Xi]W′

j
will increase its rank. Therefore, by Lemma

3, [n]\W ′
j is a minimal set satisfying (8). With Assumption 3,

|Ωi| ≤
(

n

ki

)

≤ nkc . After the determination of Ωi for i ∈ [q],
the rest is similar to the simple dynamic case. We collect the

whole procedure in Algorithm 2, and state the following result.

Theorem 2: Under Assumptions 1-3, Algorithm 2 is able to

find an optimal solution to Problem 1 in time O(nkc+2k3c ).

Proof: The reason why Algorithm 2 returns an optimal solu-

tion has been explained in Proposition 1 and the main contexts.

Here we just need to justify the computational complexity. Step

1 incurs O(n3) time [31]. For each eigenbasis Xi, checking

whether its ki − 1 rows are linearly independent can use the

singular value decomposition (SVD), which takes O(k3i ) time

[31]. For each Wj in Algorithm 1, it takes O(nk3i ) time to get

W ′
j via SVD. For each member Sij ∈ Ωi, it takes O(k2i (n+ r))

time to get S̄ij . Since |Ωi| ≤ nki , determining S∗i incurs time

O(nki+1k3i ). As q ≤ n and ki ≤ kc, the total time complexity

is at most O(nkc+2k3c ). �

Remark 5: Theorem 2 makes it clear that the computation

cost of Algorithm 2 scales exponentially with kc. This indicates

it is the eigenvalue geometric multiplicities of A that cause the

computational intractability of Problem 1.

Algorithm 1 : Enumerating all minimal sets satisfying (8)

Input: The eigenbasis Xi of λi ∈ eig(A)
Output: The collection Ωi of the minimal sets satisfying (8)

1: Determine all sets {Wj}
N1

j=1 that contain ki−1 linearly independent
rows of Xi (N1 is the number of such sets).

2: for j = 1 to N1 do
3: W ′

j =Wj ∪
{

k : rank[Xi]Wj∪{k} = ki − 1
}

4: Sij = [n]\W ′
j

5: end for
6: Return Ωi = {Sij}

N1

j=1.

Algorithm 2 : Algorithm for Problem 1

Input: Parameters (A,F ) satisfying Assumption 1-3
Output: The optimal solution S∗

P1
to Problem 1

1: Calculate the eigenbases {Xi|
q
i=1} of A.

2: for i = 1 to q do
3: Determine the collection Ωi of the minimal sets satisfying (8)

using Algorithm 1.
4: For each member Sij ∈ Ωi, check whether it satisfies (7), if yes,

let S̄ij = Sij ; otherwise, let S̄ij = [n]. Find S∗
i = argmin |S̄ij |.

5: end for
6: Return S∗

P1
= argi∈[q] min |S∗

i |.

B. Greedy algorithm for Problem 2

By the definition of functional observability, if we obtain the

optimal solution S∗P1i
to Problem 1 associated with (A, fi) for

each row fi of F , then
⋃r

i=1 S
∗
P1i

is a feasible solution to Prob-

lem 2. However, such a solution ignores the possible overlaps

among different f ′
is, which may be far from the optimal one.

In what follows, we provide a greedy algorithm for Problem 2.

This algorithm is based on the following result, which generalizes

Proposition 1.

Proposition 2: With Assumption 2, suppose for one λi ∈
eig(A), some Tk ⊆ [n], and the jth row fj of F , it holds

rank





A− λiIn
ITk

fj



 = rank

[

A− λiIn
ITk

]

= nij ≤ n. (9)

If ∆∗
kj ⊆ Tk is a set with the minimum cardinality satisfying

rank





A− λiIn
ITk\∆

∗

kj

fj



 > rank

[

A− λiIn
ITk\∆

∗

kj

]

, (10)

it must hold that

rank





A− λiIn
ITk\∆

∗

kj

fj



 = nij , rank

[

A− λiIn
ITk\∆

∗

kj

]

= nij − 1,

(11)

and ∆∗
kj is a minimal set satisfying the second equality of (11).

Proof: The proof is similar to that of Proposition 1, thus

omitted. �

It is clear that if Tk = [n], nij = n, then Proposition

2 collapses to Proposition 1. As a result, when (9) holds for

every λi ∈ eig(A), we can use a similar manner to Algorithm

2 to find a set ∆∗
kj with the minimum cardinality such that

(10) is true for some λi ∈ eig(A). Denote such a process

by ∆∗
kj ← Alg2[A, fj , Tk]. That is, Alg2[A, fj , Tk] finds the

minimum set ∆∗
kj from Tk such that (A, ITk\∆

∗

kj , fj) becomes

functionally unobservable (∆∗
kj will be empty if (A, ITk , fj)

is already functionally unobservable). We formulate the greedy

algorithm for Problem 2 as Algorithm 3.

Algorithm 3 : Greedy Algorithm for Problem 2

Input: Parameters (A,F ) satisfying Assumption 1-3
1: Calculate the eigenbases {Xi|

q
i=1} of A.

2: Initialize T0 = [n],F = [r], k = 0
3: while |Tk| > 0 and |F| > 0 do
4: for j ∈ F do
5: ∆∗

kj ← Alg2[A, fj , Tk].
6: end for
7: ∆∗

kj∗ ← argminj∈F |∆
∗
kj |

8: Update Tk+1 ← Tk\∆
∗
kj∗ , F ← F\{j∗}, and k ← k + 1.

9: end while
10: Return a solution [n]\Tk

Compared to the naive method mentioned at the beginning of

this subsection, the advantage of Algorithm 3 lies in that, it not

only guarantees to protect one scalar functional privacy fix(t) per

step but also accounts for the relations between different fi’s. The

computation time of Algorithm 3 is dominated by the subroutine

Alg2[A, fj , Tk], which runs at most r2 times. Therefore, the time

complexity of Algorithm 3 is O(r2nkc+2k3c ). When kc is large,

this is a huge computational burden.

Remark 6: Based on Proposition 2, both Algorithms 2 and

3 can be trivially extended to the case where the adversarial

observers or eavesdroppers have access only to a restricted set
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Fig. 1. Network topology of the system in Section VI.

of full states. In this case, we just need to change the full state

set [n] to the aforementioned restricted set (Tk alike).

VI. ILLUSTRATIVE EXAMPLE

Consider a network system with

A =















1 0 0 0 0 0
3 5 2 0 0 0
4 0 4 0 0 0
2 0 0 2 0 0
0 2 1 3 6 0
0 0 0 5 4 9















,

whose topology is given in Fig. 1. It turns out that eig(A) =
{1, 5, 4, 2, 6, 9}, and the corresponding eigenvectors have sup-

ports respectively as S̄∗1 = {1, · · · , 6}, S̄∗2 = {2, 5, 6}, S̄∗3 =
{2, 3, 5, 6}, S̄∗4 = {4, 5, 6}, S̄∗5 = {5, 6}, and S̄∗6 = {6}.

First, let us consider Problem 1 with F1 = I6. Algorithm

2 returns a solution {6}. This means blocking state x6 only

is enough to protect the full state vector-wisely. Now, let

F2 = [0, 1, 1, 1, 0, 0]/3, meaning that the functional privacy is

the average state of cluster {x2, x3, x4}. Two solutions, {2, 5, 6}
or {4, 5, 6}, are found via Algorithm 2. It can be validated that

both are optimal.

Next, consider F3 = col{e⊺3 , e
⊺

4 , e
⊺

5} (n = 6), i.e., protect-

ing states {x3, x4, x5}. Using Algorithm 2, we get an optimal

solution with 2 states {5, 6}, implying that at least two states

need to be blocked. Comparing these solutions, it turns out that

although blocking state x6 is enough to protect the full state

vector-wisely, it cannot protect states {x3, x4, x5}. Finally, sup-

pose we are to protect state variables {x3, x4, x5} entry-wisely.

Implementing Algorithm 3 on (A,F3), we get T1 = {1, 2, 3, 4}
and F1 = {3, 4}, T2 = {1, 2, 3} and F2 = {3}, and T3 = {1}
and F3 = ∅, which means the solution is {2, 3, 4, 5, 6}. By

exhaustive search, it can be validated that this solution is optimal.

This above example shows that the minimum set of states

needed to be blocked varies drastically with the functional

privacy to be protected; and even for the same functional privacy,

the vector-wise protection and entry-wise protection can lead to

drastically different solutions.

VII. CONCLUSION

This paper addressed and investigated the problem of pro-

tecting functional privacy in a network by blocking the min-

imum set of state variables from direct measurements. It has

been proven that both the vector-wise and entry-wise functional

privacy protection problems are NP-hard, but an exact algorithm

with polynomial time complexity is presented for the vector-

wise problem by assuming a reasonable constant bound on the

system eigenvalue geometric multiplicities. A greedy algorithm

for the entry-wise problem is further provided. Our approach

is based on functional observability and a PBH-like criterion,

and the effectiveness of the proposed approach is demonstrated

through an example. In the future, we plan to extend our study

to a structured system model.
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