Abstract:
This work investigates traffic control via controlled connected and automated vehicles (CAVs) using novel controllers derived from the linear-quadratic regulator (LQR) th...Show MoreMetadata
Abstract:
This work investigates traffic control via controlled connected and automated vehicles (CAVs) using novel controllers derived from the linear-quadratic regulator (LQR) theory. CAV-platoons are modeled as moving bottlenecks impacting the surrounding traffic with their speeds as control inputs. An iterative controller algorithm based on the LQR theory is proposed along with a variant that allows for penalizing abrupt changes in platoon speeds. The controllers use the Lighthill-Whitham-Richards (LWR) model implemented using an extended cell transmission model (CTM) which considers the capacity drop phenomenon for a realistic representation of traffic in congestion. The effectiveness of the proposed traffic control algorithms is tested using a traffic control example and compared with existing proportional-integral (PI)- and model predictive control (MPC)- based controllers from the literature. A case study using the TransModeler traffic microsimulation software is conducted to test the usability of the proposed controller in a realistic setting. It is observed that the proposed controller works well in both settings to mitigate the impact of the jam caused by a fixed bottleneck. The computation time required by the controller is also small making it suitable for real-time control.
Published in: 2023 62nd IEEE Conference on Decision and Control (CDC)
Date of Conference: 13-15 December 2023
Date Added to IEEE Xplore: 19 January 2024
ISBN Information: