
ar
X

iv
:2

30
9.

09
18

7v
1

 [
ee

ss
.S

Y
]

 1
7

Se
p

20
23

Data-Driven Reachability Analysis of Stochastic Dynamical

Systems with Conformal Inference

Navid Hashemi1, Xin Qin1, Lars Lindemann1, and Jyotirmoy V. Deshmukh1

1Thomas Lord Department of Computer Science, University of Southern California

September 19, 2023

Abstract

We consider data-driven reachability analysis of discrete-time stochastic dynamical systems
using conformal inference. We assume that we are not provided with a symbolic representation
of the stochastic system, but instead have access to a dataset of K-step trajectories. The
reachability problem is to construct a probabilistic flowpipe such that the probability that a
K-step trajectory can violate the bounds of the flowpipe does not exceed a user-specified failure
probability threshold. The key ideas in this paper are: (1) to learn a surrogate predictor model
from data, (2) to perform reachability analysis using the surrogate model, and (3) to quantify
the surrogate model’s incurred error using conformal inference in order to give probabilistic
reachability guarantees. We focus on learning-enabled control systems with complex closed-
loop dynamics that are difficult to model symbolically, but where state transition pairs can be
queried, e.g., using a simulator. We demonstrate the applicability of our method on examples
from the domain of learning-enabled cyber-physical systems.

1 Introduction

Reachability analysis of stochastic nonlinear dynamical systems is a challenging problem that has
been extensively studied in the literature [1–13]. Most of the prior work is model-based, i.e., it
requires a symbolic model of the dynamical system which can then be over-approximated to obtain
flowpipes or the set of reachable states of the system over a given time horizon. In this paper, we
explore the notion of model-free reachability analysis, i.e., to compute reachable sets of the stochastic
dynamical system even when we do not have the symbolic system dynamics, but have access to a
numeric simulator or actual behaviors sampled from the system. A significant advantage of such a
data-driven technique is that we obtain not only (probabilistic) reachable sets for the system or the
simulation model from which the trajectories are sampled, but we can get results over the possibly
infinite set of models/systems consistent with the set of sampled trajectories. This provides us the
opportunity for an analysis technique that is robust to model uncertainty.

There is growing literature on computing probabilistically approximate reachable sets directly
from data. The authors in [14] utilize level sets of Christoffel functions and provide a technique to
compute a high accuracy probabilistic reach-set for general nonlinear systems. On the other hand,
as a comparison, we only have access to sampled trajectories. The authors in [15] propose specific
parametric models (linear or polynomial), to identify the Markovian stochastic dynamics of the
system from data, and then perform reachability analysis on the identified models. In contrast, we

1

http://arxiv.org/abs/2309.09187v1

learn non-parameteric surrogates (using neural networks), which are not restricted to Markovian
dynamics, and quantify uncertainty using conformal inference. In [16], the authors use an interesting
approach based on a Gaussian process-based classifier to separate reachable states from unreachable
states, and approximate the reach set by computing the sublevel set of the classifier. We note that
this approach uses adaptive sampling of initial states where states are chosen to reduce uncertainty
of the surrogate. This may require solving a high-dimensional optimization problem and does not
give probability guarantees. The authors also propose an interval abstraction of the reach set, where
sample complexity bounds are provided; however, this approach may suffer from conservatism and
high computational cost in high-dimensional systems. In [17], the authors assume partial knowl-
edge of the model, while using data to deal with Lipschitz-continuous state dependent uncertainty.
The authors in [18] propose a method called DeepReach that uses a neural PDE solver to perform
Hamilton-Jacobi method-based reachability analysis for high-dimensional systems. Here, the com-
plexity of the flowpipe computation scales with the complexity of the flowpipe itself rather than
the system dimension. While this method uses neural methods to perform reachability analysis, it
still requires access to the system dynamics. In [19], the authors combine simulation-guided reach-
ability analysis techniques with data-driven techniques. Here, the authors estimate a discrepancy
function using system trajectories using a probably-approximately-correct learning algorithm. The
discrepancy function bounds the distance between system trajectories as a function of the distance
between their initial states. This function is then used to inflate the simulation trajectories to obtain
reachtubes that are then used to compute the approximate reachable set of states. We remark that
such an approach requires a parametric form of the discrepancy function which could be hard to
obtain.

Our approach to compute probabilistic reachable sets for stochastic systems has the following
main steps: (1) we sample a number of system trajectories according to the user-provided distribu-
tion on the set of initial states, (2) we learn a data-driven surrogate model that predicts the next K
states of the system from a given state, (3) we perform traditional set propagation-based reachabil-
ity analysis on the surrogate model, and (4) we inflate the resulting reachable sets in a systematic
fashion to account for the uncertainty induced by sampling from the user-provided distribution on
the set of initial states and system stochasticity.

While our general technique can work with arbitrary regression-based surrogate models, in this
paper, we choose feedforward neural networks as a data-driven model of the system dynamics1. A
key reason for choosing feedforward neural networks is to use recently developed techniques to per-
form set-propagation through neural networks [21]. However, since the surrogate model is learned
by sampling, we still need to account for this uncertainty. To do this, we rely on conformal infer-
ence (CI) or conformal prediction [22, 23]. In the machine learning community, CI is a well-known
data-efficient framework for error analysis of predictive models. Recently, CI has been employed for
data-driven stochastic verification [24–27]. For instance, in [25–27], the authors obtain confidence
intervals on the robustness degree of system behaviors (for example based on the quantitative satis-
faction of a given signal temporal logic (STL) property). A naïve adaptation of existing techniques
for STL robustness verification to reachability analysis would require training surrogate models to
predict each state variable independently (effectively discarding the rich correlation between the
state variables) resulting in an analysis that is too conservative. Instead, our approach preserves
the structure of the dynamics through our usage of a surrogate model, while still accounting for
uncertainty in a systematic fashion using CI.

1There are many techniques to identify probably approximately correct surrogate models, for example, using
concentration bounds for system identification [20]. In this paper, we eschew such methods, instead preferring the
data-efficient approach for uncertainty quantification provided by conformal inference.

2

The layout of our paper is as follows. In Section 2, we present the preliminaries and problem
statement. Our algorithm for probabilistic reachable set computation is proposed in Section 3. We
demonstrate the efficacy of our method on several numerical examples in Section 4, and we finally
conclude in Section 5.

Notation. We use bold letters to indicate vectors and vector-valued functions, and calligraphic
letters to denote sets. We denote the set {1, 2, · · · , n} with [n]. We present the structure of a
feedforward neural network (FFNN) with ℓ hidden layers as an array [n0, n1, · · · nℓ+1], where n0

denotes the number of inputs nℓ+1 is the number of outputs and ni, i ∈ [ℓ] denotes the width of the
i-th hidden layer. We denote ei ∈ R

n as the i-th base vector of Rn. The expression x ∼ X means,
the random variable x follows the distribution X . We denote the cardinality of a set A with |A|.
Zonotope(b,A) denotes a zonotope [28] with center b and array of base vectors A. The operator ⊕
denotes the Minkowski sum. We also denote ⌈x⌉ as the smallest integer greater than x ∈ R.

2 Problem statement and Preliminaries

Stochastic Dynamical System. Estimating the set of reachable sets of stochastic dynamical
systems starting from a compact set of initial states I ⊂ R

n is a well-studied problem. While this
problem has been studied largely with model-based techniques, we focus on bounded-time, model-
free reachability analysis of a black-box discrete-time stochastic dynamical system M . A random
trajectory of M can be modelled as a sequence of time-stamped states σs0 = [s⊤0 , · · · , s

⊤
K]

⊤ ⊂

R
(K+1)n. We denote the distribution over the set of trajectories consistent with M as S, and

use σs0 ∼ S to denote that σs0 is sampled from S. The distribution S could be induced due to
a distribution on the set of initial states of the system as well as stochastic uncertainties in its
dynamics. For example, the transition dynamics could be Markovian, i.e., sk ∼ T (s′ | s = sk−1).
However, we remark that the techniques proposed in this paper can work for systems with non-
Markovian dynamics. For convenience, we denote the distribution over the set of initial states I as

W, and assume that (Pr[s0 /∈ I] = 0). The notation s0
W
∼ I is used to denote that the state s0 is

sampled from I using the distribution W. A practical choice of W may be to uniformly sample I .
Trajectory Datasets. We assume that we have access to a dataset of independently sampled

trajectories of M , where the initial states are sampled with s0
W
∼ I . We assume that each trajectory

has K time-steps. We split the trajectory dataset into two separate datasets, denoted as Dtrain

and Dtest. Here Dtrain is our training dataset and is to be used for training a surrogate model of
M . On the other hand, Dtest is the test dataset, and is to be utilized to generate the calibration
dataset for deriving statistical properties. Let Dtest = {s0,i, σs0,i}

L
i=1 where L is the number of test

trajectories. Our goal is now to compute a probabilistic reach set such that σs0 is included inside
with a probability not lower than a user-defined threshold 1− ε, where ε ∈ (0, 1).

We remark that although the data-points within a single trajectory are not independent and
identically distributed (i.i.d.), we observe that the trajectory σs0 can be seen as a vector σs0 ∈
R
n(K+1) so that entire trajectories within Dtrain and Dtest can be viewed as i.i.d. samples in the

R
n(K+1)-space. This observation is crucially used later when we quantify uncertainty using conformal

prediction.
Surrogate Model. After obtaining the trajectory dataset, we train a surrogate model F :

R
n → R

(K+1)n that maps a given initial state to the predicted K-step trajectory of the system.
For instance, the surrogate model can be a feedforward neural network with n inputs and (K +
1)n outputs. Let σ̄s0 denote the predicted trajectory, then, σ̄s0 = F(s0). Training such a K-step

3

predictive model can be difficult, especially when the dynamics are nonlinear. Hence, in practice,
we train models that take as input trajectory fragments to predict future trajectory fragments and
then sequentially compose such models to obtain a longer predicted trajectory. We remark that this
does not affect the probabilistic reasoning that we perform later in the paper as the entire predictive
model can still be treated as a deterministic map that takes as input the initial state s0 and outputs
a K-step predicted trajectory.

Conformal Inference. Conformal inference [22,23,29] is a statistical tool for uncertainty quan-
tification that has recently been used for analysing the uncertainty in the predictions performed by
complex machine learning models [30–32]. Conformal inference/prediction performs error quan-
tification without making any assumption on the underlying data-generating distribution or the
machine learning model. Consider a regression model µ and the random variables z1, z2, ..., zm+1

where zi = (xi, yi) ∈ R
n × R with i ∈ [m + 1] which are all independently sampled from the same

distribution. Given a miscoverage level α ∈ (0, 1), conformal inference enables us to compute a
prediction interval C(xm+1) = [µ(xm+1)−R∗, µ(xm+1) +R∗] ⊂ R from z1, z2, ..., zm such that,

Pr[ym+1 ∈ C(xm+1)] ≥ 1− α.

More formally, define the residual Ri =| yi − µ(xi) | for all zi with i ∈ [m + 1]. Since the random
variables z1, z2, ..., zm+1 are independent and identically distributed, the same applies to the residual
R1, . . . , Rm+1. Under the assumption that m satisfies ℓ = ⌈(m+1)(1−α)⌉ ≤ m, it holds that R∗ can
be chosen to be the ℓ-th smallest residual [33, Lemma 1]. Without loss of generality, if R1, . . . , Rm

are sorted in non-decreasing order, then R∗ = Rℓ and it holds that Pr[Rm+1 ≤ R∗] ≥ (1 − α). By
the choice of the residual, it hence holds that

Pr
[

ym+1 ∈ [µ(xm+1)−R∗, µ(xm+1) +R∗]
]

≥ 1− α.

We also refer to δ = 1− α as the confidence probability.
Problem Definition. Our probabilistic reachability analysis can be formally stated as follows.

Given the stochastic dynamical system M with initial state s0
W
∼ I and trajectory distribution S,

training and test datasets Dtrain and Dtest consisting of K-step trajectories independently sampled
from M , and a user provided failure probability threshold ε ∈ (0, 1), compute a probabilistic reach
set (also called flowpipe) X such that:

Pr [σs0 ∈ X] ≥ 1− ε (1)

3 Scalable Data-Driven Reachability

In the setting described in the previous section, we now show how to compute a reach set or
a flowpipe X ⊂ R

n(K+1) using reachability analysis and conformal inference. This flowpipe will

contain the trajectory σs0 of M sampled with initial state s0
W
∼ I with the confidence level of

∆ = 1− ε. We hence denote this flowpipe as ∆-confident flowpipe and define it as follows.

Definition 1 (∆-confident flowpipe). For a given confidence probability ∆ ∈ (0, 1) and a random

trajectory σs0 ∼ S with initial state s0
W
∼ I, we say that X ⊂ R

n(K+1) is a ∆-confident flowpipe if

Pr[σs0 ∈ X] ≥ ∆ (2)

4

In this work, we are interested in computing X while our access to M is limited to the datasets
Dtrain and Dtest. We will show that we can compute X with valid guarantees by employing reach-
ability analysis on the surrogate model trained from Dtrain and error analysis of this model by
applying conformal prediction on Dtest.

3.1 Computing Reachsets for Surrogate Models

3.1.1 ReLU Surrogate Model

We start with training a neural network surrogate model F : R
n → R

n(K+1) over the training
dataset Dtrain. The surrogate model is trained to approximate the trajectory σs0 ∈ R

n(K+1) of the

stochastic system M sampled with initial state s0
W
∼ I . We denote the prediction σ̄s0 ∈ R

n(K+1) of
σs0 as,

σ̄s0 = F(s0) =
[

s⊤0 , F1(s0), · · · , Fn(s0), · · · , F(n−1)K(s0), · · · , FnK(s0)
]⊤

where Fj(s0) is the (j + n)-th component of the vector F(s0).
Recent works in the literature have had great success on obtaining accurate bounds for the

reachability analysis of ReLU neural networks using polyhedral sets [21, 34, 35]. The accuracy of
these techniques motivates us to use ReLU activation functions for training neural networks as the
surrogate models. These surrogate models will be used for deterministic reachability analysis which
provides surrogate flowpipes which we formally define next.

Definition 2 (Surrogate flowpipe). The surrogate flowpipe X̄ ⊂ R
n(K+1) contains the image of

F(I). Formally, for all, s0 ∈ I it has to hold that F(s0) ∈ X̄.

The reachability analysis methodology for ReLU neural networks in [21] introduces two different
approaches known as the exact-star and approx-star techniques. These are used to compute a
surrogate flowpipe X̄ . The exact-star technique proposes exact reachability analysis using star sets,
but can be slower due to its inherent computational complexity. On the other hand, the approx-star
technique computes over-approximation of the flowpipe and is thus runtime-efficient, although it may
make the surrogate model reachable set estimation conservative. The computational complexity of
the exact-star technique and the conservatism of the approx-star technique can both be noticeably
reduced using the idea of set partitioning [21]. In this approach, we partition the set of initial
conditions I into N different sub-partitions,

Ii ⊂ I,
N
⋃

i=1

Ii = I,

and perform reachability analysis on every single sub-region with parallel computing. The inclusion
of set-partitioning results in noticeable improvement in the computational efficiency and helps us
compute more accurate ∆-confident flowpipes.

3.2 Computation of a guaranteed ∆-confident flowpipe

When we train neural network surrogate models, typically we minimize a loss function defined
as the difference between the K-step trajectory predicted by the surrogate model and the actual
trajectory. Depending on the dynamics of the underlying stochastic system M and depending on
how well the surrogate model is trained, there is potential for error when predicting the trajectory

5

from a previously unseen initial state. To give probabilistic bounds on this error, we utilize conformal
prediction. We formally define the notion of the residual error as follows.

Definition 3 (Residual Error). Given a realization (s0, σs0) sampled from the stochastic black-box
system M , the residual Rj ∈ R>0 is the distance between the (j + n)-th component of the trajectory
and Fj(s0)

2 Formally, we define

Rj =
∣

∣

∣
e⊤j+nσs0 − Fj(s0)

∣

∣

∣

where, ej ∈ R
n(K+1) is the jth base vector of Rn(K+1).

We consider the component-wise residual Rj since every single component e⊤j+nσs0 in σs0 may
represent a different quantity at a different time. For example, it would not make sense to define
a joint error of the position and velocity of a system at some time, which motivates the definition
of the component-wise error. Now that we have defined the residual Rj for a component j, let us
compute this residual for all calibration trajectories from Dtest, i.e., for σs0,i , i ∈ [L].

Definition 4 (Calibration Dataset). For a given test dataset Dtest, the calibration dataset Rj
Dtest

, j ∈

[nK], is a collection of pairs (s0,i, R
j
i), i ∈ [L], such that

Rj
Dtest

=
{(

s0,i, R
j
i

)

| (s0,i, σs0,i) ∈ Dtest, i ∈ [L]
}

.

where Rj
i =| e⊤j+nσs0,i − Fj(s0,i) |.

As our access to the underlying system M is limited to a finite number of pre-recorded trajecto-
ries, it is not possible to exactly compute the distribution of the residual Rj, j ∈ [nK]. Consequently,
we cannot compute the δ-quantile of Rj, j ∈ [nK].3 However, we can utilize the method of conformal
prediction [22] to compute an upper bound on the δ-quantile of Rj. Based on the technique intro-
duced in Section 2, we sort the residuals Rj

i in non-decreasing order. For simplicity and without
loss of generality, let us re-index the values of Rj

1, . . . , R
j
L so that Rj

1 ≤ Rj
2 ≤ · · · ≤ Rj

L. We can now
apply conformal prediction and define Rj∗ = Rj

ℓ where ℓ = ⌈(L+1)δ⌉. Consequently, we know that

Pr[Rj ≤ Rj∗] ≥ δ.

In other words, the ℓ-th smallest residual Rj∗ is an upper bound for the δ-quantile of the random
variable Rj.

Recall that our ultimate goal is to compute a ∆-confident flowpipe X for trajectories σs0 from M

with distribution s0
W
∼ I . To that end, we compute the vector of upper bounds for all components

of residual’s δ-quantile from conformal inference, and we denote it by R∗ =
[

R1∗, · · · , RnK∗
]⊤

.

Theorem 1. Let X̄ be a surrogate flowpipe of the surrogate model F for the set of initial conditions
I. Let Rj∗ be computed from the calibration dataset Rj

Dtest
, j ∈ [nK] with confidence probability

δ ∈ (0, 1) where Rj
Dtest

is based on i.i.d. test trajectories in Dtest from the stochastic system M with

2Note that we denote the trajectory as a single row vector where component-wise states at each time-stamp are
concatenated. Thus, for the ith state variable at time k, j will be equal to i ·k+n (skipping the first n component-wise
values corresponding to the initial state s0).

3The δ-quantile of a random variable Rj is defined as inf{z ∈ R|Pr[Rj ≤ z] ≥ δ} for δ ∈ (0, 1).

6

initial state s0
W
∼ I. Define the inflated surrogate flowpipe,

X = X̄ ⊕ Zonotope(0,diag([01×n, R∗])), R∗ =
[

R1∗, · · · , RnK∗
]

.

Then, it holds that X is a ∆-confident flowpipe with ∆ = 1−nK(1− δ) for σs0 from M with initial

state s0
W
∼ I.

Proof. Based on the definition of the conformity score, we have Pr
[

Rj ≤ Rj∗
]

≥ δ. Therefore, we
have that

Pr[Rj > Rj∗] < 1− δ.

By applying the union bound over probabilities, it follows that

Pr





nK
∨

j=1

(

Rj > Rj∗
)



 < nK(1− δ).

The negation of this statement implies that

Pr





nK
∧

j=1

(

Rj ≤ Rj∗
)



 ≥ 1− nK(1− δ). (3)

We now denote ∆ = 1− nK(1− δ) so that we can rephrase the above statement as,

Pr





nK
∧

j=1

(

| e⊤j+nσs0 − Fj(s0) |≤ Rj∗
)



 ≥ ∆.

Next, we define the interval Cj(s0) =
[

Fj(s0)−Rj∗ , Fj(s0) +Rj∗
]

. Accordingly, we have

Pr





nK
∧

j=1

(

e⊤j+nσs0 ∈ Cj(s0)
)



 ≥ ∆

Based on this, we can now see that

Pr [σs0 ∈ Zonotope (F(s0),diag ([01×n, R∗]))] ≥ ∆ (4)

Since s0
W
∼ I and X̄ is a surrogate flowpipe for the surrogate model F on I , i.e., s0 ∈ I implies

F(s0) ∈ X̄ , we can conclude,

Zonotope (F(s0),diag ([01×n, R∗])) ⊂ X̄ ⊕ Zonotope (0,diag ([01×n, R∗])) = X (5)

This fact implies that Pr[σs0 ∈ X] ≥ ∆, i.e., X is a ∆-confident flowpipe, which completes the
proof.

Theorem 1 tells us how to obtain a ∆-confident flowpipe given the K-step datasets Dtrain and
Dtest. We can now compute a lower bound on the minimum size of the calibration dataset that
we need given a confidence probability ∆ ∈ (0, 1). Specifically, we note that ∆ = 1 − nK(1− δ) is

7

Figure 1: Adaptive Cruise Control: The black lines indicate the probabilistic flowpipe computed
using the exact-star technique on the learned surrogate model combined with conformal inference
with failure probability ε = 0.01. The green shaded areas and blue lines are computed from 100000
random trajectories from the ODE model. The green area shows the maximum and minimum value
of the trajectory components over this dataset, and the blue line represents their average value.

equivalent to δ = 1 − 1−∆
nK . The minimum required size L of the calibration dataset has to satisfy

⌈(L + 1)δ⌉ ≤ L which gives us the explicit lower bound L ≥ ⌈1+δ
1−δ

⌉. In this work, we defined the
residual component-wise, recall Definition 3. As observed in the proof of Theorem 1, we thus had
to apply the union bound over all residuals Rj. This may in some cases be conservative, i.e., for
large system dimension n or large trajectory horizon K. However, there are possible ways to define
a residual in a way that removes this conservatism. For example, in our recent work [36] we show
how to obtain tight conformal prediction regions for time series. Applying this method will also
result in better data efficiency. We intend to explore this method in the context of this paper in
future work and refer the reader to [36] for more details.

4 Experimental Results

We consider an adaptive cruise controller, a quadcopter, and the Laubloomis benchmarks in [6]. In
all case studies, we train 1-step surrogate models that we combine into a K-step surrogate model
for trajectory prediction. For reachability analysis of the surrogate model we use the approx-star
algorithm from [21] for the Laubloomis case study, while we use the exact-star algorithm from [21]
for the adaptive cruise controller and the quadcopter. The underlying system is described by an
ordinary differential equation (ODE), potentially affected by noise, and we consider the system at
discrete time points. Therefore, we let the control input and the noise be fixed over the sampling

8

Failure Conformal inference Reachability Failure Conformal inference Reachability
Probability Run-time Run-time Probability Run-time Run-time

0.10 2.9439 sec 9.8059 sec 0.05 2.8783 sec 10.7457 sec
0.09 2.8511 sec 9.0679 sec 0.04 2.7901 sec 10.0033 sec
0.08 2.7367 sec 10.0502 sec 0.03 3.096 sec 9.4364 sec
0.07 2.8785 sec 9.7935 sec 0.02 3.3982 sec 10.0027 sec
0.06 2.9341 sec 9.7988 sec 0.01 2.8536 sec 9.7945 sec

Table 1: Adaptive Cruise Control: Computation times of our method for different user-provided
failure probabilities ε. The reachability run-time is the overall time for reachability analysis over the
surrogate model and constructing the probabilistic flowpipe with conformal inference. The run-time
for training a surrogate ReLU model was 2 hours and the run-time for test data-generation was 122
seconds.

time [kδt, (1+k)δt], k ∈ [K]. The star-sets that we obtain are n > 3 dimensional. Illustration of our
results is thus demonstrated through their projection onto state components. This is important to
keep in mind when assessing the tightness of the obtained star-sets.

Adaptive Cruise Control. We consider a 6-dimensional system consisting of a leader and a follower
vehicle that is equipped with an adaptive cruise controller. The underlying black-box model is
described by the ODE model

















ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6

















=

















x2
x3

−2x3 − 4− µx22
x5
x6

−2x6 + 2u− µx24

















+ v, I =































s0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

















90
32
0
10
30
0

















≤ s0 ≤

















110
32.2
0
11
30.2
0















































(6)

where v ∼ N (0, d2) with standard deviation d = diag([1, 0.1, 0.05, 1, 0.1, 0.05]). The friction coeffi-
cient is µ = 10−4. The state components x1, x2, x3 are the position, velocity, and hidden state of the
lead vehicle, while the components x4, x5, x6 are the position, velocity, and hidden state of the ego
vehicle. The surrogate model is a neural network with ReLU activation functions and with layers
[6, 32, 32, 32, 6]. The surrogate model is trained from a training dataset generated from Eq. (6) where
the control input u is generated by the adaptive cruise controller. To perform conformal inference,
we generate L = 40000 i.i.d. 50-step trajectories from Eq. (6) with sampling time δt = 0.1 sec that
we collect within the test dataset Dtest. Fig. 1 shows the projections of our probabilistic flowpipe
onto its state components by setting ε = 0.01. To visualize the tightness of the probabilistic flow-
pipe, we generate 100000 additional i.i.d. trajectories from Eq. (6) and include their projection on
their state components in Fig. 1 as well. Table 1 shows the run time of our experimental results for
the range ε ∈ [0.01, 0.1].

Quadcopter. We consider a 12-dimensional Quadcopter model that was introduced in [6]. The ODE
model for the Quadcopter is shown in Eq. (7). The additive noise v = [v1, v2, · · · , v12] is Gaussian
v ∼ N (0, d2) with standard deviation d = diag([0.05 × ~11×6, 0.01 × ~11×6]). The controller is a
neural network controller that was presented in [6]. From this model, we generate a test dataset
with L = 40000 data-points by sampling 50-step trajectories with sampling time δt = 0.1 sec. We

9

Figure 2: Quadcopter: The black lines indicate the probabilistic flowpipe computed using the
exact-star technique on the learned surrogate model combined with conformal inference with failure
probability ε = 0.01. The green shaded areas and blue lines are computed from 100000 random
trajectories from the ODE model. The green area shows the maximum and minimum value of
trajectory components over this dataset, and the blue line represents their average value.

also train our surrogate model as a neural network with layers [12, 20, 20, 20, 12] from an additional
training dataset. The run time for our data-driven reachability analysis is shown in Table 2 and the
projections of the probabilistic flowpipes onto its state components for ε = 0.01 is shown in Fig. 2.

Laubloomis. Finally, we consider a 7-dimensional system which is known as Laubloomis [6]. The
ODE model for Laubloomis is shown in Eq. (8). To provide a comparison with deterministic
reachability analysis techniques, we do not add noise to the system in this case so that the system
is effectively deterministic. However, note that in our approach we need to sample the initial
conditions. We thus generate a test dataset of size L = 160000 consisting of 200-step trajectories
with sampling time δt = 0.01.





















ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6
ẋ7





















=





















1.4x3 − 0.9x1
2.5x5 − 1.5x2

0.6x7 − 0.8x3x2
2.0− 1.3x4x3

0.7x1 − 1.0x4x5
0.3x1 − 3.1x6

1.8x6 − 1.5x7x2





















, I =







































s0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣





















1.05
0.9
1.35
2.25
0.85
−0.05
0.3





















≤ s0 ≤





















1.35
1.2
1.65
2.55
1.15
0.25
0.6



























































(8)

10

Failure Conformal inference Reachability Failure Conformal inference Reachability
Probability Run-time Run-time Probability Run-time Run-time

0.10 2.475 sec 7.3779 sec 0.05 2.4762 sec 7.5 sec
0.09 2.4754 sec 6.8911 sec 0.04 2.4822 sec 7.3542 sec
0.08 2.5894 sec 7.2825 sec 0.03 2.5316 sec 7.5548 sec
0.07 2.6046 sec 7.5339 sec 0.02 2.364 sec 7.2504 sec
0.06 2.4674 sec 7.1876 sec 0.01 3.5858 sec 7.4376 sec

Table 2: Quadcopter: Computation times of our method for different user-provided failure proba-
bilities ε. The reachability run-time is the overall time for reachability analysis over the surrogate
model and constructing the probabilistic flowpipe with conformal inference. The data generation
time for the test dataset is 273 sec and the run time for training the ReLU model on training
dataset is 2 hours and 25 minutes.

Failure Conformal inference Reachability Failure Conformal inference Reachability
Probability Run-time Run-time Probability Run-time Run-time

0.10 89.9305 sec 93.8766 sec 0.05 71.3700 sec 49.7159 sec
0.09 72.0818 sec 53.0224 sec 0.04 67.8528 sec 50.1378 sec
0.08 74.2623 sec 50.0363 sec 0.03 72.8819 sec 50.1828 sec
0.07 71.7105 sec 49.7770 sec 0.02 85.9235 sec 49.7792 sec
0.06 69.4149 sec 50.7159 sec 0.01 91.9276 sec 92.9743 sec

Table 3: Laubloomis: Computation times of our method for different user-provided failure proba-
bilities ε. The reachability run-time is the overall time for reachability analysis over the surrogate
model and constructing the probabilistic flowpipe with conformal inference. The data generation
time for the test dataset is 19 minutes, and the run time for training the ReLU model on the training
dataset is 2 hours and 30 minutes.

Again, we train a surrogate model as a neural network with ReLU activation functions and
layers [7, 20, 20, 20, 7]. Since the horizon length of trajectories is long, we utilize the approx-star
approach instead of the exact-star approach which is more efficient at the cost of conservatism. The
simulation of the results for ε = 0.01 is also demonstrated in Fig.3. The reachability run time for
our data driven probabilistic approach for a range of failure probabilities ε ∈ [0.01, 0.1] is shown
in Table 3. Finally, we utilize the CORA toolbox [37] to compare to our results, which is shown
in Fig.3. We emphasize that the CORA toolbox is only applicable to deterministic systems and
assumes access to the model, while our approach only assumes availability of data.

5 Conclusion

We proposed a data-driven approach to analyze the reachability of stochastic dynamical systems.
Particularly, we studied stochastic dynamical systems when no mathematical model of the system
is available, and the only information available to us is data observed from the system. We showed
how to compute probabilistic reach sets, so called probabilistic flowpipes, for this system from data.
Probabilistic flowpipes ensure that the probability of a new trajectory not being in the flowpipe is
upper bounded by a user-defined threshold. Our approach consists of first learning a surrogate model

11































































































ẋ1 = cos(x8) cos(x9)x4 + (sin(x7) sin(x8) cos(x9)− cos(x7) sin(x9))x5

+(cos(x7) sin(x8) cos(x9) + sin(x7) sin(x9))x6 + v1
ẋ2 = cos(x8) sin(x9)x4 + (sin(x7) sin(x8) sin(x9) + cos(x7) cos(x9))x5

+(cos(x7) sin(x8) sin(x9)− sin(x7) cos(x9))x6 + v2
ẋ3 = sin(x8)x4 − sin(x7) cos(x8)x5 − cos(x7) cos(x8)x6 + v3
ẋ4 = x12x5 − x11x6 − 9.81 sin(x8) + v4
ẋ5 = x10x6 − x12x4 + 9.81 cos(x8) sin(x7) + v5
ẋ6 = x11x4 − x10x5 + 9.81 cos(x8) cos(x7)− 9.81− u1/1.4 + v6
ẋ7 = x10 + (sin(x7)(sin(x8)/ cos(x8)))x11 + (cos(x7)(sin(x8)/ cos(x8)))x12 + v7
ẋ8 = cos(x7)x11 − sin(x7)x12 + v8
ẋ9 = (sin(x7)/ cos(x8))x11 + (cos(x7)/ cos(x8))x12 + v9
ẋ10 = −0.9259x11x12 + 18.5185u2 + v10
ẋ11 = 0.9259x10x12 + 18.5185u3 + v11
ẋ12 = v12

I =














































































s0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣









































−0.2
−0.2
−0.2
−0.2
−0.2
−0.2
0
0
0
0
0
0









































≤ s0 ≤









































0.2
0.2
0.2
0.2
0.2
0.2
0
0
0
0
0
0























































































































(7)

of the system from a training dataset. We then used the surrogate model to perform reachability
analysis over it using existing tools for deterministic reachability analysis. To quantify the error
between the surrogate model and the underlying unknown system, we finally use conformal inference
on a test dataset. We illustrated our approach using three case studies.

Acknowledgments

This work was supported by the National Science Foundation through the following grants: CA-
REER award (SHF-2048094), CNS-1932620, FMitF-1837131, CCF-SHF-1932620, the Airbus In-
stitute for Engineering Research, and funding by Toyota R&D and Siemens Corporate Research
through the USC Center for Autonomy and AI.

References

[1] A. P. Vinod and M. M. Oishi, “Stochastic reachability of a target tube: Theory and computa-
tion,” Automatica, vol. 125, p. 109458, 2021.

[2] A. Abate, M. Prandini, J. Lygeros, and S. Sastry, “Probabilistic reachability and safety for
controlled discrete time stochastic hybrid systems,” Automatica, vol. 44, no. 11, pp. 2724–2734,
2008.

[3] A. Abate, S. Amin, M. Prandini, J. Lygeros, and S. Sastry, “Computational approaches to
reachability analysis of stochastic hybrid systems,” in International Workshop on Hybrid Sys-
tems: Computation and Control. Springer, 2007, pp. 4–17.

[4] Y. Yang, J. Zhang, K.-q. Cai, and M. Prandini, “A stochastic reachability analysis approach to
aircraft conflict detection and resolution,” in 2014 IEEE Conference on Control Applications
(CCA), 2014, pp. 2089–2094.

[5] C. Huang, J. Fan, W. Li, X. Chen, and Q. Zhu, “Reachnn: Reachability analysis of neural-
network controlled systems,” ACM Transactions on Embedded Computing Systems (TECS),
vol. 18, no. 5s, pp. 1–22, 2019.

12

Figure 3: Laubloomis: Shows our data driven reachability analysis from 200-step dataset along with
100 random trajectories generated from M . We also included the reachability analysis from CORA
toolbox that is based on the ideally known model depicted as green regions. The bounds in black
line shows the reachability analysis with approx-star technique combined with conformal inference
with prescribed failure probability ε = 0.01.

[6] C. Huang, J. Fan, X. Chen, W. Li, and Q. Zhu, “Polar: A polynomial arithmetic framework
for verifying neural-network controlled systems,” in International Symposium on Automated
Technology for Verification and Analysis. Springer, 2022, pp. 414–430.

[7] X. Chen, E. Ábrahám, and S. Sankaranarayanan, “Flow*: An analyzer for non-linear hybrid
systems,” in Computer Aided Verification: 25th International Conference, CAV 2013, Saint
Petersburg, Russia, July 13-19, 2013. Proceedings 25. Springer, 2013, pp. 258–263.

[8] S. Dutta, X. Chen, S. Jha, S. Sankaranarayanan, and A. Tiwari, “Sherlock-a tool for verifi-
cation of neural network feedback systems: demo abstract,” in Proceedings of the 22nd ACM
International Conference on Hybrid Systems: Computation and Control, 2019, pp. 262–263.

[9] X. Koutsoukos and D. Riley, “Computational methods for reachability analysis of stochastic
hybrid systems,” in Hybrid Systems: Computation and Control: 9th International Workshop,
HSCC 2006, Santa Barbara, CA, USA, March 29-31, 2006. Proceedings 9. Springer, 2006,
pp. 377–391.

[10] S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin, “Hamilton-jacobi reachability: A brief
overview and recent advances,” in 2017 IEEE 56th Annual Conference on Decision and Control
(CDC). IEEE, 2017, pp. 2242–2253.

13

[11] L. Bortolussi and G. Sanguinetti, “A statistical approach for computing reachability of non-
linear and stochastic dynamical systems,” in International Conference on Quantitative Evalu-
ation of Systems. Springer, 2014, pp. 41–56.

[12] M. Kwiatkowska, G. Norman, and D. Parker, “Stochastic model checking,” Formal Methods
for Performance Evaluation: 7th International School on Formal Methods for the Design of
Computer, Communication, and Software Systems, SFM 2007, Bertinoro, Italy, May 28-June
2, 2007, Advanced Lectures 7, pp. 220–270, 2007.

[13] A. Legay, A. Lukina, L. M. Traonouez, J. Yang, S. A. Smolka, and R. Grosu, “Statistical model
checking,” in Computing and software science: state of the art and perspectives. Springer,
2019, pp. 478–504.

[14] A. Devonport, F. Yang, L. El Ghaoui, and M. Arcak, “Data-driven reachability analysis with
christoffel functions,” in 2021 60th IEEE Conference on Decision and Control (CDC). IEEE,
2021, pp. 5067–5072.

[15] A. Alanwar, A. Koch, F. Allgöwer, and K. H. Johansson, “Data-driven reachability analysis
from noisy data,” IEEE Transactions on Automatic Control, 2023.

[16] A. Devonport and M. Arcak, “Data-driven reachable set computation using adaptive gaussian
process classification and monte carlo methods,” in 2020 American Control Conference (ACC).
IEEE, 2020, pp. 2629–2634.

[17] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. Gillula, and C. J. Tomlin,
“A general safety framework for learning-based control in uncertain robotic systems,” IEEE
Transactions on Automatic Control, vol. 64, no. 7, pp. 2737–2752, 2018.

[18] A. Lin and S. Bansal, “Generating formal safety assurances for high-dimensional reachability,”
in 2023 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2023,
pp. 10 525–10 531.

[19] C. Fan, B. Qi, S. Mitra, and M. Viswanathan, “Dryvr: Data-driven verification and compo-
sitional reasoning for automotive systems,” in International Conference on Computer Aided
Verification. Springer, 2017, pp. 441–461.

[20] N. Matni and S. Tu, “A tutorial on concentration bounds for system identification,” in 2019
IEEE 58th Conference on Decision and Control (CDC). IEEE, 2019, pp. 3741–3749.

[21] H.-D. Tran, X. Yang, D. Manzanas Lopez, P. Musau, L. V. Nguyen, W. Xiang, S. Bak, and
T. T. Johnson, “Nnv: the neural network verification tool for deep neural networks and learning-
enabled cyber-physical systems,” in Computer Aided Verification: 32nd International Confer-
ence, CAV 2020, Los Angeles, CA, USA, July 21–24, 2020, Proceedings, Part I. Springer,
2020, pp. 3–17.

[22] V. Vovk, A. Gammerman, and G. Shafer, Algorithmic learning in a random world. Springer,
2005, vol. 29.

[23] J. Lei and L. Wasserman, “Distribution-free prediction bands for non-parametric regression,”
Journal of the Royal Statistical Society: Series B: Statistical Methodology, pp. 71–96, 2014.

14

[24] L. Bortolussi, F. Cairoli, N. Paoletti, S. A. Smolka, and S. D. Stoller, “Neural predictive mon-
itoring,” in Runtime Verification: 19th International Conference, RV 2019, Porto, Portugal,
October 8–11, 2019, Proceedings 19. Springer, 2019, pp. 129–147.

[25] F. Cairoli, N. Paoletti, and L. Bortolussi, “Conformal quantitative predictive monitoring of stl
requirements for stochastic processes,” in Proceedings of the 26th ACM International Conference
on Hybrid Systems: Computation and Control, 2023, pp. 1–11.

[26] L. Lindemann, X. Qin, J. V. Deshmukh, and G. J. Pappas, “Conformal prediction for stl runtime
verification,” in Proceedings of the ACM/IEEE 14th International Conference on Cyber-Physical
Systems (with CPS-IoT Week 2023), 2023, pp. 142–153.

[27] X. Qin, Y. Xia, A. Zutshi, C. Fan, and J. V. Deshmukh, “Statistical verification of cyber-
physical systems using surrogate models and conformal inference,” in 2022 ACM/IEEE 13th
International Conference on Cyber-Physical Systems (ICCPS). IEEE, 2022, pp. 116–126.

[28] A. B. Kurzhanski and P. Varaiya, “Ellipsoidal techniques for reachability analysis,” in Hybrid
Systems: Computation and Control: Third International Workshop, HSCC 2000 Pittsburgh,
PA, USA, March 23–25, 2000 Proceedings. Springer, 2002, pp. 202–214.

[29] J. Lei, M. G’Sell, A. Rinaldo, R. J. Tibshirani, and L. Wasserman, “Distribution-free predictive
inference for regression,” Journal of the American Statistical Association, vol. 113, no. 523, pp.
1094–1111, 2018.

[30] A. N. Angelopoulos and S. Bates, “A gentle introduction to conformal prediction and
distribution-free uncertainty quantification,” arXiv preprint arXiv:2107.07511, 2021.

[31] L. Lindemann, M. Cleaveland, G. Shim, and G. J. Pappas, “Safe planning in dynamic environ-
ments using conformal prediction,” IEEE Robotics and Automation Letters, 2023.

[32] R. Luo, S. Zhao, J. Kuck, B. Ivanovic, S. Savarese, E. Schmerling, and M. Pavone, “Sample-
efficient safety assurances using conformal prediction,” in Algorithmic Foundations of Robotics
XV: Proceedings of the Fifteenth Workshop on the Algorithmic Foundations of Robotics.
Springer, 2022, pp. 149–169.

[33] R. J. Tibshirani, R. Foygel Barber, E. Candes, and A. Ramdas, “Conformal prediction under
covariate shift,” Advances in neural information processing systems, vol. 32, 2019.

[34] H.-D. Tran, D. Manzanas Lopez, P. Musau, X. Yang, L. V. Nguyen, W. Xiang, and T. T. John-
son, “Star-based reachability analysis of deep neural networks,” in Formal Methods–The Next
30 Years: Third World Congress, FM 2019, Porto, Portugal, October 7–11, 2019, Proceedings
3. Springer, 2019, pp. 670–686.

[35] H.-D. Tran, F. Cai, M. L. Diego, P. Musau, T. T. Johnson, and X. Koutsoukos, “Safety veri-
fication of cyber-physical systems with reinforcement learning control,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 18, no. 5s, pp. 1–22, 2019.

[36] M. Cleaveland, I. Lee, G. J. Pappas, and L. Lindemann, “Conformal prediction regions for time
series using linear complementarity programming,” arXiv preprint arXiv:2304.01075, 2023.

[37] M. Althoff, “An introduction to cora 2015.” ARCH@ CPSWeek, vol. 34, pp. 120–151, 2015.

15

	Introduction
	Problem statement and Preliminaries
	Scalable Data-Driven Reachability
	Computing Reachsets for Surrogate Models
	ReLU Surrogate Model

	Computation of a guaranteed -confident flowpipe

	Experimental Results
	Conclusion

