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Abstract— Port-Hamiltonian theory is an established way to
describe nonlinear physical systems widely used in various
fields such as robotics, energy management, and mechanical
engineering. This has led to considerable research interest in
the control of Port-Hamiltonian systems, resulting in numerous
model-based control techniques. However, the performance and
stability of the closed-loop typically depend on the quality
of the PH model, which is often difficult to obtain using
first principles. We propose a Gaussian Processes (GP) based
control approach for Port-Hamiltonian systems (GPC-PHS)
by leveraging gathered data. The Bayesian characteristics of
GPs enable the creation of a distribution encompassing all
potential Hamiltonians instead of providing a singular point
estimate. Using this uncertainty quantification, the proposed
approach takes advantage of passivity-based robust control
with interconnection and damping assignment to establish
probabilistic stability guarantees.

I. INTRODUCTION

The modeling and control of physical systems is a crucial
task in a broad range of domains such as physics, engi-
neering, applied mathematics, and medicine [1]. Applications
range from model-based control of autonomous systems [2]
over the perception of dynamical objects [3] to the under-
standing of complex chemical processes [4]. A large class
of physical systems can be described by Port-Hamiltonian
systems (PHS), see [5].

PHSs are a powerful mathematical framework for model-
ing and analyzing physical systems, widely used in control
theory, robotics, mechanical engineering, and other related
fields. The PHS approach describes physical systems as a set
of interconnected subsystems, each representing a specific
physical domain such as electronics or mechanics. The
dynamics of each subsystem is described by Hamiltonian
equations, while the interconnections between subsystems
are described by power-based port variables. This unique
approach allows for systematic analysis of complex physical
systems, providing a clear and intuitive understanding of
their behavior, and enabling the design of efficient control
strategies. Thus, in recent years, the control of PHS has
gained significant attention in research, see [6].

The interconnection and damping assignment - passivity
based control (IDA-PBC) technique, introduced in [7], is a
well-known PBC design method for the control of physical
system, where the desired closed-loop dynamics takes the
form of a PHS. The IDA-PBC methodology involves two
main steps. The first step is the interconnection assign-
ment, which involves the design of interconnections between
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Fig. 1. Overview of the GPC-PHS approach. First, a GP-PHS model
is used to learn the partially unknown dynamics of the physical systems.
Then, the model enables the development of an IDA-PBC-based controller
that is robustified against the model mismatch given by the uncertainty
quantification of the GP-PHS.

subsystems that ensure the stability of the overall system.
The second step is damping assignment, which involves the
design of damping terms to regulate the energy flow within
the system and ensure its passivity. It has been successfully
applied to a wide range of systems, including mechanical
systems, power systems, and biological systems [8]–[10].

However, this approach requires knowledge about the
Hamiltonian, the interconnection, and damping matrix of the
system to be controlled. These governing equations can be
challenging to obtain due to highly nonlinear dynamics or
the complexity of the physical system. Recently, we have
introduced Gaussian process Port-Hamiltonian systems (GP-
PHS) as Bayesian data-driven techniques for the identifi-
cation of physical systems, see [11]. Gaussian processes
(GPs) are a powerful and flexible machine learning tool
that has gained significant attention in recent years. GPs
provide a probabilistic framework for modeling complex and
noisy data, enabling not only predictions but also uncertainty
quantification. The goal of this paper is to combine the
power of IDA-PBC based control approaches with data-
driven Bayesian GP-PHS models to enable the control of
physical systems with partially unknown dynamics.

In [12], the authors summarize data-driven control ap-
proaches for PHS. Adaptive control approaches for PHS are
presented in [13], [14] and a reinforcement control for PHS
in [15]. However, these approaches are limited to parametric
uncertainties and lack of analysis tools, as well as a detailed
study of the properties of the closed-loop system. In contrast,
iterative learning control [16] and repetitive control [17]
allow control of PHS without a priori knowledge of the
system, but require repetitive executions. A controller that is
robust to model uncertainties is introduced in [18] but suffers
from the trade-off between performance and robustness.
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Contribution: In this paper, we propose a data-driven
Bayesian control approach for physical systems with partially
unknown dynamics. For this purpose, we employ Gaussian
Process Port-Hamiltonian system models to learn the un-
known dynamics of the system based on state measurements.
Then, we introduce an IDA-PBC based control approach,
which uses the mean prediction of the GP-PHS model to
render the closed-loop dynamics to the desired PHS as close
as possible. The uncertainty quantification of the GP-PHS
model allows us to robustify the controller against the model
mismatch such that the closed-loop has a stable desired
equilibrium with high probability. Finally, we show that
the closed-loop dynamics converges to the desired PHS for
increasing amount of data.

The remainder of the paper is structured as follows.
We introduce the idea of PHS and the problem setting
in Section II, followed by the proposed GPC-PHS control
law in Section III. Finally, a simulation shows the benefits
of GPC-PHS in Section IV.

II. PRELIMINARIES

In this section, we briefly describe the class of Port-
Hamiltonian systems and introduce the problem setting.

A. Port-Hamiltonian Systems

Composing Hamiltonian systems with input/output ports
leads to a Port-Hamiltonian system, which is a dynamical
system with ports that specify the interactions of its compo-
nents. The dynamics of a PHS is fully described by1

ẋ = [J(x)−R(x)]∇xH(x) +G(x)u

y = G(x)⊤∇xH(x),
(1)

with the state x(t) ∈ Rn (also called energy variable) at
time t ∈ R≥0, the total energy represented by a smooth
function H : Rn → R called the Hamiltonian, and the I/O
ports u(t),y(t) ∈ Rm.

Remark 1: We focus here on input-state-output PHSs
where there are no additional algebraic constraints on the
state variables, see [19].
The matrix J : Rn → Rn×n is skew-symmetric and specifies
the interconnection structure and the matrix R : Rn →
Rn×n,R = R⊤ ⪰ 0 specifies the dissipation in the system.
Interaction with the environment is defined by the matrix
G : Rn → Rn×m. The structure of the interconnection
matrix J is typically derived from kinematic constraints in
mechanical systems, Kirchhoff’s laws, power transformers,
gyrators, etc. Loosely speaking, the interconnection of the
elements in the PHS is defined by J , whereas the Hamil-
tonian H characterizes their dynamical behavior. The port
variables u and y are conjugate variables in the sense that

1Vectors a and vector-valued functions f(·) are denoted with bold char-
acters. Matrices are described with capital letters. In is the n-dimensional
identity matrix and 0n the zero matrix. The expression A:,i denotes the
i-th column of A. For a positive semidefinite matrix Λ, ∥x − y∥2Λ =
(x − y)⊤Λ(x − y). R>0 denotes the set of positive real numbers, while
R≥0 is the set of non-negative real numbers. Ci denotes the class of i-
th times differentiable functions. The operator ∇x with x ∈ Rn denotes
[ ∂
∂x1

, . . . , ∂
∂xn

]⊤.

their duality product defines the power flows exchanged
with the environment of the system, for instance, currents
and voltages in electrical circuits or forces and velocities in
mechanical systems, see [6] for more information on PHS.

Remark 2: PHSs are a generalization of classical Hamilto-
nian systems but with the capability of including dissipation,
input/output ports, and non-canonical coordinates. Thus, any
Hamiltonian system can be represented by a PHS (1) with

J(x) =

[
0 I
−I 0

]
, R = 0, G = 0

The class of PHS extends beyond the kinds of physical
systems from which it was originally motivated. For exam-
ple, many nonlinear systems with an asymptotically stable
equilibrium point can be transformed into a PHS [7].

B. Problem Setting

We consider the problem of designing a control law for a
partially unknown physical system whose dynamics can be
written in Port-Hamiltonian form (1). We assume that we
have access to noisy observations x̃(t) ∈ Rn of the system
state x(t) ∈ Rn whose evolution over time t ∈ R≥0 follows

ẋ(t) = [J(x)−R(x)]∇xH(x) +G(x)u(t) (2)

starting at x(0) ∈ Rn. The Hamiltonian H ∈ C∞ is
assumed to be completely unknown due to unstructured
uncertainties in the system typically imposed by nonlinear
springs, physical coupling effects, or highly nonlinear elec-
trical and magnetic fields. The parametric structures of the
interconnection matrix J : Rn → Rn×n, dissipation matrix
R : Rn → Rn×n and I/O matrix G : Rn → Rn×m are
assumed to be known, but the parameters themselves might
be unknown. Given a dataset of timestamps {ti}Ni=1 and
noisy state observations with inputs, {x̃(ti),u(ti)}Ni=1, our
aim is to learn a control law uc : R≥0 → Rm that renders
the system (1) in the closed-loop to a desired PHS given by

ẋ = [Jd(x)−Rd(x)]∇xHd(x). (3)

The dataset x̃(ti) is assumed to be generated according to
x̃(ti) = x(ti) + η where x(t) comes from the system (2)
with zero-mean Gaussian noise η ∼ N (0,diag[σ1, . . . , σn]).
The variances σ1, . . . , σn ∈ R≥0 might be unknown.

III. CONTROL OF PHS

The general idea of GPC-PHS is depicted in Fig. 1. First,
we collect (noisy) state measurements from the physical
system, which are then used to train a GP-PHS model. Due to
its Bayesian nature, this model provides not only a prediction
of the dynamics of the physical system but also uncertainty
quantification. The mean prediction is used to design a con-
trol law based on IDA-PBC. The uncertainty prediction of the
GP-PHS model is leveraged to make the control law robust
against the model mismatch. This allows us to guarantee the
desired closed-loop behavior under mild assumptions. We
start with a brief review of GP-PHS followed by presenting
the IDA-PBC control law and the probabilistic guarantees.



A. Gaussian Process Port-Hamiltonian System
A GP-PHS, introduced in [11], is a probabilistic model

for learning partially unknown PHS based on state measure-
ments. The main idea is to model the unknown Hamiltonian
with a GP while treating the parametric uncertainties in
J,R and G as hyperparameters, see Fig. 2. A Gaussian
process GP(mGP(x), k(x,x

′) is a stochastic process on
some set X ⊆ Rn where any finite collection of points
x1, . . . ,xL ∈ X follows a multivariate Gaussian distributionf(x

1)
...

f(xL)

∼ N


m(x1)

...
m(xL)

,
k(x

1,x1) . . . k(x1,xL)
...

. . .
...

k(xL,x1) . . . k(xL,xL)




with mean function mGP : Rn → R, kernel function k :
Rn×Rn → R, and sample f ∼ GP(mGP, k). By leveraging
that GPs are closed under affine operations, the dynamics of
a PHS (1) is integrated into the GP by

ẋ ∼ GP(Ĝ(x | φG)u, kphs(x,x
′)), (4)

where the new kernel function kphs is given by

kphs(x,x
′) = σ2

f ĴR(x | φJ ,φR)Π(x,x′)Ĵ⊤
R (x′ | φJ ,φR)

Πi,j(x,x
′) =

∂

∂zi∂zj
exp(−∥z − z′∥2Λ)

∣∣∣
z=x,z′=x′

with the Hessian Π: Rn × Rn → Rn×n of the squared ex-
ponential kernel, see [20]. Thus, the dynamics (4) describes
a prior distribution over PHS. The matrices J,R and G of
the PHS system (2) are estimated by ĴR(x | φJ ,φR) =
Ĵ(x | φJ) − R̂(x | φR) and Ĝ(x | φG). The unknown set
of parameters is described by φJ ∈ ΦJ ⊆ RnφJ , nφJ

∈ N
for the estimated interconnection matrix Ĵ(x|φJ) ∈ Rn×n,
φR ∈ ΦR ⊆ RnφR , nφR

∈ N for the estimated dissipation
matrix R̂(x|φR) ∈ Rn×n and φG ∈ ΦG ⊆ RnφG , nφG

∈ N
for the estimated I/O matrix Ĝ(x|φG) ∈ Rn×m. Together
with the signal noise σf ∈ R>0, the lengthscales Λ =
diag(l21, . . . , l

2
n) ∈ Rn

>0 of the kernel kphs, the parameter
vectors φJ ,φR,φG are treated as hyperparameters.

We start the training of the GP-PHS by using the col-
lected dataset of timestamps {ti}Ni=1 and noisy state ob-
servations with inputs {x̃(ti),u(ti)}Ni=1 of (2) in a filter
to create a dataset consisting of pairs of states X =
[x(t1), . . . ,x(tN )] ∈ Rn×N and state derivatives Ẋ =
[ẋ(t1), . . . , ẋ(tN )] ∈ Rn×N . Then, the unknown (hy-
per)parameters φ can be computed by minimization of
the negative log marginal likelihood − log p(Ẋ|φ,X) ∼
Ẋ⊤

0 K−1
phsẊ0 + log |Kphs|, with the mean-adjusted output

data Ẋ0 = [[ẋ(t1)− Ĝu(t1)]
⊤, . . . , [ẋ(tN )− Ĝu(tN )]⊤]⊤.

Once the GP model is trained, we can compute the posterior
distribution using the joint distribution with mean-adjusted
output data Ẋ0 at a test states x∗ ∈ Rn[

Ẋ0

ẋ

]
=N

(
0,

[
Kphs kphs(X,x∗)

kphs(X,x∗)⊤ kphs(x
∗,x∗)

])
.

Analogously to vanilla GP regression, the posterior distri-
bution is then fully defined by the mean µ (ẋ |x∗,D) and
the variance var (ẋ |x∗,D). For more detailed information
on GP-PHS see [11].
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GP

Resistive
elements R̂

I/O connection Ĝ
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Fig. 2. Block diagram of a Gaussian Process Port-Hamiltonian system.

B. IDA-PBC for Bayesian Port-Hamiltonian systems

In this section, we propose the data-driven based control
approach for partially unknown PHS leveraging IDA-PBC
and GP-PHS. IDA-PBC was introduced in [7], [21] as a
procedure to control physical systems described by PHS
models such that the behavior of the closed-loop follows
a desired PHS. Assume that there is a skew-symmetric
matrix Jd : X → Rn, a positive semidefinite diagonal matrix
Rd : X → Rn, and a function Hd : X → R on a compact set
X ⊆ Rn that satisfies the PDE

G⊥(x)[J(x)−R(x)]∇H=G⊥(x)[Jd(x)−Rd(x)]∇Hd,
(5)

where G⊥(x) is a full-rank left annihilator of G(x).
Definition 1: A matrix function G⊥ : X → R(n−m)×n

is a full-rank left annihilator of G : X → Rn×m on X if
G(x)⊥G(x) = 0 and rankG(x)⊥ = n−m for all x ∈ X .

Assumption 1: The desired Hamiltonian Hd is such that
xd = argminHd(x), where xd ∈ X is the equilibrium to
be stabilized.
Then, under Assumption 1, the PCH system (1) with control
input u = β(x), where

β(x) =[G⊤(x)G(x)]−1G⊤(x)

([Jd(x)−Rd(x)]∇Hd − [J(x)−R(x)]∇H)

leads to the PHS system

ẋ = Jd(x)−Rd(x)]∇Hd, (6)

with a stable equilibrium at xd.
Remark 3: For mechanical systems, IDA-PBC control is

equivalent to the theory of controlled Lagrangians [6]. Fur-
thermore, for a review on the connection between optimal
control and PBC, the reader is referred to [22]
However, IDA-PBC requires full knowledge of the govern-
ing system equation (2) which is typically hard to obtain,
see Section II-B. In the following, we introduce an IDA-
PBC control approach using the data-driven GP-PHS model
instead of the unknown system dynamics. To overcome
stability issues due to the model mismatch, the controller is
robustified based on the uncertainty of the GP-PHS model.
Before we introduce the main result, we impose the following
assumption.



Assumption 2: There exists a constant p ∈ (0, 1)
such that P (|µ (ẋi |x,D) − (J(x) − R(x))∇H(x)| ≤
βi var (ẋi |x,D) ,∀i ∈ {1, . . . , n}, x ∈ X}) ≥ 1− p
Assumption 2 is a standard assumption in GP learning which
limits the class of unknown functions to be learned to the
class of functions that the GP model can represent. See, for
example, [23] for further information.

Theorem 1: Let (4) be a GP-PHS model of the physical
system (2) based on the dataset D and let Assumptions 1
and 2 be fulfilled. Assume that there is a skew-symmetric
matrix Jd : X → Rn, a positive semidefinite diagonal matrix
Rd : X → Rn, and a function Hd : X → R on a compact set
X ⊆ Rn that satisfy

Ĝ⊥(x)µ (ẋ |x,D) = Ĝ⊥(x)[Jd(x)−Rd(x)]∇Hd (7)

where Hd, Rd are designed such that

[∇Hd]
⊤η(x) ≤ [∇Hd]

⊤Rd(x)∇Hd (8)

for all {η(x) ∈ Rn||ηi(x)| ≤ βi var (ẋi | x,D) , ∀i ∈
{1, . . . , n},x ∈ X}. Then, the control input

u(x) =[Ĝ⊤(x)Ĝ(x)]−1Ĝ⊤(x)

([Jd(x)−Rd(x)]∇Hd − µ (ẋ |x,D) (9)

for the PHS (2) leads to a closed-loop system with a stable
equilibrium xd on X with probability (1− p).

Proof: We can rewrite the partially unknown PHS (2)

ẋ = [J(x)−R(x)]∇H +G(x)u (10)

in terms of the GP-PHS model as perturbed system

ẋ = µ (ẋ |x,D) + Ĝ(x)u+ η(x), (11)

with perturbation η. Under Assumption 2, the GP-PHS
model allows us to upper-bound the uncertainty by
P (|ηi(x)| ≤ βi var (ẋi | x,D) , ∀i ∈ {1, . . . , n}) ≥ (1− p).
As consequence, there exists a η such that (10) equals (11).
Following the idea of IDA-PBC, the control input (9) applied
to (11) leads to

ẋ = [Jd(x)−Rd(x)]∇Hd + η(x), (12)

if the PDE (7) holds. Finally, we choose Hd as a Lyapunov-
like function to prove that xd is a stable equilibrium of the
perturbed PHS (12). The evolution of Hd is given by

Ḣd = [∇Hd]
⊤(Jd(x)−Rd(x))∇Hd + [∇Hd]

⊤η(x)

= −[∇Hd]
⊤Rd(x)∇Hd + [∇Hd]

⊤η(x).

With (8), that leads to P (Ḣd ≤ 0) ≥ 1−p, which concludes
the proof.

Corollary 1: The equilibrium xd will be asymptotically
stable with probability 1 − p if, in addition to Theorem 1,
xd is an isolated minimum of Hd and the largest invariant
set under the closed-loop dynamics (6) contained in

{x ∈ X |[∇Hd]
⊤Rd(x)∇Hd = 0}

equals the desired equilibrium {xd}.
Proof: That is a direct consequence of Proposition 1

in [7].

An estimate of its domain of attraction is given by the
largest bounded level set {x ∈ X |Hd(x) ≤ c}. Higher
noise in the state measurements would increase the bound
in Assumption 2 so that the controller needs to be ”more
robust” by designing Hd and Rd to satisfy condition (8).
So far, Theorem 1 states that the control law (9) ensures
that xd is a stable equilibrium of the closed-loop system. In
addition, closed-loop behavior follows the desired PHS (3)
affected by a perturbation η that depends on the uncertainty
of the GP-PHS model. Next, we show that for an increasing
amount of training data, the closed-loop behavior converges
to the desired PHS.

Lemma 1: In addition to Theorem 1, if the number of data
points N → ∞, where x(t1) ̸= x(t2) ̸= . . . ̸= x(tN ) with
x(ti) ∈ X , then the control law (9) applied to (11) leads to
the desired closed-loop dynamics ẋ = [Jd(x)−Rd(x)]∇Hd

with probability (1− p).
Proof: Since var (ẋi | x,D) = 0 for all x ∈ X if the

number of data points tends to infinity, see [24], P (∥η(x)∥ =
0,∀x ∈ X ) ≥ 1 − p. As a consequence, the closed-loop
system is rendered to ẋ = [Jd(x)−Rd(x)]∇Hd.
Although analytic solutions for (5) can be obtained for some
classes of PHS, solving the IDA-PBC PDE is nontrivial in
general. In [9], the authors propose three different ways to
solve the matching equation (5).

Non-Parameterized IDA: Here, the desired interconnection
Jd and dissipation Rd matrices are fixed as well as G⊥.
This leads to a PDE whose solutions define the admissi-
ble energy functions Hd for the given interconnection and
damping matrices. Then, we select the solution that satisfies
Assumption 1.

Algebraic IDA: At the other extreme, the desired energy
function is fixed which yields (5) to become an algebraic
equation in Jd, Rd and G⊥.

Parameterized IDA: For some physical systems, it is desir-
able to restrict the desired energy function to a certain class.
By fixing the structure of the energy function, the matching
function is transformed into a new PDE with constraints on
the interconnection and damping matrices.

We refer interested readers to [12] for a review on methods
to solve the IDA-PBC PDEs.

Remark 4: Despite ”classical” techniques to solve the
matching equation, physics-informed neural networks have
shown promising results for finding solutions of the IDA-
PBC PDE, for example, see [25].

IV. EVALUATION

We consider the problem of designing a control law for a
nonlinear electrostatic microactuator, as depicted in Fig. 3.
The system’s equations in PHS form are given by

ẋ =

 0 1 0
−1 −b 0
0 0 − 1

r


︸ ︷︷ ︸

J(x)−R(x)

∂H

∂x
(x) +

00
1
r


︸︷︷︸
G(x)

u (13)

H(x) =
1

4
10(x1 − x∗)4 +

1

2m
x2
2 +

x1

2Aϵ
x2
3.



Fig. 3. Electrostatic micro-actuator with nonlinear spring k.

with the air gap x1, the momentum x2 and the charge of
the device x3, inspired by [26]. The parameters are the plate
area A = 1, the mass of the plate m = 1 and the permittivity
in the gap ϵ = 1. The steady state of the air gap is x∗

1 = 1.
We assume a linear damping with positive constant b = 0.5
and a non-linear, position-dependent stiffness k(x1) for the
spring. The input resistance is r = 1 and u represents the
input voltage, which is the control input of the system. As
stated in the problem setting, we assume that the Hamiltonian
H and the damping constant b are unknown to us. The goal
is to stabilize the system at an equilibrium point where the
air gap x1 = 0.5.

First, we collect a set of training data for the GP-PHS
model. For this purpose, we use a sinusoidal input signal, i.e.,
u(t) = sin(t) as excitation of the microactuator system (13).
The system is initialized with x(0) = [0, 0, 1]⊤ and 300 data
pairs {ti,x(ti)} are recorded between 0ms and 20ms with
constant time spacing, see Fig. 4. The data is corrupted by
zero-mean Gaussian noise with variance σ2 = 0.001. With
this dataset, a GP-PHS model is trained according to [11,
Algorithm 1]. Optimization of the hyperparameters results
in an estimated damping constant b̂ = 0.498. A comparison
between an actual system trajectory and the mean prediction
of the GP-PHS model is visualized in Fig. 5. Note the
performance of the GP-PHS model on an a-priori unseen
state-space even though the model was only trained on a
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Fig. 4. The training data for the GP-PHS model.
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Fig. 5. Comparison between the actual system (solid) and the mean
predicition of the GP-PHS model (dashed).

single trajectory of the system. Next, we use Theorem 1 to
derive a control law which stabilizes the system at a desired
equilibrium point xd. For solving the PDE (7), the full-rank
left annihilator of G(x) is determined to

G⊥(x) =

[
1 0 0
0 1 0

]
.

We follow the idea of non-parametric IDA by fixing the
desired interconnection and damping matrix to

Jd(x)−Rd(x) =

 0 1 0

−1 −b̂ 0
0 0 − 1

rd


with rd = 2/3. As candidate for the desired Hamiltonian Hd,
we use the posterior mean prediction for the Hamiltonian of
the GP-PHS model and, inspired by [12], an additional term
to adjust the equilibrium to a desired state. Thus, the desired
Hamiltonian is given by

Hd(x) = µ(Ĥ | x,D) + ζ(x3),

where the function ζ(x3) = (x3 − c)2 with c ∈ R is deter-
mined, such that the desired equilibrium xd = [0.5, c2, c3]
with some c2, c3 ∈ R is a minimum of Hd(x) on X =
[−2, 2]3. For this desired Hamiltonian and β1 = β2 =
β3 = 2, we validate the PDE (7) by point evaluations over
a discretized state space X . The top plot of Fig. 6 shows
the closed-loop dynamics with the proposed control law (9).
As there is uncertainty in the GP-PHS model, the closed-
loop trajectory (solid) deviates slightly from the desired PHS
dynamics (dashed) ẋ = (Jd(x)−Rd(x))∇Hd(x).

However, according to Theorem 1, the desired equilibrium
remains stable. The bottom plot supports this result as the
desired Hamiltonian evaluated on the state of the closed-loop
system decreases over time, as claimed by (8). Finally, we
compare the performance of the closed-loop over the number
of data points. Figure 7 shows that for an increasing amount
of data, the closed-loop dynamics converges to the dynamics
defined by the desired PHS.
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Fig. 6. Top: Closed-loop system with the proposed control law. As there is
uncertainty in the GP-PHS model, the closed-loop dynamics (solid) slightly
deviates from the desired PHS (dashed). However, in line with Theorem 1,
the closed-loop converges to the desired equilibrium (green dot). Bottom:
The desired storage function Hd is decreasing over time.
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Fig. 7. The mean square error between the desired trajectory and the actual
closed-loop trajectory. With more data, the closed-loop follows the desired
PHS, as stated in Lemma 1.

CONCLUSION

In this paper, we present a Bayesian data-driven control
approach (GPC-PHS) for partially unknown physical sys-
tems. A GP-PHS model uses recorded data of the physical
system to learn the unknown dynamics. Then, we propose
an IDS-PBC based control law which leverages the uncer-
tainty quantification of the GP-PHS model to robustify the
controller against the model mismatch. As consequence, the
stability of a desired equilibrium can be guaranteed with
high probability. With an increase in data, the closed-loop
dynamics converges to the desired PHS. A simulation shows
the effectiveness of the proposed control approach. Future
work will address the tracking control problem with time-
dependent xd.
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