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Abstract— In multi-timescale multi-agent reinforcement
learning (MARL), agents interact across different timescales.
In general, policies for time-dependent behaviors, such as those
induced by multiple timescales, are non-stationary. Learning
non-stationary policies is challenging and typically requires
sophisticated or inefficient algorithms. Motivated by the preva-
lence of this control problem in real-world complex systems,
we introduce a simple framework for learning non-stationary
policies for multi-timescale MARL. Our approach uses available
information about agent timescales to define a periodic time
encoding. In detail, we theoretically demonstrate that the effects
of non-stationarity introduced by multiple timescales can be
learned by a periodic multi-agent policy. To learn such policies,
we propose a policy gradient algorithm that parameterizes the
actor and critic with phase-functioned neural networks, which
provide an inductive bias for periodicity. The framework’s
ability to effectively learn multi-timescale policies is validated
on a gridworld and building energy management environment.

I. INTRODUCTION

The ability to control multiple interacting components
is essential to efficiently manage complex systems. For
instance, in power systems applications, flexible loads and
distributed generation operate within this complex system
with coupling in the dynamical models, constraints, and ob-
jectives. Similar multi-component control challenges appear
in transportation systems, robotics, etc. Thus, interest in
data-driven approaches that try to learn distributed control
policies from experience has grown recently. Multi-agent
reinforcement learning (MARL) is a promising agent-based
sequential decision-making framework for learning complex
coordination strategies. Crucially, it does not depend on hav-
ing access to a model of the (often stochastic and nonlinear)
environment dynamics.
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Fig. 1. In Multi-timescale MARL, agents that act on different timescales
try to learn to coordinate to achieve a goal, e.g., controlling a heterogeneous
set of electronic devices for building energy optimization. Learning a
non-stationary multi-agent policy allows multi-timescale agents to perform
complex time-dependent behaviors.

However, applying MARL to real-world problems is chal-
lenging because agents typically only receive noisy, partial
observations of the environment state and have limited com-
munication with each other. Moreover, from the perspective
of each agent, the environment dynamics appear to shift
over time as other agents learn to adapt their behaviors. All
of these factors contribute to the extreme non-stationarity
present in MARL, which makes learning good agent policies
notoriously challenging [1], [2]. Despite the dedication of
significant effort to discover practical MARL algorithms ca-
pable of learning policies in the face of non-stationarity [3],
[4], there remains a gap between the synthetic environments
used for algorithm development and the real world.

This work studies an under-explored MARL setting in-
spired by real world applications where agents need to co-
ordinate time-dependent actions across different timescales.
This type of time-dependent coordination, arises, for exam-
ple, in:

Ex 1: Power systems applications where we wish to learn a
coordination strategy between electrical devices that can
be controlled at different timescales (e.g., energy stor-
age units, solar panels, and thermostatically controlled
loads) connected to the same micro-grid (Fig. 1),

Ex 2: Robotic control tasks where multiple heterogeneous
robots try to collaborate to execute a task (e.g., moving
an object) while their actuators are controlled at differ-
ent frequencies.

Introducing a time dependency via multiple timescales to
MARL adds additional sources of non-stationarity, which
makes learning policies particularly challenging.

In this work, we formally define the multi-timescale
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decentralized partially observable Markov decision process
(Dec-POMDP) setting and propose a framework for learning
multi-agent time-dependent (i.e., non-stationary) policies to
solve such environments. We show that multiple timescales
induces the optimal multi-timescale policy to be periodic in
nature. A practical policy gradient method for learning pe-
riodic multi-agent policies based on phase-functioned neural
networks [5] is provided. Our framework’s ability to learn
effective multi-timescale policies with fewer environment
interactions than key baselines is validated on a gridworld
and a building energy management environment.

II. MULTI-TIMESCALE DEC-POMDPS

First, we define a Dec-POMDP [6], which is a multi-agent
stochastic game defined by a tuple:

DEC-POMDP := (N,S,A,O, r, T, dt, γ, ρ, p, P ). (1)

The number of agents is N , S is the state space of the
environment, A := ×N

i=1A
i is a joint action space, O :=

×N
i=1O

i is a joint observation space, r(s, a) : S×A → R is
a global reward function, T is the (possibly infinite) horizon,
dt is the time discretization of the environment, γ ∈ [0, 1]
is a discount factor, and ρ : S → [0, 1] is the initial state
distribution. The joint action a ∈ A induces a transition
from state s to state s′ according to the transition function
p(s,a) : S × A → S. We assume that each agent is only
given a noisy, partial observation of the state governed by an
observation function P (s, i) : S × N → Oi, where i is the
agent index, and that there is limited or no communication
between agents. Each agent learns a stochastic policy func-
tion πi(ai | oi) that maps an observation to a distribution
over Ai, and the joint policy is π = {πi, . . . , πN}.

In this work, we introduce multi-timescale Dec-POMDPs
as an extension of Dec-POMDPs:

MT-DEC-POMDP := [DEC-POMDP; k,C], (2)

where [; ] is concatenation. The agents are defined with
action frequencies k := {k1, . . . , kN} and the environment
is defined to be periodic with period C ≥ 1, i.e., the reward
function rt(s,a) and transition functions pt(s,a) are C-
periodic. When C = 1, the environment is aperiodic, as is
typically assumed in a DEC-POMDP. Each agent’s timescale
is defined by the action frequency ki times the base timescale
discretization dt. For example, agent 1 with k1 = 2 acts
every two steps (i.e., when t mod 2dt = 0) and agent 2 with
k2 = 3 acts every three steps (i.e., when t mod 3dt = 0). We
assume environments are defined with dt = 1 for simplicity
in the remainder of the paper. Between actions, “slow” agents
take a null action ainull or repeat the most recently taken
action (e.g., when an action represents the setpoint for a
device). Our setting differs from the multi-timescale MARL
setting considered in Wu et al. [7] as they assume agents
can communicate locally with their neighbors and that the
environment is aperiodic.

One can observe that the sequencing of actions
across agent timescales repeats periodically every K̃ =

LCM(k1, . . . , kN ) time steps, where LCM is the least com-
mon multiple. Taking into account the periodicity of the
environment C, we see that the pattern of action and state
transition sequencing repeats every K = LCM(K̃, C) steps.
When K > 1, solving a MT-DEC-POMDP is generally
more difficult than solving a DEC-POMDP, as the periodicity
introduces a time dependency that compounds on top of the
non-stationarity caused by partial observability and limited
communication between agents [8], [3].

To help motivate our framework, we now briefly describe
a class of MARL environments where the optimal stationary
joint policy is sub-optimal (i.e., when the agents ignore
time dependencies). In detail, certain MARL environments
cause agents to suffer from what we call the observation
aliasing problem. In Sec. V-A, we provide an example multi-
timescale environment exhibiting observation aliasing. This
aliasing problem, which is closely related to the state aliasing
problem that can arise in single agent RL [9], occurs when
agent i receives a specific partial observation oi that has a
different action under non-stationary policy πi depending on
the time step:

∃t, t′ with t < t′ s.t. πi
t(o

i
t) ̸= πi

t′(o
i
t′).

A time-unaware agent is not able to learn a stationary policy
that distinguishes between oit and oit′ due to the impossibility
of proper credit assignment. Intuitively, time-unaware agents
perceive time-dependent rewards or dynamics as stochastic-
ity in the environment (e.g., from an exogenous source). Con-
sequentially, these agents learn suboptimal policies that try
to explain the aliased observation as perceived randomness.

A common heuristic is to make each agent time aware
by appending the current time step t to the observation.
Alternatively, recurrent neural networks can be used to infer
a belief state for each agent based on its history [10]. In this
work, we explore how information about agent timescales
and environment periodicity can be used to more effectively
learn non-stationary policies in MT-DEC-POMDPs.

Recent work has introduced custom multi-timescale so-
lutions for power systems problems that simply attempt to
learn a stationary policy [11] or use recurrent neural networks
to model temporal information for a fast agent and a slow
agent [12]. The single agent RL setting with multiple action
frequencies is also a closely related setting. Multi-timescale
MDPs (MMDPs) [13], [14] involve an agent formulated as
a hierarchical MDP with fast and slow actions. MMDPs aim
to learn a (top-down) hierarchy over action timescales, in the
sense that actions taken on slower timescales influence the
actions taken on faster timescales, but not vice versa. Also
related is a setting where a factored-action MDP agent can
choose actions that persist for various lengths of time [15].

III. K-PERIODIC NON-STATIONARY JOINT POLICIES

We now demonstrate that, under simplifying assumptions,
policy iteration in the space of K-periodic non-stationary
joint policies converges to the optimal multi-timescale policy
and value function.



Definition 1: For any K ≥ 1, a K-periodic non-stationary
joint policy satisfies

π̄(ot) = π̄(ot+K). (3)
Let Π̄K =

{
π̄ : π̄(ot) = π̄(ot+K)

}
be the set of

all such policies. We use this to define a multi-timescale
non-stationary joint policy πt ∈ Π with timescale action
frequencies k as the policy induced by a K-periodic non-
stationary policy:

∀t,πt = {π1
t , . . . , π

N
t } s.t. (4)

πi
t :=

{
π̄i
t if t mod ki = 0

δt−(t mod ki)(a
i) or δt(ainull) otherwise.

Here, δt is the Dirac delta function. In general, the inducing
policy for a multi-timescale policy πt does not need to be K-
periodic. However, later in this section we prove that policy
iteration in the space of K-periodic policies converges to the
optimal multi-timescale policy assuming cooperative agents
and full observability.

Definition 2: The projection operator for joint actions
Γk
t (at) is defined as

Γk
t (at) = {ā1t , . . . , āNt }, where (5)

āit :=

{
ait if t mod ki = 0

āit−1 or ainull otherwise.
(6)

Notice that Γk
t is K̃-periodic. That is, Γk

t (a) = Γk
t+K̃

(a) for
any t and joint action a.

Definition 3: The projection operator for the reward and
transition function is defined as

ΘC
t (ft) =


f0
t if t mod C = 0

...
fC−1
t if t mod C = C − 1.

(7)

Notice that ΘC
t is C-periodic, i.e., ΘC

t (r(s,a)) =
ΘC

t+C(r(s,a)) for any t and (s,a).
The agents aim to learn an optimal multi-timescale policy

π∗ = argmax
π∈Π

Eπ,ΘC
t (pt(s,a))

[
T∑

t=0

γtΘC
t

(
rt(st,Γ

k
t (at))

)]
,

(8)
and the optimal multi-timescale value function is

Qπ∗

t (a, s) = Eat+1:aT,st+1:sT

[
Rt|Γk

t (at), st,π
∗], (9)

where Rt =
∑T

τ=t γ
τ−tΘC

τ rτ (sτ ,aτ ). The following theo-
rem establishes convergence to the optimal multi-timescale
value function via policy iteration in the space of K-periodic
non-stationary policies assuming agent cooperation and full
observability.

Assumption 1: The agents are cooperative and have full
observability of the environment.

Theorem 1: Under assumption 1, for any π0 ∈ Π induced
by K-periodic non-stationary policy π̄0 ∈ Π̄K , K =
LCM(K̃, C), the sequence of value functions Qπn

and
improved policies πn+1 due to policy iteration converges to
the optimal multi-timescale value function and optimal multi-
timescale policy π∗, i.e., Qπ∗

(s, a) = limn→∞ Qπn

(s, a) ≥

Qπ(s, a). Moreover, the optimal multi-timescale value func-
tion always exists and is induced by a K-periodic non-
stationary policy.

Lemma 1: Under assumption 1, MT-DEC-POMDP re-
duces to a multi-timescale multi-agent MDP [16]. Further-
more, a multi-timescale multi-agent MDP is equivalent to an
action-persistent factored action (FA) MDP [15].
Proof A multi-agent MDP can be described by the tuple
{S,N,A, p, r} with elements defined as in Sec. II [16].
A multi-timescale multi-agent MDP is defined similarly
to MT-DEC-POMDP (Eq. (2)), i.e., by expanding a multi-
agent MDP with k and C. Assuming agent cooperation,
MT-DEC-POMDP has a single reward shared by all agents.
Assuming full observability, the observation function P (s, i)
in a MT-DEC-POMDP is the identity mapping. Therefore,
each agent’s policy in MT-DEC-POMDP becomes πi(ai|s),
which completes the reduction. A factored action (FA)
MDP with a fully factorized policy over N -dimensional
actions π(a1, . . . , aN |s) =

∏N
n=1 π

n(an|s) is a single agent
MDP that can be thought of as equivalently having N
agents, i.e., a multi-agent MDP. A k-persistent FA MDP
assumes that action ai is decided every ki steps and repeated
otherwise [15], and can similarly be extended to periodic
environments with period C. By modifying the persistence
property to allow action ai to be repeated ki times or for a
null action ainull to be subsequently taken ki − 1 times, the
k-persistent FA MDP is equivalent to the multi-timescale
multi-agent MDP setting, completing the proof.

Given Lemma 1, our proof for Theorem 1 follows the
same proof technique used to prove Theorem 3 in Lee
et al. [15]. Differently, our proof handles C-periodic envi-
ronments. To that end, we define here the one-step multi-
timescale Bellman optimality operator T̄ ∗

t induced by π̄ for
t ∈ {0, . . . ,K − 1}:

(T̄ ∗
t Q)(s,a) := (10)

ΘC
t (rt(st,at)) + γEst+1∼ΘC

t (pt)

[
max
at+1

Q(st+1,Γ
k
t (at+1)

]
.

Notice that T̄ ∗
t is K-periodic due to the K̃-periodic action

projection Γk
t and the C-periodic projection operator ΘC

t .
Thus, T̄ ∗

t Q = T̄ ∗
t+KQ for any t and Q. Now, we define the

K-step multi-timescale Bellman optimality operator H̄∗
t by

composing one-step Bellman optimality operators as follows:

(H̄∗
0Q)(s, a) := (T̄ ∗

0 T̄ ∗
1 · · · T̄ ∗

K−2T̄ ∗
K−1Q)(s, a) (11)

(H̄∗
1Q)(s, a) := (T̄ ∗

1 T̄ ∗
2 · · · T̄ ∗

K−1T̄ ∗
KQ)(s, a)

...
(H̄∗

K−1Q)(s, a) := (T̄ ∗
K−1T̄ ∗

K · · · T̄ ∗
K−3T̄ ∗

K−2Q)(s, a).

The next lemma establishes that K-step multi-timescale
Bellman optimality operators are a contraction mapping.

Lemma 2: For all t ∈ {0, . . . ,K − 1}, the K-step
multi-timescale Bellman optimality operator H̄∗

t is a γK-
contraction with respect to infinity norm with H̄∗

t Q
∗
t = Q∗

t

as the unique fixed point solution. That is, for any Q0
t , define



Qn+1
t = H̄∗

t Q
n
t . Then, the sequence Qn

t converges to the tth

multi-timescale optimal value function as n → ∞.
Proof Without loss of generality, it is sufficient to prove the
case t = 0.

For any Q1, Q2 and s0 ∈ S,a0 ∈ A,

|(H̄∗
0Q1)(s0,a0)− (H̄∗

0Q2(s0,a0)|
= |(T̄ ∗

0 · · · T̄ ∗
K−1Q1)(s0,a0)− (T̄ ∗

0 · · · T̄ ∗
K−1Q2)(s0,a0)|

=

∣∣∣∣∣Es1∼ΘC
0 (p0(s0,a0))

[
ΘC

0 (r0(s0,a0))

+ γmax
a1

(T̄ ∗
1 · · · T̄ ∗

K−1Q1)(s1,Γ
k
1,a0

(a1))
]

− Es1∼ΘC
0 (p0(s0,a0))

[
ΘC

0 (r0(s0,a0))

+ γmax
a1

(T̄ ∗
1 · · · T̄ ∗

K−1Q2)(s1,Γ
k
1,a0

(a1))
]∣∣∣∣∣

= γ

∣∣∣∣∣EΘC
0 (p0)

[
max
a1

(T̄ ∗
1 · · · T̄ ∗

K−1Q1)(s1,Γ
k
1,a0

(a1))

−max
a1

(T̄ ∗
1 · · · T̄ ∗

K−1Q2)(s1,Γ
k
1,a0

(a1))
]∣∣∣∣∣

≤ γ

∣∣∣∣∣EΘC
0 (p0)

[
(T̄ ∗

1 · · · T̄ ∗
K−1Q1)(s1,a

∗
1)

− (T̄ ∗
1 · · · T̄ ∗

K−1Q2)(s1,a
∗
1)
]∣∣∣∣∣

where a∗1 = argmax
a

[
(T̄ ∗

1 · · · T̄ ∗
K−1Q1)(s1,Γ

k
1,a0

(a1))

− (T̄ ∗
1 · · · T̄ ∗

K−1Q2)(s1,Γ
k
1,a0

(a1))
]

≤ γmax
s,a

∣∣∣∣∣(T̄ ∗
1 · · · T̄ ∗

K−1Q1)(s,a)

− (T̄ ∗
1 · · · T̄ ∗

K−1Q2)(s,a)

∣∣∣∣∣.
We can continue to expand the inequality in a similar

manner:

∀s0,a0,
|(H̄∗

0Q1)(s0,a0)− (H̄∗
0Q2)(s0,a0)|

≤ γmax
s,a

∣∣(T̄ ∗
1 · · · T̄ ∗

K−1Q1)(s,a)− (T̄ ∗
1 · · · T̄ ∗

K−1Q2)(s,a)
∣∣

≤ γ2 max
s,a

∣∣(T̄ ∗
2 · · · T̄ ∗

K−1Q1)(s,a)− (T̄ ∗
2 · · · T̄ ∗

K−1Q2)(s,a)
∣∣

...

≤ γK max
s,a

∣∣Q1(s,a)−Q2(s,a)
∣∣,

which implies ||H̄∗
0Q1 − H̄∗

0Q2||∞ ≤ γK ||Q1 − Q2||∞.
Therefore H̄∗

t is a γK-contraction with respect to infinity
norm, and by the Banach fixed-point theorem, H̄∗

t Q
∗
t = Q∗

t

is the unique fixed point solution for all t.

It follows that the fixed points of H̄∗
0 , . . . , H̄

∗
K−1 together

make up the optimal multi-timescale value function, which

is represented by the K values Qπ∗

0 , . . . , Qπ∗

K−1. Next, we
show that these fixed points have the largest value compared
to any other multi-timescale value function for any history-
dependent policy π̄ ∈ Π.

Lemma 3: Let H̄∗
t mod K = T̄ ∗

t mod K . . . T̄ ∗
(t+K−1) mod K

be the K-step multi-timescale Bellman optimality operator
and Qπ∗

t mod K be its fixed point. Then, for any history-
dependent policy π̄ ∈ Π̄, Qπ∗

t mod K(s,a) ≥ Qπ
t (s,a).

Proof For any π̄ ∈ Π̄, t, s,a and Q, the following inequality
holds:

(T̄ π̄
t Q)(st,at)

:= ΘC
t (rt(st,at))

+ γEst+1∼ΘC
t (pt),at+1=π̄

[
Q(st+1,Γ

k
t+1,at

(at+1)
]

≤ ΘC
t (rt(st,at))

+ γmax
at+1

Est+1∼ΘC
t (pt)

[
Q(st+1,Γ

k
t+1(at+1)

]
= (T̄ ∗

t mod KQ)(st,at).

This implies

(T̄ π̄
t T̄ π̄

t+1 . . . T̄ π̄
t+K−1Q)(s,a)

≤ (T̄ ∗
t mod K T̄ ∗

(t+1) mod K . . . T̄ ∗
(t+K−1) mod KQ)(s,a)

= (H̄∗
t mod KQ)(s,a).

Therefore,

Qπ
t (s,a)

= lim
n→∞

(T̄ π̄
t T̄ π̄

t+1 . . . T̄ π̄
t+Kn−1Q)(s,a)

≤ lim
n→∞

((H̄∗
t mod K)nQ)(s,a) = Qπ∗

t (s,a)

holds, which concludes the proof.

Finally, to prove the main claim in Theorem 1, by
Lemma 3 it is sufficient to show limn→∞ Qπn

t = Qπ∗

t for
all t ∈ {0, . . . ,K−1}. To prove this, first, we must establish
monotonic improvement of multi-timescale policies induced
by π̄n during policy iteration, i.e., Qπn+1

t (s,a) ≥ Qπn

t (s,a)
always holds for all t, s,a, n. This result follows by proving
a similar result to Theorem 2 in Lee et al. [15] in the same
manner as the proofs for Lemmas 2 and 3, i.e., by projecting
the reward and transition functions with ΘC

t . We refer to [15]
for the details. When the policy is no longer improving, i.e.,
πn+1 = πn and Qπn+1

t = Qπn

t , then by definition, Qπn

t

satisfies the multi-timescale Bellman optimality equation. By
Lemma 2, the multi-timescale Bellman optimality equation
has a unique solution Q∗

t , implying Q∗
t = Qπn

t . Thus, πn is
the optimal multi-timescale policy. Moreover, at every step
of policy iteration, we have a policy π̄n which is in Π̄ and
which induces a multi-timescale policy πn that is guaranteed
to eventually converge to the optimal multi-timescale policy.
Therefore, the optimal multi-timescale policy always exists.

The known inequality Q∗
Dec-POMDP ≤ Q∗

MDP establishes
that the optimal value function of a multi-timescale multi-
agent MDP is an upper bound of the optimal value function
for MT-DEC-POMDP. This implies that the optimal value



function obtained by policy iteration under Assumption 1
may overestimate the true optimal value function. See The-
orem 5.1 in Oliehoek et al. [8] for proof details.

IV. PHASIC POLICY GRADIENT METHOD

The theory from the previous section suggests encoding
K-periodicity into learning algorithms for MT-DEC-POMDP
to encourage learning the optimal policy when k and C are
known. Let the integer △t ∈ {0, . . . ,K − 1} indicate the
current phase, i.e., t mod K. A straightforward approach
is to encode this phase as a one-hot vector of size K,
O.H.(△), which can be concatenated to each agent’s obser-
vation [oit;O.H.(△t)]. However, when the mapping between
the phase-augmented observation and the optimal action is
complex, encoding the phase as a one-hot vector may not be
sufficient to provide a good inductive bias for K-periodicity.

Alternatively, we can parameterize each agent with phase-
functioned neural networks [5] (PFNNs). PFNNs are spline-
based neural architectures whose weights smoothly vary as a
function of the current phase. This provides an inductive bias
of using similar weights for adjacent phases and reusing the
same network weights at time steps separated by a specified
period. Favorably, the number of parameters in PFNNs
scales proportionally with the number of spline control
points (a constant) and not with the period K. The use of
PFNNs in RL is under-explored, with only one known previ-
ous use for training single agents in cyclic environments [17].
Each layer l of a PFNN has a weight matrix α computed
by a phase function αl = Θ(βl; 2π△t/K) conditioned on
learnable weight matrices βl and phase 2π△t/K ∈ [0, 2π].
Following [5], we use a Catmull-Rom spline for Θ, which
is a cubic spline with four learnable spline control points
βl = [β0

l , β
1
l , β

2
l , β

3
l ]. The weight for layer l is

αl = βx1

l + w(
1

2
βx2

l − 1

2
βx0

l )

+ w2(βx0

l − 5

2
βx1

l + 2βx2

l − 1

2
βx3

l )

+ w3(
3

2
βx1

l − 3

2
βx2

l +
1

2
βx3

l − 1

2
βx0

l ),

where w = 4△t/K (mod 1) and xn = ⌊4△t/K⌋ + n −
1 (mod 4). The bias for layer l is computed in a similar
fashion. The start and end control points for each layer are
the same, making each PFNN layer cyclic. In this work, we
adapt the actor-critic policy gradients method COMA [4] by
using PFNNs with period K = LCM(K̃, C) for the actor
and critic networks.

V. EXPERIMENTS

A. The Move Box Problem

Setup: We adapted a gridworld environment called Move
Box [18] to create a toy multi-timescale environment with a
time-dependent optimal policy. That is, the two agents need
to coordinate their actions to push a green box to a goal
location (“G”) within a maximum of 20 steps. In the easy
version, one agent (red) is a “fast” agent that uses k1 =
1 and one agent (blue) is a “slow” agent that acts every

TABLE I
MOVE BOX RESULTS. SUCCESS (%) IS THE FRACTION OUT OF 8

RANDOM SEEDS THAT THE AGENTS LEARNED TO MOVE THE BOX TO THE

GOAL. THE OPTIMAL RETURN IS 23.0.

Move Box [Easy] Move Box [Hard]

COMA Success (%) Avg. return Success (%) Avg. return

Basic 0 1.0±0.0 0 1.0±0.0

Recurrent 75 17.5±10.2 0 3.75±7.8

O.H. phase-aware 100 23.0±0.0 0 3.45±7.9

Phasic (4) 100 23.0±0.0 50 12.0±11.8

Phasic (15) 100 23.0±0.0 50 12.0±11.8

two steps k2 = 2. The period provided to time-aware agents
is therefore K := LCM(1, 2, C = 1) = 2. For the hard
version of this task, the fast agent uses k1 = 2 and slow
agent uses k2 = 3, thus K := LCM(2, 3, C = 1) = 6. Each
agent receives a 4D partial observation consisting of its own
position and the position of the box. To avoid the need for a
complex exploration strategy, we restrict the action space to
3 discrete actions: move up, move down, or null (do nothing).
To push the green box up or down, the agents have to be
on either side of the box and move in the same direction at
the same time. Agents receive a reward of +1 whenever the
box moves towards the goal and a reward of +20 once the
box reaches the goal. The easy version can be solved with
7 actions while the hard version requires 19 actions; there
is a significant increase in exploration difficulty between the
easy and hard versions. To implement multiple timescales,
the only legal action available to the slow agent between
steps is the null action. Move Box is designed so that a
time-unaware fast agent suffers from observation aliasing
(Sec. II). A time-unaware fast agent’s limited information
means it cannot precisely determine whether to move up or
do nothing to synchronize its actions with the slow agent.

Agents: We train four COMA-based agents:
• Basic COMA, a time-unaware agent that uses a feed-

forward neural network for the actor and critic networks.
• Recurrent COMA, a time-aware agent that uses an

RNN for the actor and critic networks to condition on
the full history up to the current time step [10].

• One-Hot (O.H.) phase-aware COMA, an agent
whose observations are augmented with a one-hot en-
coding of the current phase △t.

• Phasic COMA, an agent whose actor and critic net-
works are PFNNs with weights indexed by 2π△t/K.

We also run a variant of PFNN with period 4 instead of
K, Phasic COMA (4), to explore performance sensitivity
to this hyperparameter. In the easy environment 4 > K
and in the hard environment 4 < K. All actor and critic
networks share parameters. We take the standard approach
of providing a one-hot agent ID as an auxiliary input to
distinguish between agents.

Results: Table I shows quantitative results and Fig. 3
compares test return as a function of environment steps. Both
O.H. phase-aware COMA and Phasic COMA learn to
reliably solve the easy Move Box environment across all
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Fig. 3. Move Box return vs. steps. Mean return over 8 random seeds
of the learned greedy policy at various steps during training (shaded region
is the 95% confidence interval (CI)). Best possible return shown by black
dotted line. The PFNN-based agent Phasic COMA with correct periods
K = 2, 6 achieves the highest reward in the fewest environment steps.

random seeds, with Phasic COMA demonstrating a small
advantage in terms of efficiency. Recurrent COMA needs
more steps to achieve a good test return yet ultimately per-
forms less reliably. Basic COMA fails on this environment
as expected due to observation aliasing (Fig. 2). In the hard
version (Fig. 3), only Phasic COMA learns to solve the
environment on just 50% of the training runs. The PFNN-
based actor and critic is robust to a slightly smaller or
larger period than K, although it appears to require more
environment steps.

B. Building Energy Management

Setup: In this environment, agents attempt to coordinate
the control of HVAC and energy storage (ES) for a five-zone
small office building. See Biagioni et al. [19] for details about
the reduced order model used to simulate the building. There
are 7 agents: an HVAC agent per zone able to change the
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Fig. 4. BEM results. Mean return over 8 random seeds of the learned
greedy policy at various steps during training (shaded region is the 95%
CI). Best possible is the black dotted line. The Phasic COMA agent with
correct period K = 15 outperforms non-phasic variants by a wide margin.
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Fig. 5. BEM qualitative results. Total power vs. power reference signal
from one of the Phasic COMA training runs.

mass flow rate (kg/s) every 5 mins, an HVAC chiller agent
that can change the discharge air temperature (◦C) every
5 mins, and an ES agent that can change its charging or
discharging power (kW) every 1 minute. The goal is for the
agents to coordinate their total power consumption to track
a reference power signal that changes every 3 mins while
minimizing discomfort to building occupants. The control
horizon is set to 30 mins (dt = 1min). The global reward
function at time step t is defined as

rt = −
∑
zonei

(
(T i

t − T )+ + (T − T i
t )

+
)2 − α(pt − pref

t )2,

where α = 0.01, T := 26 ◦C and T := 24 ◦C is the thermal
comfort band, T i

t is zone i’s temperature, and pt is the total
power. To implement multiple timescales, agents repeat their
previous action between steps. The period used for learning
periodic non-stationary policies is K := LCM(1, 5, C = 3) =
15, where C encodes the cyclic power reference signal.

Results: Out of all agents, only Phasic COMA is able to
reliably learn a near-optimal joint policy (Fig. 4). The variant
with arbitrary PFNN period 4 ≪ K is the second best agent.
We visualize the control actions selected by the joint policy
from one of the Phasic COMA runs in Fig. 6. The slow
HVAC agents have successfully learned to coordinate with
the faster ES agent to track the reference signal (Fig. 5)
without violating the thermal comfort band; for example,
by increasing their power consumption between 10-15 mins
while the ES agent is already maximally discharging.

VI. CONCLUSIONS

In this work, we proposed a multi-timescale MARL frame-
work for learning policies that can represent complex time-
dependent behaviors. We introduced the multi-timescale non-
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stationary joint policy as the policy induced by a K-periodic
non-stationary joint policy, where the period K is given by
knowledge about agent timescales and cyclic environment
components, both of which are typically known a priori. We
use phase-functioned neural networks to introduce an induc-
tive bias for learning a periodic non-stationary joint policy.
Our results on grid world and building energy management
environments establish the effectiveness of our framework,
suggesting that follow-up work could explore using it to
solve more advanced power systems problems.
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