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Abstract— Gaussian graphical models are widely used to rep-
resent correlations among entities but remain vulnerable to data
corruption. In this work, we introduce a modified trimmed-
inner-product algorithm to robustly estimate the covariance
in an online scenario even in the presence of arbitrary and
adversarial data attacks. At each time step, data points, drawn
nominally independently and identically from a multivariate
Gaussian distribution, arrive. However, a certain fraction of
these points may have been arbitrarily corrupted. We propose
an online algorithm to estimate the sparse inverse covariance
(i.e., precision) matrix despite this corruption. We provide the
error-bound and convergence properties of the estimates to the
true precision matrix under our algorithms.

I. INTRODUCTION

Graph modeling is at the core of modern statistical learn-
ing, with applications spanning a wide range of disciplines,
including finance and economics [1], neuroscience [2], and
health and social science [3]. These problems address the
challenges of estimating complex relationships between mul-
tiple variables to gain insight into the underlying interactions.

One way to represent and quantify these relationships is
by learning the covariance and inverse covariance matrix
through the collected multivariate data, which captures the
degree to which the variables change together. Inverse covari-
ance estimation is a crucial task, as the inverse covariance
matrix (also known as the precision matrix) can reveal
the underlying conditional independence structure between
variables. By estimating the sparse inverse covariance matrix,
one can identify the most relevant connections between
variables, leading to more interpretable and efficient models.

Assuming that the underlying relationships follow Gaus-
sian distributions, techniques such as graphical lasso [4]–[6]
have been developed to tackle the problem by incorporating
sparsity-promoting penalties. Different optimization methods
have been proposed to solve the graphical lasso problem,
including coordinate descent [5], proximal methods [7], [8],
alternating minimization methods [9], [10], and Newton-
conjugate gradient methods [11].

In many real-world scenarios, data is continuously gener-
ated and collected, making these traditional batch-processing
methods infeasible or computationally expensive. More re-
cently, graphical lasso has been extended to learn the static
and dynamic relationships between variables in an online
manner [12]–[16]. Online estimation methods offer several
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advantages, including scalability, adaptability to changes,
real-time decision-making, and reduced computational cost.

However, real-world data often contain outliers, corrup-
tions, and even maliciously poisoned data, which severely
impact the performance of statistical estimators. Robust
estimation aims to develop methods that are less sensitive
to such outliers, providing reliable and accurate estimates
in the presence of contaminated data. Traditional robust
mean estimators, such as the median-of-means [17] and the
trimmed mean [18], [19] have been explored in the literature.
Early works on robust statistics attempt to estimate the mean
given an outlier model [20], [21], and recent advancements
consider stronger contamination models [22]–[24]. For a
comprehensive overview of robust mean estimation, readers
are directed to a survey [25]. Classical robust covariance
estimation techniques include Minimum Covariance Deter-
minant [26] [27] to find a given proportion of uncorrupted
observations and compute their empirical covariance matrix
and the truncated inner product [28] which filters out data
with large absolute values to mitigate the impact of arbitrary
corruption. These traditional robust estimators were devel-
oped for batch datasets and are not suitable for data arriving
in a sequence.

Motivated by the streaming nature and the potential cor-
ruption of modern datasets, we propose online and robust co-
variance and sparse inverse covariance estimation algorithms
that enable efficient and robust updating of the estimates as
new potentially corrupted and noisy data arrive. We show
through theoretical performance guarantees and experimental
simulations that our algorithms are effective and less sensi-
tive to data corruption. By addressing these problems, we
can build more reliable, accurate, and interpretable models,
leading to a better understanding of complex systems and
more informed decision-making across various domains.

II. PROBLEM DEFINITION

Consider a set of p random variables X =[
x1 x2 · · · xp

]T
, that are jointly Gaussian with zero

mean and covariance S∗. These variables can be represented
by a graph G = (V,E), where V = {v1, . . . , vp} is the
set of nodes, with each node vi representing the random
variable xi. An edge (vi, vj) ∈ E indicates that variable xj

is conditionally dependent on xi, given all other random
variables. Conversely, if (vi, vj) /∈ E, vj is conditionally
independent of vi, given all the other variables. This lack of
an edge corresponds to a zero-entry in the precision matrix
θ∗ = (S∗)−1 [9], [29].
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Fig. 1: Distribution of corruptions for data matrix, where
orange indicates corrupted data points. In these examples,
the number of corrupted products of observations is ηt = 4.

These relationships (i.e., graph structure) between the
variables are unknown a priori; the goal is to infer the edges
of the graph based on samples from random variables. More
specifically, at each time step t ∈ {1, 2, . . .}, the network
generates a data vector Xt = [x1,t, x2,t, . . . , xp,t]

T ∈ Rp.
We assume that each Xt is independently and identically
sampled from the underlying Gaussian distribution Xt ∼
N (0, S∗).

We consider the existence of an adversary who can inspect
all data up to time t and replace them with arbitrary values.
Let X = [X1, . . . , Xt] ∈ Rp×t be the data matrix containing
all data points received up to time t. We say that the dataset
X is η-corrupted if, for each pair of variables xi and xj ,
where i, j ∈ {1, . . . , p}, the product of their observations
xi,1xj,1, . . . , xi,txj,t contains at most ηt corrupted entries,
where the corruption parameter η ∈ (0, 1/32). We will
explain the range of η in Section IV.

In the η-corruption scenario, the corrupted entries can
be located in the same columns (observations) of X across
rows (variables). This column corruption allows at most ηt
corrupted data points for each variable. The η-corruption also
implies that the corrupted data can be distributed anywhere
in X . This is defined as a distributed corruption scenario
where each variable has at most η/2 arbitrary corrupted
observations. We show the corruption models in Fig. 1.

We apply the tilde notation to any potentially corrupted
data or dataset, e.g., x̃t is a potentially corrupted data sample,
X̃ is the η-corrupted data matrix containing observations up
to time t, and X̃t = [x̃1,t, x̃2,t, . . . , x̃p,t]

T is the potentially
corrupted observation vector at time t.

Given a sequence of potentially corrupted observations
{X̃1, X̃2, . . .}, our objective is to perform real-time (i.e.,
online) robust estimation of the sample covariance matrix S∗

and infer the conditional dependencies between the variables
through estimating the sparse precision matrix θ∗.

III. BACKGROUND

We build our approach on an alternating minimization
algorithm proposed in [10] (batch) and [16] (online) to solve
problem (1). The online algorithm was shown in [16] to
achieve a similar result with fewer iterations in real-time
settings. We provide the background of the algorithm from
[16] and subsequently discuss our modification to account
for arbitrary data corruption in Section IV.

Given a set of uncorrupted data {X1, X2, . . . , Xt} up
to time t, the maximum likelihood estimation problem for

recovering θ is given by

minimize
θt∈Sp

++

− log det θt + tr(Stθt) + λ|θt|l1, (1)

where the set of p × p positive definite matrices is denoted
by the set Sp

++, and St = 1
t

∑t
i=1 XiX

T
i is the sample

covariance matrix constructed from all the data up to the time
step t. The terms − log det θt+tr(Stθt) are derived from the
Gaussian log-likelihood function [4], where tr denotes trace,
and the term |θ|l1 =

∑p
i,j=1 |θij | is the element-wise l1 norm

encouraging sparsity of the solution regulated by the penalty
parameter λ ≥ 0.

The approaches in [10] and [16] formulate the primal and
dual objective functions for problem (1). The primal of (1)
is:

minimize
Ωt∈Sp

++,Φt∈Sp
++

− log detΩt + tr(StΦt) + λ|Φt|l1

subject toΦt = Ωt.
(2)

The dual of (1) is given by

minimize
Γt∈Sp

++

− log det Γt − p (3)

subject to |Γij,t − Sij,t| ≤ λ ∀i, j,

where the symmetric positive definite matrix Γt is the dual
variable, and Aij,t denotes the (i, j)-th element of matrix A
at time t.

Given the sample covariance matrix St, the alternating
minimization follows the iterative sequence of updates,
where each iteration is indexed by the variable k ∈ N:

Ωk+1
t = argmin

Ω∈Sp
++

− log detΩ + tr(Γk
tΩ), (4)

Φk+1
t = argmin

Φ∈Sp
++

tr(StΦ) + λ|Φ|l1 − tr(Γk
tΦ)

+
ζkt
2
∥Ωk+1

t − Φ∥2F , (5)

Γk+1
t = Γk

t + ζkt (Ω
k+1
t − Φk+1

t ). (6)

In the above equations, ζkt is a step size, and ∥A∥F =√
tr(AAT ) denotes the Frobenius norm of a given matrix

A. The step size ζkt is chosen to guarantee convergence of
the estimates Γk

t to their desired quantities and can be set
as a constant ζ = ζkt < a2 for some constant a [16]. The
problem of recovering θt reduces to solving (4)−(6). We
provide robust estimation details in the next section.

IV. ONLINE ROBUST COVARIANCE AND PRECISION
ESTIMATION

In this section, we will introduce the robust covariance es-
timator and describe the modification of the sparse precision
estimation.

A. Online Trimmed Inner Product

We describe an online trimmed inner product estimator
based on the trimmed mean estimator in [23] (batch) and
[24] (online). We modify the estimator for robust online
estimation of covariance. The robust estimator can mitigate



the influence of arbitrary corruption and we will show the
theoretical performance guarantees in Section V.

At the beginning of the algorithm, the system designer will
select an initialization time step t0 ∈ N, a desired confidence
interval δ ∈ (0, 1), and the corruption level η. Note that η
can be an estimate of the upper bound of the corruption rate.

At each time step, a potentially corrupted data vector X̃t ∈
Rp arrives. We compute the product s̃t = X̃tX̃

T
t , where the

(i, j)-th entry s̃ij,t = x̃i,tx̃j,t.
For t < t0, we temporarily store the product matrices in

a data vector for each (i, j)-th entry Ỹij,t = [s̃ij,1, . . . , s̃ij,t].
At t = t0, we start with the set of potentially corrupted

products Ỹij,t0 = [s̃ij,1, . . . , s̃ij,t0 ]. Given the corruption
parameter η and the desired confidence level δ, define

ϵ = 8η + 12
log(4/δ)

t0
. (7)

Note that for sufficiently large t, ϵ < 0.25 since η < 1/32.
For each Ỹij,t0 , let s̃∗ij,1 ≤ s̃∗ij,2 ≤ . . . ≤ s̃∗ij,t0 be a non-
decreasing rearrangement of s̃ij,1, . . . , s̃ij,t0 . For each i, j ∈
{1, . . . , p}, define αij = s̃∗ij,ϵt and βt = s̃∗ij,(1−ϵ)t to be
trimming values. For each αij ≤ βij , and s ∈ R, define the
trim estimator

ϕαij ,βij
(s) =


βij if s > βij ,

s if s ∈ [αij , βij ],

αij if s < αij .

(8)

We then initialize the (i, j)-th entry of the robust estimation
of sample covariance

Ŝij,t0 =

∑t0
k=1 ϕαij ,βij

(s̃ij,k)

t0
. (9)

For all t > t0, the process recursively updates the estimate
using the previous estimate Ŝij,t−1 and the new product s̃ij,t

Ŝij,t =
(t− 1)Ŝij,t−1 + ϕαij ,βij

(s̃ij,t)

t
. (10)

We include the pseudo-code implementation for the online
robust covariance estimation in Algorithm 1.

B. Online Alternating Minimization Algorithm

At the initialization time step t0, we obtain Ŝt0 from (9)
and initialize Γt0 = Ŝt0 +λIp, where Ip ∈ Rp×p is an iden-
tity matrix, with data up to a user-defined t0 ∈ {1, 2, . . .}.
The sparsity penalty parameter λ ensures that the initial dual
variable is positive definite, i.e., λ > max{0,−λmin(Ŝt0)}.

We apply the robust covariance estimator and simplify
the alternating minimization algorithm by allowing one op-
timization iteration per time step. Taking the derivatives of
the expressions for Ωt and Φt and equating them to 0, we
obtain the closed-form updates of (4) and (5):

Ωt = (Γt)
−1, (11)

Φt =
1

ζt−1
Sλ(ζt−1Ωt − Ŝt + Γt). (12)

Here, Sλ(x) = sign(x)(max(|x| − λ, 0)) is the soft-
thresholding operator (applied element-wise to a matrix argu-
ment). Following these update rules, Ωt is interpreted as an

Algorithm 1: Online Trimmed Inner Product
Parameter: t0, δ, η
Input: X̃t = [x̃1,t, . . . , x̃p,t]
for i, j ∈ {1, 2, . . . , p} do

Compute s̃ij,t = x̃i,tx̃j,t

if t < t0 then
Store data in Ỹij,t0

if t = t0 then
Compute ϵ = 8η + 12 log(4/δ)

t0

Sort data in Ỹij,t0 and determine trimming
thresholds αij , βij

Ŝij,t0 =
∑t0

k=1 ϕαij,βij
(s̃ij,k)

t0

if t > t0 then
update trimmed inner product

Ŝij,t =
(t−1)Ŝij,t−1+ϕαij,βij

(s̃ij,t)

t

return Ŝt

Algorithm 2: Online Graphical Alternating Mini-
mization Algorithm (O-GAMA)

Parameter: λ, t0
Input: Stream of potentially corrupted multivariate

data X̃1, X̃2, . . . ∈ Rp

for t ∈ {1, 2, . . .} do
Ŝt = online-trimmed-inner-product(X̃t)
if t = t0 then

Γt0 = Ŝt0 + λIp
Choose ζt ∈ (0, (λmin(Γt0))

2)

else if t > t0 then
Γt = Cλ(Γt − Ŝt + ζt−1(Γt−1)

−1) + Ŝt

Choose ζt ∈ (0, (λmin(Γt))
2)

Update Ωt and Φt as per (11) and (12)

return Sequence of sparse precision estimates
Φt0+1,Φt0+2, . . .

approximately sparse precision matrix and Φt is interpreted
as the estimate of the sparse precision matrix. Substituting
(11) and (12) for the variables in (6), and using the clip
function Cλ(x) = min(max(x,−λ), λ) with property x =
Sλ(x) + Cλ(x), the dual update (6) can be written as:

Γt = Cλ(Γt−1 − Ŝt + ζt−1(Γt−1)
−1) + Ŝt. (13)

The algorithm first iterates through (13) to obtain the new
dual variable. The updated dual variable is then used to
update (11) and (12).

We provide the pseudo-code implementation of the robust
sparse precision estimation algorithm in Algorithm 2.

V. THEORETICAL ANALYSIS

In this section, we provide theoretical guarantees of the
quality of the robust sample covariance estimator and then
analyze the quality of the sparse precision estimation.



A. Robust Sample Covariance

Let tS =
∑t

k=1 XkX
T
k be a p× p random matrix, where

each Xt is i.i.d. sampled from N (0, S∗). The matrix tS
follows the Wishart distribution tS ∼ W(S∗, t) which arises
as the distribution of the sample covariance matrix for a
sample of a multivariate normal distribution [30]. Using
results from the Wishart distribution, each (i, j)-th entry of
S, denoted Sij , is a real-valued random variable with mean
S∗
ij and finite variance σ2

Sij
= S∗

ij
2 + S∗

iiS
∗
jj .

We set up the analysis for each (i, j)-th entry of S. For
simplicity, we omit the subscript ij of S for the following
analysis. Define S = S − S∗. For 0 < q < 1, define the
quantile

Qq(S) = sup{M ∈ R : P(S ≥ M) ≥ 1− q}. (14)

We have P(S ≥ Qq(S)) = 1 − q and from Chebyshev’s
inequality,

1− q = P(S ≥ Qq(S)) ≤ P(|S| ≥ Qq(S)) ≤
σ2
S

Q2
q(S)

.

As a result,
|Qq(S)| ≤

σS√
1− q

. (15)

The following result upper bounds the trimming values
using quantiles.

Lemma 1 ( [23]): Consider the corruption-free samples
y1, . . . , yt. With probability at least 1 − 4e−ϵt/12, the in-
equalities

|{i : yi ≥ S∗ +Q1−2ϵ(S}| ≥ 3/2ϵt

|{i : yi ≤ S∗ +Q1−ϵ/2(S}| ≥ (1− (3/4)ϵ)t

|{i : yi ≤ S∗ +Q2ϵ(S}| ≥ 3/2ϵt

|{i : yi ≥ S∗ +Qϵ/2(S}| ≥ (1− (3/4)ϵ)t

hold simultaneously. We denote the event when the above
four inequalities hold as event A. On event A, since corrup-
tion η ≤ ϵ/8, the following inequalities also hold

Q1−2ϵ(S) ≤ β − S∗ ≤ Q1−ϵ/2(S), (16)

Qϵ/2(S) ≤ α− S∗ ≤ Q2ϵ(S). (17)
With the background mentioned above, we provide the

following result on the error of the robust estimation of
covariance. Note that the proofs of all results are included
in the Appendix.

Theorem 1: Let t0 > max( 3 log(8/δ)
2η , 12 log(4/δ)

0.25−8η ) and fix
δ ∈ [4e−t0 , 1). Following the procedures of Algorithm 1,
with probability at least 1− δ, the estimates satisfy

|Ŝij,t − S∗
ij | ≤

(
√
2 +

√
6

9

)
σSij

√
log(4/δ)

t

+
43
√
2

12
σSij

√
ϵ,∀t ≥ t0, (18)

where σSij =
√
S∗
ij

2 + S∗
iiS

∗
jj .

The theorem illustrates that for each (i, j)-th entry of the
sample covariance, the estimation error consists of an ini-
tialization error derived from setting the trimming thresholds
and a convergence error influenced by the variance of xi, xj ,
as well as the covariance between these variables. Intuitively,
robust covariance estimation becomes more challenging in
the presence of corruption when xi and xj exhibit large
variances, or when their covariance is large, implying con-
siderable joint variation.

We provide the following result on the convergence of the
robustly estimated sample covariance matrix.

Corollary 1: Let t0 > max( 3 log(8/δ)
2η , 12 log(4/δ)

0.25−8η ) and fix
δ ∈ [4e−t0 , 1). Following the procedures of Algorithm 1,
there exists a set of sample paths of measure 1, such that for
each sample path in that set, there exists a finite time t̄, such
that for all t ≥ t̄, the robust sample covariance satisfies

∥Ŝt − S∗∥F ≤

(
√
2 +

√
6

9

)
pσS

√
log(4/δ)

t

+
43

√
2

12
pσS

√
ϵ,∀t ≥ t0. (19)

where σS = maxij

√
S∗
ij

2 + S∗
iiS

∗
jj .

Using the definition of ϵ in (7) with Corollary 1, we obtain
the result below on the convergence of estimates.

Corollary 2: Let t0 > max( 3 log(8/δ)
2η , 12 log(4/δ)

0.25−8η ) and fix
δ ∈ [4e−t0 , 1). Following the procedures of Algorithm 1, the
robust estimate of sample covariance satisfies the following
inequality almost surely,

lim sup
t→∞

∥Ŝt − S∗∥F ≤ 43

6
pσS

√
4η + 6

log(4/δ)

t0
, (20)

where σS = maxij

√
S∗
ij

2 + S∗
iiS

∗
jj .

From the above results, we observe that the estimation
error converges to the error introduced by initialization. Thus,
it requires a relatively large t0 to give reasonable estimates.

B. Robust Sparse Precision Matrix

In this subsection, we provide error bounds for the esti-
mates of sparse precision estimates. It was shown in [10],
that Ω∗ = θ∗ is the optimal solution of (1) given S∗, if and
only if Γ∗ = (Ω∗)−1 is a fixed point of (13) given S∗ (i.e.,
with access to the true covariance matrix). We will analyze
the dual variable Γt given t data points and as the number
of data points increases.

We provide the following theorem to show the lower
and upper bound of eigenvalues of the dual variables Γt.
The robustly estimated sample covariance matrix is real
and symmetric. However, St may no longer be positive
semidefinite. For the inverse covariance estimation, we will
use the penalty parameter λ to enforce positive definiteness
in the estimates.

Theorem 2: Let t0 > max( 3 log(8/δ)
2η , 12 log(4/δ)

0.25−8η ) and fix
δ ∈ [4e−t0 , 1). Define b = maxt≥t0 λmax(Ŝt) + pλ and a =
mint≥t0 e

g(t)b1−p, where g(t) = log det Γt0 −
∑t−1

k=t0
∆k,



and ∆t = tr ((Γt+1 − Γt) (−Ωt)) +
1
2ζt

∥Γt+1 − Γt∥2F . For
any finite t ≥ t0, there exists a sufficiently large λ such that
iterates of Γt of Algorithm 2 satisfy 0 ≺ aIp ⪯ Γt ⪯ bIp.

Note that here we provide the result of boundedness for
finite time steps, and we can always select a sufficiently large
penalty parameter λ such that estimates are bounded for finite
time steps. We note that Ŝt converges to a range of S∗ almost
surely and Γt converges to a range of Γ∗ almost surely. The
upper bound b is finite almost surely. For the lower bound,
we observe from experiments that

∑t
k=t0

∆k is bounded for
all t ≥ t0 (see Fig. 4 in the Appendix). As a result, the
appropriate value for the penalty parameter is also bounded,
i.e., λ ∈ (0,∞).

To analyze the finite-time performance of robust sparse
precision estimation, we introduce the following theorem.
The proof is similar to the online graphical alternating
minimization algorithm [16], and we incorporate the robust
sample covariance estimation error.

Theorem 3: Let t0 > max( 3 log(8/δ)
2η , 12 log(4/δ)

0.25−8η ) and fix
δ ∈ [4e−t0 , 1). Assume ∀t ≥ t0, the quantities Γt satisfy
aI ⪯ Γt ⪯ bI and ζt = ζ, and assume Γ∗ satisfies aIp ⪯
Γ∗ ⪯ bIp. Then at time-step t + 1, the dual variable Γt+1

satisfies the following condition:

∥Γt+1 − Γ∗∥F ≤ rt+1−t0∥Γt0 − Γ∗∥F

+ 2

t∑
k=t0

rt−k∥Ŝk+1 − S∗∥F , (21)

where r = max
{
|1− ζ

a2 |, |1− ζ
b2 |
}
.

We defer discussing the implications of the result until the
asymptotic analysis is presented later in this section.

For analysis, we require the following lemma.
Lemma 2: Let 0 < r < 1 and let {ρt} be a positive scalar

sequence. Assume that limt→∞ ρt ≤ ρ̄. Then

lim sup
t→∞

t∑
l=0

rt−lρl ≤
ρ̄

1− r
. (22)

Corollary 3: Let t0 > max( 3 log(8/δ)
2η , 12 log(4/δ)

0.25−8η ) and fix
δ ∈ [4e−t0 , 1). Assume that there exist constants 0 < a <
b such that, for all t ≥ t0, the quantities Γt computed in
Algorithm 2 satisfy aI ⪯ Γt ⪯ bI and ζt = ζ < a2. Then,
as the number of data points t → ∞, the result Γt converges
to a range of the optimal solution Γ∗ almost surely:

lim sup
t→∞

∥Γt+1 − Γ∗∥F ≤ 43

6(1− r)
σS

√
4η + 6

log(4/δ)

t0
,

(23)
where r = max

{
|1− ζ

a2 |, |1− ζ
b2 |
}

and σS =

maxij

√
S∗
ij

2 + S∗
iiS

∗
jj .

From the above results, the estimation error is introduced
by the initialization of the dual variable and the initialization
of the trimming threshold. Since the error introduced by
dual initialization converges exponentially to 0 (for 0 <
r < 1), the convergence of the dual variable is dominated
by the convergence of the sample covariance matrices.

Asymptotically, the estimation error is introduced only by
the trimming threshold determined during the initialization
process. Notably, the error correlates with the corruption rate
η but not to any severity of the corruption.

VI. EXPERIMENTS

In this section, we demonstrate the effectiveness of robust
online estimation algorithms through experimental simula-
tions.

Experimental Setup

We first generate a sparse Erdos-Renyi network with p
nodes following the steps in [31]. We generate a p × p
symmetric matrix A by setting the probability of two nodes
having no edge as 0.95, and the probability of two nodes
having an edge as 0.05; in the latter case, the value of the
corresponding entry is chosen to be uniformly distributed
within certain intervals:

Aij =

{
0 Pr = 0.95

Unif([−0.6,−0.3] ∪ [0.3, 0.6]) otherwise
.

To ensure that the covariance matrix is positive definite, we
set θ∗ = (S∗)

−1
= A + (ξ + |λmin(A)|)I , and adjust ξ to

make λmin(θ
∗) = 1.

We then generate a clean data matrix X ∈ Rp×t from
a Gaussian distribution N (0, θ∗). For each row in the data
matrix, we randomly select ηt of them to be corrupted,
where η = 0.03. The corruption data are generated by two
normal distributions N (µ, σ), representing small and large
corruptions, respectively, as follows:

(1)µ = 1, σ = 2; (2)µ = 1, σ = 5.

Performance of Covariance and Sparse Precision Estimates

For this set of experiments, we let p = 10, t0 = 100, δ =
0.9, and λ = 0.15. We include the simulation results for
robust covariance estimation in Fig. 2 and robust sparse
precision estimation in Fig. 3.

In Fig. 2, we let Ŝt be zero matrices for all t ≤ t0.
The performance of the two robust estimators is similar
and the deviation curves overlap in the plot. We observe
that the robust covariance estimator is effective against large
corruption and shows improvement over small corruption.
Asymptotically, the performance of the robust estimator is
influenced by the initialization error and stays within a
bounded range of the true covariance.

In Fig. 3, we observe that both small and large corruptions
have a significant effect on the estimates of the sparse preci-
sion matrix. However, with the proposed robust estimator, the
estimates are significantly improved and are bounded within
a close range of the estimates without any corruption.

VII. CONCLUSION AND FUTURE WORK

In this work, we proposed online robust covariance and
sparse precision estimators. In [24], it was shown that by
trading off computation and memory complexity, the initial
estimation error can be eliminated. We will include such
modifications to reduce initialization errors in future work.
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APPENDIX

A. Proof of Theorem 1

First, we state the following lemma to complete the proof.
Lemma 3: (Bernstein’s inequality) Let S1, . . . , St be in-

dependent random variables, such that |Si − E[Si]| ≤ a for
all i. Then for any δ ∈ (0, 1) and t ∈ N, we have

P
( ∣∣∣∣∣1t

t∑
k=1

(Sk − E[Sk])

∣∣∣∣∣ ≤ 2a

3t
log(2/δ)+

√
2σ2 log(2/δ)

t

)
≥ 1− δ, (24)

where σ2 = 1
t

∑t
k=1 σ

2
Sk

.
To simplify notation, we omit the subscript ij that denotes

the (i, j)-th entry in the proof and let ϕt0 = ϕαt0
,βt0

. From
the triangle inequality, we can separate

∣∣∣∣∣1t
t∑

k=1

ϕt0(s̃k)− S∗

∣∣∣∣∣ ≤ |E[ϕt0(S)]− S∗|

+

∣∣∣∣∣1t
t∑

k=1

ϕt0(sk)− E[ϕt0(S)]

∣∣∣∣∣
+
∣∣∣1
t

t∑
k=1

ϕt0(s̃k)−
1

t

t∑
k=1

ϕt0(sk)
∣∣∣. (25)

The error between the expected values of the trimming
operator and the true mean (i.e., S∗ = E[S]) is introduced
by data beyond the trimming thresholds

|E[ϕt0(S)]− S∗| ≤ |E[(αt0 − S)1S≤αt0
]

+ E[(S − S)1αt0<S<βt0
] + E[(βt0 − S)1S≥βt0

]|. (26)

Notice that on the right-hand side of (26), the first term
is positive, the second term is zero, and the third term is
negative.

For t0 ≥ 3 log(8/δ)
2η , the probability of event A in Lemma

1 satisfies 4e−ϵt0/12 ≤ 4e−
2
3ηt0 ≤ δ/2. With probability at

least 1 − δ/2, on event A, the trimming thresholds satisfy
(16) and (17), and recall S = S − S∗,

|E[ϕt0(S)]− S∗|

≤ max
{ ∣∣∣E[(Q2ϵ(S)− S)1S≤Q2ϵ(S)]

∣∣∣ ,∣∣∣E[(S −Q1−2ϵ(S))1S≥Q1−2ϵ(S)]
∣∣∣ }. (27)

The first term on the right-hand side of (27) can be upper

bounded as

|E[(Q2ϵ(S)− S)1S≤Q2ϵ(S)]|
≤ |E[Q2ϵ(S)1S≤Q2ϵ(S)]|+ |E[S1S≤Q2ϵ(S)]|
(a)

≤ |Q2ϵ(S)|P(S ≤ Q2ϵ(S))

+

√
E[S2

]E[(1S≤Q2ϵ(S))
2]

(b)

≤ σS√
1− 2ϵ

2ϵ+ σS

√
P(S ≤ Q2ϵ(S))

(c)

≤ σS√
2ϵ

2ϵ+ σS

√
P(S ≤ Q2ϵ(S))

= σS

√
8ϵ,

where (a) applies the Cauchy–Schwarz inequality, and (b)
follows from the definition and upper bound of quantile in
(14) and (15), and (c) is given by ϵ < 0.25 by the assumption
t0 > 12 log(4/δ)

0.25−8η . The proof is similar for the second term on
the right-hand side of (27), and we obtain

|E[ϕt0(S)]− S∗| ≤ σS

√
8ϵ. (28)

Using (16) and (17), and the upper bound on E[ϕt0(S)]
derived from (28), we have that any data point sk,

|ϕt0(sk)− E[ϕt0(S)]|
≤ max{|Qϵ/2(S)|, |Q1−ϵ/2(S)|}+ σS

√
8ϵ

≤ σS√
ϵ/2

+ σS

√
8ϵ, (29)

where the last inequality follows from (15) and ϵ < 0.25.
Applying Bernstein’s inequality in Lemma 3, where a is

the right-hand side of (29), with probability at least 1− δ/2,
we bound the second term of (25) as∣∣∣∣∣1t

t∑
k=1

ϕt0(sk)− E[ϕt0(S)]

∣∣∣∣∣ ≤ σS

√
2 log(4/δ)

t

+
2σS√
ϵ/2

log(4/δ)

3t
+

2σS

√
8ϵ log(4/δ)

3t
. (30)

Expanding the second term of on the right-hand-side of
(30), we obtain

2σS√
ϵ/2

log(4/δ)

3t

(a)

≤ 2σS log(4/δ)

3t
√
4η + 6 log(4/δ)

t0

(b)

≤ σS
2
√
t0

3t

√
log(4/δ)

6

(c)

≤ σS
2

3

√
log(4/δ)

6t
, (31)

where (a) and (b) are derived from the definition of ϵ in
(7), and (c) follows from t0/t ≤ 1,∀t ≥ t0. Noting that
log(4/δ)/t ≤ 1 by the assumption that δ ≥ 4e−t0 , we have∣∣∣∣∣1t

t∑
k=1

ϕt0(sk)− E[ϕt0(S)]

∣∣∣∣∣
≤

(
√
2 +

√
6

9

)
σS

√
log(4/δ)

t
+

4
√
2

3
σS

√
ϵ. (32)



For corrupted data satisfying ϕt0(s̃t) ̸= ϕt0(st) at time t,
the gap is bounded

|ϕt0(s̃t)− ϕt0(st)| ≤ |Qϵ/2(S)|+ |Q1−ϵ/2(S)|,

and it follows that,

1

t

∣∣∣ t∑
k=1

ϕt0(sk)−
t∑

k=1

ϕt0(s̃k)
∣∣∣

(a)

≤ η
(
|Qϵ/2(S)|+ |Q1−ϵ/2(S)|

)
(b)

≤ η

(
σS√
1− ϵ/2

+
σS√
ϵ/2

)
(c)

≤ ϵ

8

(
2σS√
ϵ/2

)
≤ σS

√
2ϵ

4
, (33)

where (a) reflects the potential presence of up to ηt corrupted
samples at time t, (b) follows from (15), and (c) follows from
η ≤ ϵ/8 by definition in (7) and ϵ < 0.25.

Using (28), (32), and (33) in (25), with probability at least
1− δ,

|Ŝt − S∗| ≤

(
√
2 +

√
6

9

)
σS

√
log(4/δ)

t
+

43
√
2

12
σS

√
ϵ.

(34)

B. Proof of Corollary 1

Let ρij,t =
(√

2 +
√
6
9

)
σSij

√
log(4/δ)

t + 43
√
2

12 σSij

√
ϵ.

From Theorem 1, we have

P[|Ŝij,t − S∗
ij | ≥ ρij,t] ≤ δt. (35)

Applying the union bound, we have

P[∪ij{|Ŝij,t − S∗
ij | ≥ ρij,t}] ≤ p2δt. (36)

This result holds for any fixed t. Note that from Theorem 1,
the range for the selection of δ is time-dependent. We use
δt to represent this dependency and each δt ∈ (4e−t0 , 1/p2).
We will now extend this to bound the deviation of Ŝt from
S∗ for all sufficiently large t.

Define a bad event at time t as the event that there exists
a pair of (i, j) such that |Ŝt,ij − S∗

ij | > ρij,t. Define the
random variable Bt, with Bt = 1 if the bad event occurs at
the given t, and 0 otherwise. Define B =

∑t
k=t0

Bk as the
number of bad events up to time t. We can always select a
constant c, such that δt = ce−t ∈ (4e−t0 , 1/p2). Summing
up the probability of bad events in (36), we have

t∑
k=t0

P[Bk] ≤ cp2
t∑

k=t0

e−t < ∞.

From the Borel-Cantelli lemma, the probability of in-
finitely many bad events occurring is 0. Thus, for a set
of sample paths of measure 1, there exists a sample-path
dependent finite time t̄ such that for t ≥ t̄, no bad event
occurs. In other words, for all t ≥ t̄, |Ŝij,t − S∗

ij | ≤ ρij,t
∀i, j almost surely, and maxij(|Ŝt,ij − S∗

ij |) ≤ maxij ρij,t.
Using the matrix norm inequality, ∥Ŝt−S∗∥F ≤ pρt, where

ρt = maxij ρij,t. Thus, for each sample path in a set of
measure 1, there exists a finite time t̄ such that ∀t ≥ t̄,

∥Ŝt − S∗∥F ≤ pρt = pmax
ij

ρij,t. (37)

C. Proof of Theorem 2

Consider the update for Γt given by (13). According to
Weyl’s inequality and the upper bound of the eigenvalues of
the clipping operator (see [16]), the eigenvalues of Γt for
fixed t satisfy

λmax(Γt) ≤ pλ+ λmax(Ŝt).

A symmetric matrix with positive diagonal elements has at
least one positive eigenvalue, thus, λmax(Ŝt) > 0,∀t. Define
b = pλ + maxt≥t0 λmax(Ŝt). We have 0 < λmax(Γt) ≤ b
for all finite t.

Now we show the lower bound for eigenvalues. The step
size ζt is chosen to guarantee convergence as shown in
Theorem 3. More specifically, it can be chosen for each
iteration by backtracking line search such that for the next
iteration, Γt satisfies the sufficient descent condition

f(Γt) ≤ Dζt−1
(Γt,Γt−1), (38)

where f(Γt) = − log det Γt is the dual objective from
(3) and Dζt−1 is the quadratic approximation of the dual
objective (3) around Γt−1 given by

Dζt−1
(Γt,Γt−1) = f(Γt−1) + tr[(Γt − Γt−1)∇f(Γt−1)]

+
1

2ζt−1
∥Γt − Γt−1∥2F . (39)

Using the approximation and computing the derivative ∇f ,
we have the sufficient descent condition

− log det Γt ≤ − log det Γt−1 +∆t−1, (40)

where ∆t = tr[(Γt+1 − Γt) (−Ωt)] +
1
2ζt

∥Γt+1 − Γt∥2F .
The step size can be selected small enough to satisfy

the above conditions, and it was shown in [10] that ζt ≤
min(λmin(Γt−1,Γt))

2 is sufficient to satisfy the condition.
Iterating through the above condition, we obtain

log det Γt ≥ log det Γt0 −
t−1∑
k=t0

∆k. (41)

Let at be the smallest eigenvalue of Γt, and let g(t) =
log det Γt0 −

∑t−1
k=t0

∆k, we have

log at + (p− 1) log b ≥ log det Γt ≥ g(t) (42)

at+1 ≥ eg(t)b1−p. (43)

For a finite time step t ≥ t0, we can always select a large
enough λ, such that g(t) > −∞ for all t0 ≤ . . . ≤ t and
at ≥ a, where a = mint0≤t(at).

Thus, we have aIp ⪯ Γt ⪯ bIp for all finite t ≥ t0.



Fig. 4: Boundedness of the sum of error terms ∆.

D. Proof of Lemma 2

Let ξ > 0 be arbitrary. Since limt→∞ ρt ≤ ρ̄, we let t̄ to
be the index such that ρt ≤ ρ̄+ ξ for all t ≥ t̄.

For all t ≥ t̄+ 1, we can partition

t∑
l=0

rt−lρl =

t̄∑
l=0

rt−lρl +

t∑
l=t̄+1

rt−lρl. (44)

Using properties of geometric series, we have

t̄∑
l=0

rt−lρl ≤ max
0≤k≤t̄

ρk

t̄∑
l=0

rt−l = max
0≤k≤t̄

ρkr
t−t̄

t̄∑
t=0

rt

≤ max
0≤k≤t̄

ρk
rt−t̄

1− r
, (45)

and
t∑

l=t̄+1

rt−lρl ≤ (ρ̄+ ξ)

t∑
l=t̄+1

rt−l ≤ ρ̄+ ξ

1− r
. (46)

Therefore, by combining the results, we have
t∑

l=0

rt−lρl ≤ max
0≤k≤t̄

ρk
rt−t̄

1− r
+

ρ̄+ ξ

1− r
. (47)

Since ξ is arbitrary and r ∈ (0, 1), we have the result

lim sup
t→∞

t∑
l=0

rt−lρl ≤
ρ̄

1− r
. (48)

E. Proof of Corollary 3

From Theorem 3, if ∀t ≥ t0, ζkt = ζ < a2, then 0 <
r < 1. The first term rt+1−t0∥Γt0 −Γ∗∥F in (21) converges
exponentially to zero. The second term in (21) is an instance
of Lemma 2, with r < 1 and ρt → ρ̄ almost surely as t → ∞
from Corollary 2.

F. Boundedness of Eigenvalues for Sparse Cases

In Fig. 4, we demonstrate the boundedness of error terms
defined in (40), by running 3 independent experiments where
p >> t0. The subplot with an adjusted y-axis shows the
values with a higher resolution. The total number of data
points is 1000, t0 = 100, p = 500, λ = 0.5, and other
parameters are identical to the previous experiment setup.
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