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A Distributed control framework

for the optimal operation of DC microgrids

Zao Fu, Michele Cucuzzella, Carlo Cenedese, Wenwu Yu and Jacquelien M. A. Scherpen

Abstract— In this paper we propose an original distributed
control framework for DC mcirogrids. We first formulate the
(optimal) control objectives as an aggregative game suitable
for the energy trading market. Then, based on the dual theory,
we analyze the equivalent distributed optimal condition for the
proposed aggregative game and design a distributed control
scheme to solve it. By interconnecting the DC mcirogrid and
the designed distributed control system in a power preserving
way, we steer the DC microgrid’s state to the desired optimal
equilibrium, satisfying a predefined set of local and coupling
constraints. Finally, based on the singular perturbation system
theory, we analyze the convergence of the closed-loop system.
The simulation results show excellent performance of the
proposed control framework.

I. INTRODUCTION

As an important part of the (actual and future)

energy system, the direct current (DC) microgrids

are widely deployed in several applications, such as

renewable energy sources, trains, aircraft, ships and

charging stations for the more and more popular

electric vehicles [1]. To improve the energy dispatch

efficiency and trading fairness for the DC microgrids,

one of the most effective options is the adoption of a

distributed control and optimization framework (DCOF) [2].

Within such a framework, energy trading, control, and

optimization processes will operate in a fully distributed

way offering power stability, information privacy, plug-and-

play capabilities, and market adaptability for large-scale

power networks. However, compared with the opponent

centralized framework, the DCOF requires to pay more

attention to the design of the control objectives and deal with

the constraints (especially with the coupling constraints).

In general, the control objectives for the DC microgrids

focus on system-level requirements, e.g., system stability [3]

and convergence rate. However, the optimization objectives

might focus also on economic aspects, such as maximizing

the profit from selling power, minimizing power costs, and

reducing power losses. For the control objectives, there are
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several results (see for instance [4], [5] and the references

therein). We can divide the research on the optimization into

two parts: modeling and algorithm design. In the modeling

part, convex optimization (e.g. quadratic programming) and

non-cooperative games (e.g. aggregative games [6], [7]) are

the most commonly used (see e.g. [8] and the references

therein for further details). In the algorithm design process,

the challenges come from dealing with the following three

aspects: local constraints, coupling constraints, and global

information [9]. We mainly have three different methods for

dealing with the local constraints. The first one is called the

penalty method, and it uses a penalty function to embed the

local constraints into the objective function [10]. The second

method is called the projection method, and it restricts the

descent direction within the feasible direction [11]. The last

method is the Lagrange multiplier method, which dualizes

the local constraints such that the corresponding dual

problem does not have local constraints [12]. On the other

hand, one of the most effective methods for handling the

coupling constraints is the multiplier consensus method [13].

Such a method employs the Lagrange dual method to first

deal with the coupling constraints, and then converts

the resulting dual problem into an optimization problem

suitable for the design of distributed algorithms [13]. For

the aggregative information, one of the most common

approaches is to design a (faster) estimation system (such

as dynamical average consensus algorithms) to estimate the

global information in a fully distributed fashion [14].

After modeling the control and optimization objectives and

designing the control system, the next step is to connect

the control system with the dynamics of the considered DC

microgrid. Since the DC microgrid’s dynamics can be shown

to be passive, ensuring passivity of the controller as well,

implies that, through a suitable interconnection, the closed-

loop system is still a passive system. Inspired by such an

idea, we design the control system based on the Lagrange

dual theory, and prove that the closed-loop system converges

to the desired (optimal) equilibrium, maximizing the profit

while satisfying both the local and coupling constraints.

We organize the rest of the paper as follows. Section II

introduces the dynamics of the DC microgrid and formulates

the control and optimization objectives. In Section III, we

analyze the distributed optimal condition, and in Section

IV, we design the distributed control scheme, interconnect it

with the DC microgrid and analyze the closed-loop stability.

Section V shows the simulation results, and Section VI

concludes the paper.

Notations: col {x, y, · · · } = [x⊤, y⊤, · · · ]⊤, where the
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Fig. 1. Electrical scheme of DGU i ∈ N and transmission line k ∈ E .

notation col represents “vector stack”. Without additional

explanation, we use x to denote the ‘vector stack” of

x1, . . . , xn, that is x = col {xi}i∈N = col {x1, · · · , xn}.

The notation diag {xi}i∈N represents the (block) diagonal

matrix whose diagonal entries consist of x1, . . . , xn. Let

[x]+ = max {0, x}. The notation ‖x‖A, where A is a

symmetric definite or semi-definite matrix, represents the

norm of semi-norm, and ‖x‖A =
√

〈x,Ax〉. The notation

δmin(A) denotes the minimal singular value of the matrix

A. The notation {x}i represents the i-th entry of the vector

x. The notation ∇ denotes the gradient, and the notation

∇x represents the gradient with respect to x. The notation

〈x, y〉 denotes the inner product of the vectors x and y.

The notations 0n and 1n denote n-dimension vectors whose

entries are 0 and 1. Also, we omit the dimension when

it is clear. The notation ∂x denotes the sub-gradient with

respect to x. The notation JF,x (x) denotes the Jacobin

matrix of the function F (x) with respect to x. The notations

◦ and ⊗ represent the Kronecker product and the Hadamard

product, respectively. The symbols with the superscripts

“r” and “∗” denote constant references and equilibriums

(or Nash equilibriums). The “ˆ” denotes the control states

corresponding to the microgrid’s ones.

II. MODEL DESCRIPTION

Following [3] and the references therein, we con-

sider a microgrid consisting of a certain number of

distributed generation units (DGUs), equipped with dis-

tributed controllers and decision systems. Moreover, we

consider that each DGU includes constant impedance and

constant current loads, and DGUs are interconnected with

each other via distribution power lines. Let the sets N ,

{1, . . . , n} and E , {1, . . . ,m} denote the DGU and the

transmission line index sets, respectively. For the readers’

convenience, Figure 1 shows the electric scheme of the DGU

i and line k (see also Table I for the description of the used

symbols).

According to Kirchhoff’s law, we can write the dynamics

TABLE I

PHYSICAL DESCRIPTIONS FOR THE NOTATIONS.

Description Symbol Description Symbol

Control input ui Filter parameters Ri, Li

Generated current Ii Line parameters Rl,k, Ll,k

Line current Il,i Shunt capacitor Ci

Load voltage Vi Load parameters IL,i, ZL,i

of the DC microgrid as follows (see e.g. [3]):

Lİ =− V −RI + u,

CV̇ = I +BIl − Z−1
L V − IL

Llİl =−RlIl −B⊤V.

(1)

where B ∈ R
m×n is the adjacency matrix associated with

the arbitrary oriented graph of the connected and undirected

graph G (N , E). We assume that each transmission line is

under the control of a unique DGU connected to it, and we

let Ei represent the index set of the transmission lines being

under the control of the DGU i ∈ N . Hence, we have

⋂

i∈N

Ei = ∅,
⋃

i∈N

Ei = E . (2)

Let now define for convenience xi , col{Ii, Vi, Ic,i} ∈
R

2+|Ei|, with Ic,i , col{Il,k}k∈Ei
∈ R

|Ei|, to denote the

state vector of the DGU i ∈ N . The objective of this

paper is to design a distributed control scheme that stabilizes

the considered DC microgrid at the desired equilibrium

solving a pre-designed game problem. To achieve this goal,

we use passivity theory [15] to interconnect the considered

microgrid’s dynamics (1) with the distributed control system

we design in the following sections.

Before formulating the game problem, we describe the

feasible region of operation of the considered microgrid by

introducing the following set of coupling constraints:

K ,

{

(u, x) ∈ R
m+3n

∣
∣
∣
∣
∣

I +BIl − Z−1
L V − IL = 0n

RlIl +B⊤V = 0m

︸ ︷︷ ︸

Ax−sA = 0m+n

}

,

(3)

where we omit the definitions of the matrix A ∈ R
(m+n)×n

and the vector b ∈ R
m+n. Moreover, for every DGU i ∈ N ,

we introduce the following set of local constraints:

Ωi ,







(ui, xi) ∈ R
3+|Ei|

∣
∣
∣
∣
∣
∣
∣
∣
∣

Vi +RiIi − ui = 0

V min
i ≤ Vi ≤ V max

i

Imin
c,i ≤ Ic,i ≤ Imax

c,i







, (4)

where the superscripts ‘min’ and ‘max’ represent the min-

imum and maximum values of the the corresponding state,

respectively. Based on (3) and (4), we can then define the



following feasible set:

πi (x−i) =
{

(ui, xi) ∈ Ωi | Aixi + sAi
︸ ︷︷ ︸

φi(xi)

+

n∑

j=1,j 6=i

Ajxj + sAj

︸ ︷︷ ︸

φ
−i(x−i)

= 0

}

,

(5)

where for all i ∈ N , Ai ∈ R
(m+n)×(3+|Ei|) and sA,i are

constant and satisfy A = [A1, . . . , An] ,
∑n

i=1 sAi
= sA.

Moreover, x−i denotes the stack of all the rivals’ decisions,

i.e., x−i = col {x1, . . . , xi−1, xi+1, . . . , xn}.

We can now introduce the main goal of the paper, which

can be formulated as an aggregative game probelem, i.e., for

all i ∈ N

min
ui,xi

fi (ui, xi, x−i)

s.t. (ui, xi) ∈ πi (x−i) ,

(6)

with

fi (ui, xi, x−i) = f1,i (ui, xi) + f2,i (xi, x−i)

f1,i (ui, xi) ,
αui

2
(ui − ur

i )
2
+

1

2
‖xi − xr

i ‖
2
Axi

f2,i (xi, x−i) , −
(

l − pr
∑n

i=1
Ii

︸ ︷︷ ︸
spr

)

V r
i Ii,

(7)

where f1,i(ui, xi) represents the cost associated with the

deviation of the i-th DGU’s state and input with respect

to the corresponding references, while f2,i(xi, x−i) rep-

resents the profit of DGU i, where (l − prspr
) > 0

is the selling price of the generated power V r
i Ii. More-

over, αui
is a positive constant and the matrix Axi

,

diag
{
αIi , αVi

, diag
{
αIl,k}k∈Ei

}
is positive definite; the

parameters pr and l are positive constants ensuring that the

price of power is always positive, i.e., (l − prspr
) > 0 for

all the feasible currents I1, . . . , In. According to the con-

straint (3), we can guarantee such a condition by introducing

the following assumption:

Assumption 1 (Parameter setting) Let the following con-

dition

0 < l − pr

n∑

i=1

(
V max
i

ZL,i

+ IL,i

)

(8)

hold for all i ∈ N .

Note that the increase of the generated currents’ sum spr

implies a reduction of the power price l − prspr
(and vice

versa), as usual in the energy trading market.

III. PROBLEM ANALYSIS

In this section, we analyze the optimality conditions

associated with the game problem (6). First, we introduce

the definition of the generalized Nash equilibrium (GNE) [9,

Definition 1].

Definition 1 (Generalized Nash equilibrium) The point

(u∗, x∗) is a GNE for the game (6) if and only if it solves

the following problem:

min
ui,xi

fi(ui, xi, x
∗
−i) s.t. (ui, xi) ∈ πi(x

∗
−i). (9)

for all i ∈ N .

Now, before formulating the dual problem of (9), for all

i ∈ N , we define the following penalty function (distance

function):

gi(xi) = ρVi

(
[V min

i − Vi]+ + [Vi − V max
i ]+

)

︸ ︷︷ ︸

= g1,i(Vi)

+
∑

k∈Ei

ρIl,k
(
[Imin

l,k − Il,k]+ + [Il,k − Imax
l,k ]+

)

︸ ︷︷ ︸

= g2,k(Il,k)

,

where the positive constants ρVi
and ρIl,k , k ∈ Ei, represent

the penalty parameters. According to [10, Lemma 4], there

exist positive penalty parameters for the sub-problems in (9)

such that its solution and the solution to the corresponding

penalized problem coincide. For all i ∈ N , we can then

define the following Lagrange function

Li(ui, xi, x
∗
−i, γi, λi) = fi(ui, xi, x

∗
−i)

+ gi(xi) + γi(D
⊤
i xi − ui)

+ 〈λi, φi(xi) + φ−i(x
∗
−i)〉,

(10)

where Di = col {1, Ri,0} ∈ R
2+|Ei| is a constant vector

and γi ∈ R represents the Lagrange multipliers associated

with the constraints D⊤
i xi − ui = 0 (see the first equality

constraints in (4)). Similarly, λi ∈ R
m+n represents the

Lagrange multipliers associated with the coupling constraints

in (5). Note also that the penalty function gi(xi) is not

differentiable at some points. Hence, we need to introduce

the sub-gradient of gi(xi) consisting of the sub-gradients of

the penalty functions g1,i(Vi) and g2,k(Il,k). For all i ∈ N ,

the sub-gradient of g1,i(Vi) is as follows [16]

∂g1,i(Vi) ∈







−ρVi
if Vi < V min

i ,

[−ρVi
, 0] if Vi = V min

i ,

0 if V min
i < Vi < V max

i ,

[0, ρVi
] if Vi = V max

i ,

ρVi
if Vi > V max

i .

(11)

The sub-gradient of g2,i(Il,k) can be obtained as in (11),

thus we omit it for the sake of simplicity. To guarantee that

a GNE exists for the game problem (6), we introduce the

following assumption:

Assumption 2 (Non-empty feasible set) The feasible set

given by the intersection of K in (3) and Ω1, . . . ,Ωn in (4)

is non-empty.

Since the constraints of each sub-problem in (6) are affine,

Assumption 2 guarantees that πi satisfies Slater’s constraint

qualification. Therefore, the following KKT conditions are a



necessary and sufficient condition for the optimal condition

of the problem (6) (refer to [12, Section 5.2.3] for details):

∀ i ∈ N ,







∇ui
Li(u

∗
i , x

∗
i , x

∗
−i, γ

∗
i , λ

∗
i ) = 0n,

∂xi
Li(u

∗
i , x

∗
i , x

∗
−i, γ

∗
i , λ

∗
i ) ∋ 0m+2n,

∇λi
Li(u

∗
i , x

∗
i , x

∗
−i, γ

∗
i , λ

∗
i ) = 0m+n,

∇γi
Li(u

∗
i , x

∗
i , x

∗
−i, γ

∗
i , λ

∗
i ) = 0,

(12)

where (u∗
i , x

∗
i , γ

∗
i , λ

∗
i ) is the saddle-point of the Lagrange

function (10). Since the multipliers λ∗
1, . . . , λ

∗
n can vary from

each other, the solution of the KKT condition (12) may not

be unique. To shrink the solution set of the KKT condition

(12) to a convex set (or a singleton), such that we can

develop a fully distributed algorithm, we need to introduce

the following definition [17, Definition 3.2], [18].

Definition 2 (Normalized Nash equilibrium) A GNE (u∗,
x∗) is a normalized Nash equilibrium (NNE) associated with

the given r1, . . . , rn > 0, if there exist the Lagrange

multipliers γ∗ and λ∗ such that (u∗, x∗, γ∗, λ∗) solves the

KKT condition (12) and satisfies the additional condition

r1λ
∗
1 = · · · = rnλ

∗
n. (13)

Remark 1 The values of the Lagrange multipliers λ∗
1, . . . ,

λ∗
n concerning the coupling constraints represent the shadow

price of all the DGUs. From a trading market point of view,

the values of r1, . . . , rn can be designed by a higher level

decision system (for example, the government) in order to

model different market scenarios.

For the sake of analysis, let Ar , diag {ri}i∈N ⊗
Im+n, λ , col {λi}i∈N ,L , L⊗ Im+n, where L represents

the Laplacian matrix associated with G. Since G is undi-

rected and connected, then the condition (13) is equivalent

to LArλ = 0n(m+n). Then, we introduce the following

proposition playing a crucial role in the later controller

design, as in [6].

Proposition 1 There exist υ∗ , col {υ∗
i }i∈N , ν∗ ,

col {ν∗i }i∈N ∈ R
n satisfying

{

−(I+ L)υ∗ − Lν∗ + nI∗ = 0n,

Lυ∗ = 0n

(14)

if and only if

υ∗
1 = · · · = υ∗

n =

n∑

i=1

I ∗
i , (15)

where I∗i ∈ R for all i ∈ N .

Proof It holds that

Lυ∗ = 0n ⇔ υ∗
1 = · · · = υ∗

n. (16)

By substituting the second equality of (14) in the first

equality and multiplying both sides by 1
⊤
n , we can obtain

the condition (15). From (15) and rank(L) = n − 1, we

deduce that there exists ν∗ satisfying

υ∗ − nI∗ =
( n∑

i=1

I∗i

)

1n − nI∗ = Lν∗. (17)

By combining (17) and (16), we obtain the condition (14),

which completes the proof.

According to [17, Proposition 3.2], the NNE associated with

a given r > 0 of the problem (6) corresponds to the solution

of the following variation inequality:

x∗ ∈ K ∩ Ω, 〈Fr(u
∗, x∗), x− x∗〉 ≥ 0, ∀x ∈ K ∩ Ω,

(18)

where Ω ,
⋂n

i=1 Ωi, and the vector function Fr(u, x) is the

pseudo-gradient (refer to [17]) defined as follows

Fr(u, x) = col {ri∇(ui,xi)fi(ui, xi, x−i)}i∈N .

To ensure that the variational inequality (18) (as well as the

problem (6)) has a unique NNE (u∗, x∗) for a fixed r > 0,

we need to introduce the following assumption:

Assumption 3 (Bound for parameters) For all i ∈ N , the

parameter ri satisfies the following condition:

2riαIi + (6− n) riprV
r
i −

n∑

i=1

riprV
r
i > 0. (19)

Under Assumption 3, one can verify that the Jacobian matrix

JFr
(u, x) ≻ 0 and thus Fr(u, x) is strict monotone for all

(u, x) ∈ K ∩ Ω (refer to [19, Theorem 2.3.3]). Therefore,

the variational inequality (18) has a unique solution under

Assumptions 2 and 3. All the parameters in (19) have to

be designed, and thus Assumption 3 is not a strict condition.

Following from the analysis in Proposition 1, we can deduce

that the following constraint
{

Ar( col {Aix
∗
i − sAi

}i∈N −LArλ
∗ −Lθ∗) = 0n(m+n),

LArλ
∗ = 0n(m+n)

is equivalent to the constraint Ax∗−sA = 0m+n. Therefore,

by involving the constraint (13) and Proposition 1, we can

rewrite the condition (12) is a distributed form as

∀ i ∈ N ,







−υ∗
i − Liυ

∗ − Liν
∗ + nI∗i = 0,

Liυ
∗ = 0,

riαui
(u∗

i − ur
i ) + γ∗

i = 0,

riF̄i(x
∗
i , υ

∗
i ) + riA

⊤
i λ

∗
i + γ∗

i Di ∋ 0m+3n,

D⊤
i x

∗
i − u∗

i = 0,

ri(Ax
∗
i − sAi

)− riLiArλ
∗ − riLiθ

∗ = 0m+n,

LiArλ
∗ = 0m+n,

(20)

where for all i ∈ N , the vector θ∗i ∈ R
m+n denotes

the dual variables associated with the consensus constraint

LiArλ
∗ = 0m+n. We use the vector L

⊤
i ∈ R

n and matrix

Li ∈ R
(m+n)×n(m+n) to denote the rows of L and L



associated with the DGU i ∈ N , respectively. Moreover,

F̄i (x̂
∗
i , υ

∗
i ) is defined as

F̄i (x̂
∗
i , υ

∗
i ) =








αIi(I
∗
i − Iri )− (l − prV

r
i υ

∗
i ) + prV

r
i I

∗
i

αVi
(V ∗

i − V r
i ) + ∂g1,i(V

∗
i )

col {(I∗l,k − Irl,k) + ∂g2,k(I
∗
l,k)}k∈Ei







.

Remark 2 Based on [20, Theorem 3.4], the penalty param-

eters ρVi
and ρIl,k satisfy the following condition

ρVi
≥ αVi

(V max
i − V r

i ) +∇Vi
〈λ∗

i , (Ax− sA)〉+ γ∗
i ,

ρIl,k ≥ αIl,k(I
max
l,k − Irl,k) +∇Il,k〈λ

∗
i , (Ax− sA)〉. (21)

for all i ∈ N and k ∈ Ei. Hence, the penalty parameters

should be large enough such that they satisfy (21).

IV. ALGORITHM DESIGN AND ANALYSIS

Based on (20), we can now design the distributed con-

troller for each DGU i ∈ N . By connecting the designed

controller to the DGU i ∈ N in a passive way (see e.g. [3]),

we obtain the following closed-loop system:

ẋi = Gg,i (ui, xi) , (22a)

ευ̇i =− υi − Liυ − Liν + nÎi, (22b)

εν̇i = Liυ, (22c)

u̇i =− αui
ui + γi − ǫIi (22d)

˙̂xi =− riF̄i (x̂i, υi)− riA
⊤
i λi − γiDi, (22e)

λ̇i = ri(Aix̂i − sAi
)− riLiArλ− riLiθ, (22f)

θ̇i = LiArλ, (22g)

γ̇i =− ui +D⊤
i x̂i, (22h)

where (22a) denotes the dynamics of each DGU i ∈ N , and

the non-negative constants ε and ǫ denote the control system

parameters. For the sake of the later convergence analysis,

let sf , col {υ, ν} and sd , col {u, x̂, λ, θ, γ}. Then we can

write (22) as:

ẋ = Gg(u, x), (23a)

εṡf = Gf (sf , Î), (23b)

ṡd = Gd(υ, sd, I). (23c)

where we omits the detailed definitions of the maps Gg , Gf

and Gd. Note that, in the framework of singular perturbation

system theory [21], (23b) describes the dynamics of the fast

system, while (23a) and (23c) those of the slow system. Let

h(Î) , col {hυ(Î), hν(Î)} and sb , sf − h(Î) represent

the solution of the equation Gf (sf , Î) = 02n and the

corresponding boundary layer system state, respectively. We

can write the boundary layer system and reduced-order

system as follows:

ẋ = Gg(u, x), (24a)

εṡb = Gf (sb + h, Î), (24b)

ṡd = Gd(hυ, sd, I), (24c)

where we abbreviate h(Î) as h.

Theorem 1 (Convergence analysis) Let Assumptions 2 and

3 hold and the initial state ν0 satisfy 1
⊤
n ν0 = 0. Then, there

exists a ε∗ ∈ R+ such that (22) converges to the largest

invariant set Φs,f for all ε satisfying 0 < ε < ε∗, where

Φs,f =







(sf , x, sd)

∣
∣
∣
∣
∣
∣
∣

Gg(u, x) = 0

Gf (sf , Î) = 0

Gd(υ, sd, I) = 0







. (25)

Proof Let Eb(sb) and Es(x, sd) denote respectively the

Lyapunov functions of the boundary layer system (24b) and

the reduced-order system (24a), (24c), i.e.,

Eb(sb) = σ‖sb‖
2 +

1

2
‖υb‖

2 +
1

2
‖υb‖

2
L
+ 〈νb,Lυb〉 ,

Er(x, sd) =
1

2

(
‖İ‖2L + ‖İl‖

2
Ll

+ ‖V̇ ‖2C
)

+
1

2ǫ
‖Gd(hυ, sd, I)‖

2,

where σ represents the largest singular value of the Laplacian

matrix L. Then, we can define the composite Lyapunov

function as follows:

V (sb, ss) = (1− e)Er(ss) + eEb(sb).

The convergence analysis follows from [21, Theorem 11.3].

For convenience, we define ss , col {x, sd} and

Gs(hυ, ss, I) =

[

Gg(x, u)

Gd(hυ, sd, I)

]

.

Since Proposition 1 ensures that hυ =
∑n

i=1 Îi and it is

easy to verify that Gd(hυ, sd, I) is a monotone function with

respect to sd, we can deduce that JGd,sd(hυ, sd, I) is positive

definite and

∂Er

∂sd
Gd(hυ, sd, I) ≤

1

ǫ
〈Gd(hυ, sd, I),

JGd,sd(hυ, sd, I)Gd(hυ, sd, I)〉

− 〈u̇, İ〉.

(26)

In addition, we have

∂Er

∂x
ẋ ≤ ẋ⊤






−R −I 0

I −Z−1
L B

0 −B⊤ −Rl




 ẋ+ 〈u̇, İ〉. (27)

Thus we can observe that there exists a positive α1 such that

∂Er

∂ss
Gs(hυ, ss, I) ≤ α1‖Gd(hυ, sd, I)‖

2. (28)

Next we proceed by taking the time derivative of Eb(sb), and

based on the fact that 1⊤
n sb = 0 (following from 1

⊤
n ν0 = 0),

we have:

∂Eb

∂sb
ṡb =

− s⊤b

[

(2σ + 1) I+ (2σ + 2)L L+ L
2

L+ L
2

L
2 + αν1n×n

]

︸ ︷︷ ︸

, Aα

sb,



[
∂Eb

∂ss
−

∂Eb

∂sb

∂h

∂ss

]

Gs(sb + hυ, ss, I) ≤ s⊤b

[
σI+ I+ L L

L σI

](

∂h

∂ss
Gs(hυ, ss, I)−

∂h

∂Î
(prV

r ◦ sb)

)

. (31)

TABLE II

PARAMETERS OF THE OBJECTIVE AND PENALTY FUNCTIONS.

Number ri αIi
αVi

αui
αIl,k

ρVi
ρIl,k

1 1.0060 10.6569 0.7516 1.0155 1.3724 1200 1000

2 1.0399 10.6280 0.6203 1.9841 1.1981 1200 1000

3 1.0527 10.2920 0.8527 1.1672 1.4897 1200 1000

4 1.0417 10.4317 0.9379 1.1060 1.3395 1200 1000

where αν is a constant. Then, one can verify that all the

eigenvalues of the matrix Aα are positive (we omit the proof

due to space limitation). Hence, based on the property of the

Rayleigh quotient, we have

∂Eb

∂sb
ṡb ≤ δmin(Aα)‖sb‖

2 = α2‖sb‖
2. (29)

Now, since the function Gs(sb + hυ, ss, I) is linear with

respect to sb+hυ, we can deduce that there exists a positive

constant β1 such that

∂Er

∂ss
[Gs(sb + hυ, ss, I)−Gs(hυ, ss, I)]

≤ β1‖Gd(hυ, sd, I)‖‖sb‖.
(30)

Finally, one can show that (31) holds. Furthermore, since

∂h/∂ss and ∂h/∂Î are constant matrices, then we can

deduce that there exist two positive constants β2 and ξ such

that the following inequality holds
[
∂Eb

∂ss
−

∂Eb

∂sb

∂h

∂ss

]

Gs(sb + hυ, ss, I)

≤ β2‖Gd(hυ, sd, I)‖‖sb‖+ ξ‖sb‖
2.

(32)

So far, we have verified all the conditions in [21, Theorem

11.3], i.e, (28), (29), (30) and (32). Hence, we can conclude

that if

0 < ε ≤ ε∗e =
α1α2

α1ξ + β1β2
,

then system (22) converges to the largest invariant set Φs,f .

V. SIMULATIONS

In this section, we assess the performance of the proposed

distributed control system (22) in simulation, considering a

microgrid with four DGUs in a ring topology. We set the

price parameters pr and l as 5 and 0.01, respectively. Also,

we select the fast system parameter ε equal to 0.01. The

parameters of the objective and penalty functions are reported

in Table. II. We report the parameters of all the DGUs and

transmission lines in Tables III and IV.

We consider that the microgrid initial conditions are within

the feasible set and the system remain unperturbed for the

first 5 seconds. Then, at the time instant t = 5 s, each current-

type load IL,i and resistance-type load ZL,i is decreased by 3
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Fig. 2. (a) The loads’ and decision system’ voltages. (b) The DGU control
voltages.
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Fig. 3. (a) The DGUs’ and the decision system’s currents. (b) The
transmission lines’ and decision system’s currents.

units. We present the results in Fig. 2 and 3, and we observe

that the microgrid’s states converge to the equilibrium within

a short time after the loads change. Moreover, the new

equilibrium satisfies the optimal condition (20).

In general, the simulation results show excellent perfor-

mance both in terms of optimality and transient response.

VI. CONCLUSION

In this paper, we first design a distributed control system to

solve the power trading problem (described as an aggregative

game) in a DC microgrid. Then, we interconnect the designed

control system with the microgrid in a passive way and



TABLE III

PARAMETERS OF THE DGUS AND LOADS

DGU Number Li (mH) Ci (mF) Ri (mΩ) Iri (A) ur
i (V) V r

i (V) V min

i (V) V max

i (V) ZL,i (Ω) IL,i (A)

1 1.8 2.2 20 0 0 380 377 383 16 30
2 2.0 1.9 18 0 0 380 377 383 50 15
3 3.0 2.5 16 0 0 380 377 383 16 30
4 2.2 1.7 15 0 0 380 377 383 20 26

TABLE IV

PARAMETERS OF THE TRANSMISSION LINES.

Line Number Head node Tail node Rl,k (mΩ) Ll,k (µH) Imin

l,k
(A) Imax

l,k
(A) Ir

l,k
(A) Manage agent

1 1 2 70 2.1 -20 20 0 1
2 2 3 50 2.0 -20 20 0 2
3 3 4 80 3.0 -20 20 0 3
4 4 1 60 2.2 -20 20 0 1

analyze the convergence of the overall closed-loop system.

Although we prove that there exists ε∗ for the fast system,

we do not explicitly provide its exact bound, which is left

as a future work.
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