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Abstract—1In this work we propose a coverage planning
control approach which allows a mobile agent, equipped with a
controllable sensor (i.e., a camera) with limited sensing domain
(i.e., finite sensing range and angle of view), to cover the surface
area of an object of interest. The proposed approach integrates
ray-tracing into the coverage planning process, thus allowing
the agent to identify which parts of the scene are visible at
any point in time. The problem of integrated ray-tracing and
coverage planning control is first formulated as a constrained
optimal control problem (OCP), which aims at determining the
agent’s optimal control inputs over a finite planning horizon,
that minimize the coverage time. Efficiently solving the resulting
OCP is however very challenging due to non-convex and non-
linear visibility constraints. To overcome this limitation, the
problem is converted into a Markov decision process (MDP)
which is then solved using reinforcement learning. In particular,
we show that a controller which follows an optimal control law
can be learned using off-policy temporal-difference control (i.e.,
Q-learning). Extensive numerical experiments demonstrate the
effectiveness of the proposed approach for various configura-
tions of the agent and the object of interest.

I. INTRODUCTION

The scientific advancements of the last decade in the areas
of robotics, control, and machine learning have spurred an
increased interest in the utilization of autonomous systems
in various application domains including search-and-rescue
[1]-[3], security [4]-[6], and monitoring [7]-[9].

Coverage planning [10] is amongst the most important
tasks found in many applications including infrastructure
inspection, automated maintenance, area search, and surveil-
lance, and thus plays a pivotal role in designing and execut-
ing automated missions using autonomous mobile agents. In
coverage planning we are interested in finding a trajectory
which allows an autonomous agent (e.g., a mobile robot)
to observe (or cover) with its sensor every point/region
within a specified area of interest. More specifically, during
an automated coverage mission, the mobile agent must
autonomously plan its coverage trajectory (e.g., determine
its control inputs; possibly over a planning horizon), which
allow the efficient coverage of the area of interest, while
satisfying certain kinematic and sensing constraints. As dis-
cussed in more detail in Sec. [l over the years, a plethora
of coverage planning approaches have been proposed in
the literature. However, there is still room for improvement
until this technology reaches the required level of maturity.
Specifically, the vast majority of coverage planning ap-
proaches mainly accounts for agents with uncontrollable and
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fixed sensors, and without considering the agent’s kinematic
and sensing constraints. This allows the coverage planning
problem to be reduced to a conventional path planning
problem which can further be transformed to some form
of the traveling salesman problem i.e., seeking to find the
shortest path that passes through a finite set of points.

Complementary to the existing literature, in this work
we propose an integrated ray-tracing and coverage planning
control approach where a mobile agent equipped with a
controllable camera sensor with limited sensing domain
(i.e., finite sensing range and angle of view), autonomously
generates its trajectory such that the total surface area of
a known object/area of interest is optimally covered. In
the proposed approach we integrate ray-tracing into the
planning process in order to determine the visible parts of
the scene through the agent’s camera sensor. The problem of
integrated ray-tracing and coverage planning control is first
formulated as constrained optimal control problem (OCP),
which however is very challenging to be solved due to the
existence of non-convex and non-linear constraints. For this
reason, the problem is transformed into a finite Markov
decision process (MDP) and is solved using reinforcement
learning. Specifically, the contributions of this work are the
following:

« We propose a coverage planning control approach which
allows an autonomous mobile agent to efficiently cover
the total surface area of an object of interest by jointly
optimizing its kinematic and camera control inputs.
The proposed approach integrates ray-tracing into the
coverage planning process in order to simulate the
physical behavior of light-rays, thus enabling the agent
to identify the visible parts of the scene through its
camera field-of-view.

e The problem of integrated ray-tracing and coverage
control is initially formulated as a constrained optimal
control problem and subsequently converted into a finite
Markov decision process (MDP) which can be solved
efficiently using reinforcement learning. Specifically, we
show that off-policy temporal-difference control (i.e., Q-
learning) can be utilized to learn a coverage controller
which follows an optimal control law.

« Extensive numerical experiments demonstrate the effec-
tiveness of the proposed approach for various configu-
rations of the agent and the object of interest.

The rest of the paper is organized as follows. Section
summarizes the related work on coverage planning control.
Then, Section develops the system model, Section
formulates the problem tackled, and Section |V|discusses the



details of the proposed coverage planning approach. Finally,
Section |VI| evaluates the proposed approach and Section
concludes the paper and discusses future work.

II. RELATED WORK

Initial works on coverage planning control [11]-[15] pro-
ceed by decomposing the environment into a finite number
of disjoint cells, and then utilize a path-planning algorithm
[16] to find the best path that passes from every cell. The
works in [17]-[20] investigate the coverage planning problem
with multiple mobile agents which however exhibit fixed
and uncontrollable sensor footprints. Different variations of
the coverage planning problem are investigated in [21]—
[23] i.e., in [21], [22] the objective is to derive a decen-
tralized, control law which guides a team of agents to an
optimal configuration that maximizes coverage, and in [23]
the coverage planning problem is investigated with multiple
heterogeneous agents. The coverage planning problem is
also investigated with the use of unmanned aerial vehicles
(UAVs) [24]-[27]. Specifically, the authors in [24] propose
an exact cellular decomposition method to plan the coverage
path of UAVs equipped with fixed sensors in a polygon
area, whereas in [25], [26] the problem is investigated
under similar assumptions with fixed-wing UAVs. In [27]
the coverage planning problem is investigated in the presence
of visibility constraints. The authors in [28]-[30] propose a
search planning framework based on mixed integer quadratic
programming (MIQP), which allows an autonomous UAV
agent to cover in 3D specific objects of interest. Finally,
in [31], [32] learning based coverage planning techniques
are investigated. Specifically, in [31], an end-to-end deep
reinforcement learning coverage planning approach is pro-
posed for an autonomous UAV agent with battery constraints,
whereas in [32] the authors design a multi-agent coverage
planning approach based on supervised imitation learning,
for searching a finite number of cells within a bounded
environment.

III. SYSTEM MODEL

A. Agent Kinematic Model

We assume that an autonomous mobile agent, which in this
work is represented by a point-mass object, evolves inside a
bounded planar workspace YW C R? according to a discrete-
time kinematic model of the form z; = f(x;—1,u;—1), given
by:

Ty = Tp_1 + dR [Z?ﬁgg;] ,t>21, xo==x (1)

where 7; = [x,y]" € R? is the kinematic state of the agent at
time ¢, which is given by the agent’s position in 2D cartesian
coordinates, and z is the agent’s initial state. The agent’s
kinematic control input is given by u; = [dg, ], where dr €
R is the radial displacement, and ¥ € [0,27) denotes the
agent’s heading. Finally, we assume that the agent’s state is
bounded i.e., z; € X', Vt and the control input is constrained
according the agent’s kinematic capabilities i.e., u; € U, Vt.

Fig. 1. The figure illustrates the agent’s camera FOV state for 5 rotation
angles, where x; is the agent’s kinematic state, h is the camera sensing
range, ¢ is the FOV’s angle of view, sy and b, are the FOV side length
and base length respectively, and R, g, denotes the set of camera rays at
time ¢ when the camera FOV has been rotated by 6;.

B. Agent Sensor Model

The autonomous mobile agent is equipped with a control-
lable camera sensor with limited sensing domain (i.e., finite
sensing range and angle of view), which uses for observing
the surrounding environment. The projected camera field-of-
view (FOV) is modeled in this work as an isosceles triangle
parameterized by its angle ¢ at the apex and its height h,
which are used to model the FOV’s angle of view and sensing
range respectively, as illustrated in Fig. [I] The FOV’s side
length (s¢) and base length (b,) are computed according to:

sp=h x cos(p/2)7t, by =25y x sin(p/2) )

and thus the matrix J, which contains the vertices of a
downward facing FOV with the apex at the origin is given

by:
_ |0 —=be/2 be/2
Fo= {0 —h —h

The agent’s camera FOV is controllable i.e., it can be rotated
around the agent’s position z; by an angle 6; € © C [0, 27)
at time ¢ according to: F; = Q(6;)F, + =+, where F; is the
rotated camera FOV state, and Q)(6;) is a 2D rotation matrix

which is given by:
| cos(6) sin(6y)
Q) = [_sin(ét) cos(ﬁi)} 4)

Moreover, we assume that at each time-step ¢ a finite
set of light-rays (which are assumed to be straight), and
which indicate the direction of the propagation of light, enter
the camera’s optical sensor and cause the matter inside the
agent’s FOV to be imaged. The set of light-rays entering the
camera’s optical sensor at time ¢ when the agent is at state
x; and the camera FOV has been rotated by an angle 6; is
denoted as Ry, 9, = {F1,.., Rr,, , |}, With |.| to denote
the set cardinality. The individual ray R; € R, ¢, is given
by the line-segment: R; = {p; +s(xt—p;)|s € [0,1]}, where
x; is the ray’s end point on the optical sensor given by the
agent’s position at time ¢ and p; € R? is a fixed point on the
base of the camera’s FOV and determines the ray’s origin,
as illustrated in Fig.

To summarize, given an initial kinematic state x(, the
agent’s trajectory (i.e., a sequence of kinematic and FOV
states) over a finite planning horizon of length T' time-steps
can be optimized to meet certain objective by appropriately
selecting the control inputs {d;|t = 0,..,7 — 1}, where
Uy = [ug, Of].
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Fig. 2. In the scenario above we are interested in finding the agent’s optimal
control inputs which result in the coverage of the object’s (C) boundary 9C.
AC is the piece-wise linear approximation of JC, which is composed of a
finite number of line segments L, connecting the points p € P.

C. Object/Area of Interest Model

The objective of our autonomous mobile agent is to opti-
mally decide its kinematic and camera FOV inputs {i|t =
0,..,T —1} over a finite planning horizon such that the total
surface area of a bounded convex object or area of interest
C C W is covered by its sensor’s FOV. More precisely,
we are interested in the coverage of the object’s boundary
JC, as illustrated in Fig. [2] since we are operating in a
2D environment. However, the problem formulation and the
proposed approach can be generalized in 3D space as well.

The boundary OC of the object of interest C is approxi-
mated in this work by a piece-wise linear model denoted as
AC, which is obtained by connecting together a number of
points p € JC (uniformly) sampled from the boundary. The
number of points sampled is chosen according to the mission
requirements (e.g., required coverage precision). Specifically,
we denote the finite set of points sampled from the object’s
boundary as P = {p1,.,pjp|} C OC. Subsequently, the
piece-wise linear approximation AC of the boundary 0C
is composed of line segments: L, = {p + r(p — p)|r €
[0,1],p # p € P}, which have been generated by connecting
the points (p,p)p+s € P, such that the resulting line
segments L,Vp belong to the boundary of the convex hull
of P, as shown in Fig. @ As we discuss in more detail in
Sec. the agent’s objective now becomes the coverage of
all points p € P on the object’s boundary.

IV. PROBLEM FORMULATION

The problem of integrated ray-tracing and coverage plan-
ning control tackled in this work can now be formulated as
an optimal control problem (OCP) shown in Problem (P1).

Problem (P1): Optimal Controller

arg max \7coverage (5a)
Ur

subject to: ¢t = [1,..,T]
e = fap_1,ui—1) vt  (5b)
To=1T (5¢)
drell,...T]: (pe Fr) A, (p) VpeP (5d)
xo,xs ¢ C Yt (5e)
o, Tt € X vt (59)
G = [ug, 0] €U x O vt (52)

The objective is to find the optimal control inputs Ur =
{tg, .., r—1}, subject to the constraints in Eqn. (3b)-(5g),

over a finite planning horizon of length 7' time-steps, which
will result in the maximization of the coverage performance
objective Jeoverage 1.€., Eqn. (5a). As we have already dis-
cussed in Sec. the constraints in Eqn. (3b)-(5c) are due
to the agent’s kinematic model. Then, the constraint in Eqn.
(5d) implements the coverage functionality. That is, for every
point p € P on the object’s boundary OC, it seeks to find a
time-step 7 € [1, .., T] inside the planning horizon, where the
applied control inputs {4y, .., @i, } generate a trajectory (i.e.,
a sequence of kinematic and FOV states) which result in the
coverage of point p at time 7 (i.e., p € F,). Subsequently,
the second part of the constraint in Eqn. (5d) requires that
at time-step 7, at which point p resides inside the agent’s
FOV, the same point p must also be visible i.e., overall Eqn.
(3d) requires that point p must reside within the visible FOV
of the agent. This constraint is required to account for the
fact that the agent’s FOV at some time-step 7 € [1,..,T]
might be blocked by obstacles, prohibiting the light-rays
from reaching the camera’s optical sensor and therefore
rendering certain parts of the scene unobservable. In essence
the indicator function 1¢, (p), utilizes the function G, (p)
in order to trace light-rays back to their source, and thus
determining the existence of a light-ray which traces-back
to point p, consequently determining p’s visibility on the
agent’s camera. Thus 1 _(p) is defined in this work as:

1o (p) = { 1, if G (p) £ 0,

0, 0.W.

(6)

Next, the constraint Eqn. (3€) implements a collision
avoidance constraint with the object of interest C i.e., the
kinematic state xz; of the agent must always reside outside
of the object’s boundary JC. Finally, the constraints in Eqn.
(3f) and restrict the agent’s state and control inputs
within the desired operating bounds. Next, we provide a more
detailed discussion on how the formulation discussed above
can be tackled.

A. Visible FOV Determination

In this section we describe in more detail how the visible
parts of the agent’t FOV can be determined using ray-tracing.
Essentially, we are interested in determining whether the
propagation of light-rays have been blocked by obstacles
and thus rendering parts of the scene unobservable. This
procedure is also useful in determining which of the points
p € P on the object’s boundary belong to the foreground
and which points belong to the background (and thus are
unobservable from a specific agent state).

Recall that the set of all light-rays entering the camera’s
optical sensor at time ¢t is given by R, ¢,, where x; and 6,
is the agent’s kinematic state and FOV rotation angle at time
t respectively. Additionally, as we have already mentioned
in Sec. the boundary OC of the object of interest has
been piece-wise linearly approximated with a finite number
of line segments AC = {L,[p € P}. We can now determine
whether point p € P belongs to the visible FOV at time ¢,
with respect to the light-rays in R, ¢, by finding at least
one light-ray R e R, .6, Which traces back to point p as
follows:

Gi(p) ={R € Ry, 9, : ROAC=L,} (7)
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Fig. 3. The figure illustrates the ray-tracing procedure utilized in the
proposed coverage planning approach for identifying the visible parts of the
scene through the agent’s camera. In the above figure point p’ is visible,
whereas point p is occluded. The propagation of rays are from p — x;.

where the operation R ® AC defines the intersection of the
light-ray R, with all line segments L, € AC, and returns
the line segment L, (if exists) which is the closest to the
camera’s optical sensor where the light-ray R converges
(i.e., see Fig. Stated differently, L, is the line-segment
which light-ray R intersects last. Since, light-rays propagate
towards the camera’s optical sensor where they converge, the
line-segment encountered the last by a light-ray is the line-
segment L, which belongs to the visible FOV. For instance
this is the line segment on the boundary of the object of
interest which can be imaged through the agent’s camera. On
the other hand the line-segment which first intersects with the
light-ray (assuming the light-ray intersects with more than
one line-segments) is not visible e.g., this line-segment might
belong to the invisible side of the object as depicted in Fig.
Consequently, the point p on the visible line-segment L,
is also visible.

Let now the camera-ray R given by R = {p+s(z:—p)|s €
[0,1]}, to have z and y cartesian coordinates given by p(x)+
slze(x) — p(x)] and p(y) + s[z¢(y) — p(y)] respectively. Also,
let the x and y cartesian coordinates of the a line-segment
Ly={p+r®—p)lr €0,1],p # p} to be p(z) + r[p(z) —
p(z)] and p(y) +r[p(y) —p(y)] respectively. The intersection
R ® L, of the light-ray R with the line segment L,, can be
computed by solving the following system of linear equations
for the two unknowns i.e., (s,7):

gt

() — p()
z¢(y) — p(y)

An intersection between R and L, exists only when the so-
lution (s,7) € [0, 1]. It should be noted here that the event of
no intersection implies no visibility. Summarizing, the agent
with kinematic state x;, and FOV state F; (parameterized by
angle 6;) observes and covers point p € P at time ¢ when: a)
p resides inside the agent’s camera FOV p € F; and b) there
exists a light-ray R € R, ¢, which traces back to point p
i.e., the last intersection of I is with the line-segment L,
which contains point p. This is exactly what the constraint
in Eqn. (5d) describes.

B. Collision Avoidance Constraints

Collision avoidance between the agent and the object of
interest is implemented in this work by making sure that
the agent’s kinematic state x, V¢ always resides outside the
convex hull of the object’s C polygonal region approximation
defined by its boundary AC as:

dpeP: a;:ct > By 9)

where (a,,8,) are the coefficients (i.e., a, is the outward
normal vector on L,, and 3, is a constant) of the line
equation which contains the line segment L,,p € P. Since
the area inside the object of interest is modeled as a convex
polygonal region with boundary AC defined by |P| linear
equations containing the line segments L,,, a collision occurs
at time ¢t when a;xt < Bp, Vp. Thus, a collision is avoided
if there exists p € P such that a; x¢ > Bp. This can be
implemented with the following set of constraints:

a;xt > B, — MV, Vt,p
|P|

> B < (Pl 1), vt
p=1

(10a)

(10b)

where the variable b7 € {0,1} is a binary decision variable,
and M is a large positive constant. Essentially, Eqn.
first checks if for some time ¢ € [1,..,T], the py equation
is true i.e., a;}r x¢ > Bp and if so, it sets the binary decision
variable b7 = 0. On the other hand, if a; xt < Bp, then bY is
activated in order to make sure that Eqn. is satisfied.
Subsequently, Eqn. (TOB) requires that the number of times b%
is activated at each time ¢ is less or equal to (|P| — 1) which
signifies that the agent’s kinematic state resides outside the
area enclosed by the object of interest i.e., z; ¢ C, Vt.

C. Coverage Performance Objective
Finally the coverage performance objective i.e., Jeoverage
is defined in this work as:
T

sjcoverage = Z J(]:ta Gt)a(t)

t=1

(1)

where F; is the agent’s FOV state at time ¢ (associated with
the agent’s kinematic state ), G is the ray-tracing function,
and J(F;, Gy) is defined as:

J(Fi, Gy) = Zg(ftaGtvp) (12)
pEP
The function ¢(F.,G,,p) € {0,1} is further given by:
1, Ir<T:(peF-)AN1 ,
UFi,Gi,p) = {O Tl e S e B s
, O.W.

In essence Jeoverage 15 maximized when all points p € P
become visible at some point in time inside the planning
horizon and they are covered by the agent’s camera. Finally,
the time-dependent term o () is used here to penalize points
that are covered later in the planning horizon e.g., o(t) =
(T—t)T 1, thus encouraging the agent to finish the coverage
mission as soon as possible.

V. RL-BASED INTEGRATED RAY-TRACING AND
COVERAGE CONTROL

The optimal control problem i.e., Problem (P1), presented
in the previous section is quite challenging to be solved
efficiently in real-time, mainly due to the non-linear and
non-convex constraints introduced when someone attempts
to solve Eqn. (8), which is required by the constraint in



Eqn. (5d). It should also be noted here that the computa-
tional complexity of the OCP in (P1) grows at best linearly
with the size of the planning horizon; which can introduce
additional challenges for large problems. Finally, the size
of the planning horizon depends on the coverage scenario
(e.g., the size of the object of interest, the initial location of
the agent, etc.), and thus cannot be easily determined and
tuned a-priori. If the planning horizon is chosen too short
the problem becomes infeasible and the coverage mission
fails. On the other hand, if the size of the planning horizon
is overestimated, unnecessary computational complexity will
be introduced. In order to tackle some of the challenges
mentioned above, the optimal control problem in (P1) is
approximated and transformed into a finite Markov decision
process (MDP) for which an optimal control policy can be
learned from experience using reinforcement learning (RL).

A. Problem re-formulation using MDP

The problem of integrated ray-tracing and coverage plan-
ning control is re-formulated in this section as a Markov
decision process, which is then solved using reinforcement
learning. A finite Markov Decision Process (MDP) [33] is a
discrete-time stochastic control process which can be defined
with a set of components i.e., a tuple (S, A, T, R,); where
S represents the state-space of the system (i.e., a finite
set describing all possible states of the system), A is the
action space (i.e., the finite set of actions available to the
agent), 7 is a discrete-time state transition function i.e.,
T :Sx A~ S, which describes the evolution of the system
due to actions, and finally R,, : S x A — R is the reward
function which returns the immediate reward when action a
is executed at state s and the system transitions to some new
state s’. Reinforcement learning [34] can be used to solve
an MDP by finding a control policy (i.e., a mapping from
states to actions) which maximizes the cumulative reward.
In order to do that, RL methods track the interactions of the
agent with the environment, and learn to optimize the control
policy using reinforcement, i.e., a feedback in the form of
reward or punishment. RL methods are particularly useful
for solving a) large MDP problems, which are otherwise
intractable with exact dynamic programming methods, and b)
problems where the exact mathematical model of the MDP is
not known. We can now go ahead and discuss how we have
transformed our problem to an MDP. More specifically, the
MDP components i.e., (S, A, T, R,,) are constructed for our
problem as follows:

1) State-space S: In order to construct the system’s state-
space we first decompose the environment W into a finite
number of non-overlapping cells {cl,..,clw‘}, essentially

creating a uniform grid W= Ulz‘;vl‘ ¢;, which within the agent
can evolve by moving from one cell to another. Let p to de-
note the center of mass (i.e., centroid) of the object of interest
C, given by p = |P|~! lell pi- Let dy = q([|lz: — pll,) to
denote the quantized Euclidian distance between the agent’s
kinematic state and the object’s center of mass p, where the
quantizer function ¢() maps the distance values into the finite
set D. Subsequently the MDP state-space can now be defined
as:

S=WxPxD (14)

where P = [0,..,|P|], with P denoting the set of points
sampled from the object’s boundary. Therefore, a particular
state s; = [sq,5p,5.] € S at time ¢ describes the agent’s
kinematic state i.e., position s, € W, the total number of
points s, € P that are observed and covered for the first
time from state s,, and the agent’s distance s. € D from the
object’s centroid.

2) Action-space A: The agent’s kinematic model and
control inputs are discretized in space according to:

O R s At S A

where the agent’s kinematic control input has now become
ud = [IrAR,lyAy], where A is the radial step size, Ay =
27 /Ny, and the parameters (Ny, Np) are used to specify
the total number of admissible control actions, denoted as
U?. Specifically, the parameters (Ag, Ny, Ng) are used to
ultimately determine the evolution of the agent’s kinematic
state &, inside the discretized representation of the world.
The camera’s FOV rotation signal is also discretized to take
its values from within a finite set of rotation angles 0§ €
o, Consequently, the camera FOV state F; at time ¢, also
takes its values from within a finite set of possible FOV
configurations. The agent’s control signal, referred to as the
agent’s action hereafter, is denoted as a; = [uf, 0] € U? x
@d

3) Reward R,,: Finally, we have designed a reward func-
tion R, (s, a;) which closely resembles the constraints and
objectives of the optimal control problem presented in Sec.
and which is given by:

Ry (s¢,at) = —w1 —waly,  ec +w3J(st41) (16)

where the notation (s, a;, s¢+1) refers to current state of the
agent sy, the action a; applied at state s;, and the transition
of the agent to the new state s, in the next time-step. The
parameters w1, ws and ws are tuning weights which control
the system’s reinforcement behavior. More specifically, w;
is a punishment term which used in Eqn. (TI6) in order to
penalize the agent for every time-step that passes and the
object of interest remains not fully covered. In other words
this term encourages the agent to finish the coverage mission
as soon as possible. Next, the indicator function 1, ec,
which is weighted by wo, uses the procedure described in
Sec. to identify whether the state-action pair (s¢, a;)
results in a collision between the agent and the object of
interest at the next time-step, and if so the agent is penalized
with —ws. Finally, the last term rewards the agent for its
successful coverage efforts. Specifically, in the last term we
make use of the function J() described in Eqn. to count
the number of points which have been covered for the first
time when the agent transitions to the new state s;41; and
we generate a reward signal weighted by w3 as shown.

B. Off-policy Temporal-Difference Control

Based on the MDP formulation discussed above the prob-
lem of integrated ray-tracing and coverage planning control,
shown in (P1), can now be written as:

Qr(s,a) =E, Z’thw(st,atﬂso =s,a0=a (17)
t=0



where v € [0,1] is a discount factor which determines
the importance of future rewards. The state-action value
function Q,(s,a) measures the expected infinite horizon
discounted cumulative reward when the agent starts from
state s, takes action a and then follows the control policy
7. Subsequently, the optimal state-action value function is
obtained as Q.(s,a) = max,; Qr(s,a) by following an
optimal control policy 7, which always chooses the optimal
action in every state. The problem re-formulation discussed
so far is the MDP equivalent of the maximization of the
objective in Eqn. (3a) under the constraints (3b)-(Bg), i.e.,
Problem (P1). In this work, we use off-policy temporal-
difference control or otherwise known as Q-learning [35], in
order to learn an optimal control policy 7, from experience.
In particular, Q-learning is an iterative bootstrapping process
which uses temporal-differencing in order to learn the state-
action value function as: Q(s¢, a;) =

Q(st,a¢) + [Rw(staat) + “YmgXQ(StH’a) — Q(s¢, a4)

where « is the learning rate. Being an off-policy method,
Q-learning is able to learn the state-action value function
Q(s,a), which directly approximates Q. (s, a), i.e., the op-
timal state-action value function, independent of the policy
being followed. When the optimal state-action value function
Q+(s,a) is obtained, the optimal policy m, can be derived by
taking at each time-step the actions that maximize Q,(s, a).
Finally, Q-learning guarantees that an optimal policy can be
found for any finite MDP given enough exploration time and
a partly-random policy [36].

VI. EVALUATION
A. Simulation Setup

The simulation setup used for the evaluation of the pro-
posed approach is as follows: The surveillance area JV of size
20m by 20m is converted into a uniform grid W of size 10 by
10. At any time-step ¢, the quantized distance d; between the
agent and the centroid of the object of interest takes values
from within the set D = {0,0.5,1, 1.5, ..., [v/2x20] }m. The
agent kinematics follow Eqn. (I3) with Ag = 2m, Ny = 8,
and Np = 1. The agent’s camera angle of view angle ¢ is
set to 40deg, and the sensing range h = 10m. In total we
consider 5 camera rotation angles % which take values in the
set O = {—85,-42.5,0,42.5,85}deg as shown in Fig.
At each time-step ¢ and for each camera FOV configuration 5
light-rays enter the optical sensor i.e., [Rj, ga| = 5. The re-
gion/object of interest C is represented by a bell-shaped curve
b
where a,b and c are free parameters. The objective is to
to cover a total of 11 points P = {pj,..,p11} uniformly
sampled from the object’s boundary 0C. The punishment and
reward parameters wi,wy and ws in Eqn. (]E[) are set as 1,
100, and 2 respectively. The Q-learning parameters a and
v (i.e., learning-rate and discount factor) are set to 0.1 and
0.8 respectively. We use a decreasing e-greedy exploration
strategy with an initial ¢ = 0.9 which decays in every
time-step as ;41 = 0.9999¢;. Finally, for each episode the
agent is randomly initialized inside W, and interacts with
the environment until the terminal condition is met i.e., all

(as illustrated in Fig. , given by f(x) = axexp (
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Fig. 4. The figure shows the cumulative reward obtained in each episode
during training. (a) The episodic reward obtained during training with a
single configuration of the object of interest, and (b) the corresponding
coverage time. (c) The evolution of the episodic reward during the training
with multiple random configurations of the object of interest.
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Fig. 5. The figure shows an illustrative example of four different random
realizations of the object of interest that have been sampled during training.

points |P| have been covered or the time limit of 100 steps
has been reached.

B. Performance Evaluation

We begin our evaluation by investigating the learning per-
formance of the proposed approach for a single and multiple
objects of interest (i.e., different realizations from the same
object class). Specifically, Fig.[d{a) shows the infinite horizon
discounted cumulative reward per episode when the proposed
system is trained over 5000 episodes for a single object of
interest with parameters (a,b,c) = (8,8,2). As the figure
shows the episodic reward increases over time as the agent
learns the optimal policy which maximizes the state-action
value function, in which case it reaches a plateau as shown in
the figure. Since the total cumulative reward obtained in each
episode depends on the initial agent position, and because the
agent in each episode is randomly initialized, the optimal
control policy results in a cumulative reward which takes its
values within a small range of values as shown in Fig. f{a)
after episode 2000. This is also evident in Fig. f{b) which
shows the total coverage time during training. As we can
observe once the optimal policy is identified i.e., after 2000
episodes the agent requires on average 12 time-steps to finish
the mission (depending on its initial state), whereas initially
during the early episodes the mission is not finished not even
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Fig. 6. The figure illustrates 3 different scenarios (a), (b) and (c) for the problem of integrated ray-tracing and coverage planning control, where the agent

follows the learned optimal control law 7.

within 100 time-steps. Then Fig. @c) shows the learning
curve also in terms of the discounted cumulative reward
when the agent is trained over 100000 episodes for multiple
realizations (i.e., parameter configurations) of the object of
interest whose parameters a, b, and ¢ are uniformly sampled
within the intervals [1, 18], [5,15] and [1, 4] respectively. In
this scenario, for each episode a new realization of the object
of interest is sampled and the agent is randomly initialized in-
side the surveillance area. An illustrative example of different
object realizations sampled in each episode during training is
shown in Fig. 5] Figure @) indicates that the optimal policy
can be identified and the state-action value function can be
learned for multiple realizations of the object of interest.
Figure [6] shows in more detail the agent’s coverage plan
under the learned policy for 3 random realizations of the
object of interest. More specifically, Fig. [6|depicts 3 different
parameter configurations of the object of interest i.e., with
the parameters (a,b,c) set as (10, 10,2.5), (5,6,1.4), and
(14,15, 1) for the objects depiceted in Fig. [6[a), Fig. [6b),
and Fig. [f[c) respectively. In Fig. [f] the first row illustrates the
agent’s kinematic states (x;) under the learned control policy.
The second row in addition to the agent’s kinematic states,
also shows the camera’s FOV states F; under the learned
policy. The points py,...,p1; on the object’s boundary to
be covered are shown as o. The agent’s kinematic states x;
(denoted with [J) are colored-coded and numbered based on
their time-index ¢ as shown in the figure (i.e., from black to
deep red, indicating start and end times respectively).

In addition, when the agent with kinematic state z; covers
point p at time ¢, we mark point p with the same color as x;,
so that we can distiguish at which agent states each point is
observed and covered. For instance in Fig. [6(a), the agent at

time-step ¢t = 1, with state 2 (colored black) covers points
p2 and p3, and therefore these points are colored black as
well. At the next time-step the agent is at xo (colored blue)
and observes point p; (note that p; resides inside the agent’s
camera FOV), thus p; is marked blue as shown. At t = 3
the agent’s state is colored cyan and so does point p4 which
is observed at that time, and so on and so forth. In order
to make the figure easier to read, we only display the FOV
configuration at time-steps for which a coverage event occurs
e.g, in Fig. [f[b) for instance the FOV configuration at time-
steps t = [1,2,5, 6] is ommitted for clarity.

Note that the control policy that the agent follows inte-
grates ray-tracing. This is evident in Fig[f[a) where at time-
step t = 4 the agent is at state x4 (colored green) and points
ps and pr reside inside the agent’s triangular FOV. However,
the agent only observes point ps as indicated by its color-
coding i.e., point ps is colored green, whereas point p; is
marked yellow and is not observed at ¢ = 4 since it is not
visible from the agent’s state x4. Observe that the light-rays
at x4 are blocked by the object, and cannot be traced back
to p7. The point p; becomes visible and is covered when the
agent moves at state xg. This behavior can also be observed
in Figl6{b) when the agent is at x3, in Fig. [6fc) when the
agent is at state x5, etc. Finally, note that the agent follows
an optimal control policy which generalizes for multiple
realizations of the object of interest, i.e., in all scenarios,
all points are covered, the coverage time is minimized, and
collisions between the agent and the object of interest are
avoided. It is also worth noting that the optimal control
policy has learned the optimal planning horizon length i.e.,
the coverage mission finishes in 9, 8 and 12 times-steps for
the scenarios shown in Fig. [6(a), Fig. [f[b), and Fig. [6{c)



respectively, as opposed to the OCP formulation in which
the optimal horizon length must be fined-tuned a-priori.

VII. CONCLUSION

In this work we have presented an integrated ray-tracing
and coverage planning control approach which enables a
mobile agent to jointly decide its kinematic and camera
control inputs in such a way so that the total surface area
of an object of interest is covered in the minimum amount
of time. The proposed approach integrates ray-tracing into
the coverage planning problem, in order to trace the prop-
agation of light-rays back to their source thus ultimately
identifying which parts of the scene are visible through the
agent’s camera. The problem is posed as a Markov decision
process (MDP) and an optimal control law is obtained using
reinforcement learning i.e., Q-learning. Future works include
the investigation of this problem in 3D environments, its
extension to multiple learning agents, and the adaptation
of the proposed approach to continuous state-action spaces
using deep reinforcement learning.
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