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An Offset-Free Nonlinear MPC scheme for systems
learned by Neural NARX models
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Abstract— This paper deals with the design of nonlinear
MPC controllers that provide offset-free setpoint tracking for
models described by Neural Nonlinear AutoRegressive eXoge-
nous (NNARX) networks. The NNARX model is identified from
input-output data collected from the plant, and can be given a
state-space representation with known measurable states made
by past input and output variables, so that a state observer is
not required. In the training phase, the Incremental Input-to-
State Stability (δISS) property can be forced when consistent
with the behavior of the plant. The δISS property is then
leveraged to augment the model with an explicit integral action
on the output tracking error, which allows to achieve offset-
free tracking capabilities to the designed control scheme. The
proposed control architecture is numerically tested on a water
heating system and the achieved results are compared to those
scored by another popular offset-free MPC method, showing
that the proposed scheme attains remarkable performances
even in presence of disturbances acting on the plant.

Index Terms— Predictive control for nonlinear systems, Neu-
ral Networks, Output Regulation

I. INTRODUCTION

With the availability of large and informative data sets
and increasing computation power, learning-based methods
for nonlinear system identification have become popular in
the control community [1], [2], see for example the control
design algorithms based on set membership ide ntification
[3] and Koopman-based system identification [4].

Among the most popular machine learning approaches
for control, the ones relying on Recurrent Neural Networks
(RNN) have been proven to provide significant results [5].
Among the many model architectures proposed in the litera-
ture, it is worth mentioning here Neural NARXs (NNARX)
[6], Echo State Networks (ESN) [7], Long Short Term
Memory networks (LSTM) [8], and Gated Recurrent Units
(GRU) [9]. In particular, it has been shown that these RNNs
can be recast as state-space dynamical systems that can be
trained to identify unknown systems provided that enough
input-output measured data is available [10], [11].

How to guarantee stability properties of these RNNs
architectures, in terms of Input to State Stability (ISS) and
Incremental Input-to-State stability (δISS), has been recently
studied [10], see [12] for LSTMs, [13] for GRUs, [14] for
ESNs, and [15] for NNARXs. In these works, sufficient
conditions for the ISS and δISS of RNNs are stated as
nonlinear inequalities on the networks’ parameters. In [10]
these stability properties have been shown to be useful to
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address the interpretability, safety and robustness issues.
Furthermore, δISS has proven to be a fundamental tool for
the design of provenly stabilizing Model Predictive Control
(MPC) laws for several RNN architectures, see [12], [14].

A major limitation of these stabilizing MPC strategies,
however, is that their static performances, i.e. their capability
of steering the system’s output towards a constant setpoint, is
tightly related to the magnitude of the plant-model mismatch
and to the presence of disturbances that affect the system.
In many applications, however, ensuring that the controller
can track asymptotically-constant reference signals with zero
offset might be a requirement. In this context, several offset-
free nonlinear MPC strategies have been proposed in the
literature, see [16] for a review on the topic. Among them,
one of the most popular is the one described in [17], in which
the authors propose to augment the system model with a
disturbance model, and then to design an observer to estimate
its state. The observed state is then used to synthesize a
stabilizing nonlinear MPC law. This approach relies on the
possibility to suitably model and estimate such disturbance.

An alternative approach is described in [18], which pro-
poses to augment the system with the output tracking error
integrator, and to use a state observer to reconstruct the state
of such system. Notably, this scheme can be adopted to solve
the tracking problem even for time-varying references that
are generated by stable exogenous systems, such as ramps
or sinusoids. This solution has been adopted in [19] for the
design of an offset-free MPC controller for systems learned
by GRU networks.

In this paper, we focus on systems learned by NNARX
models, which are quite popular owing to their simple
structure and training. Indeed, in NARX models the output
at the future time instant is computed as a nonlinear function
of past input and output data. In particular, Neural NARX
models are those that feature a feed-forward neural network
as nonlinear regression function. The advantage of NNARXs
is that, since their state boils down to a vector of past input-
output data, when these models are operated in closed-loop
the state is known [15], which makes the control design
procedure significantly easier.

In this context, the goal of this paper is to design a
control strategy for NNARX models that guarantees offset-
free tracking of constant references, as well as the nominal
stability of the closed-loop system. Unlike the aforemen-
tioned approaches, the proposed strategy does not rely upon
a state observer. Along the lines of [18], [19], we propose
to include two elements in the control system: (i) an output
tracking error integrator, which allows to attain offset-free
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tracking capabilities; (ii) a derivative action, which ensures
that – at steady state – the regulation of the system relies
entirely upon the integral action, whereas the goal of the
MPC is to improve the dynamic performances and to ensure
constraint satisfaction during the transient.

To provide sound guarantees, we show that the δISS of the
model, under mild assumptions, ensures that such integral
action can be designed to preserve the local asymptotic
stability of the closed-loop system. The proposed approach
has been tested on a water heating benchmark system, and
the achieved closed-loop performances have been compared
to those achieved by the strategy proposed in [17]. The
simulation results show that, unlike this latter, the proposed
approach attains offset-free tracking of constant references
even in presence of significant plant perturbations.

The paper is structured as follows. In Section II the
NNARX models and their stability properties are presented.
In Section III the proposed control architecture is detailed,
which is then tested on the water heating benchmark system
in Section IV. Finally, conclusions are drawn in Section V.

A. Notation

The following notation is adopted. Given a vector v, we
indicate by v′ its transpose and by ‖v‖p its p-norm. More-
over, given a matrix Q, we denote ‖v‖2Q = v′Qv. For com-
pactness, the time instant associated to time-varying vectors
is reported as a subscript, e.g. vk. Sequences of vectors are
indicated by bold-face fonts, i.e. vk = {v0, ..., vk}, and their
`p,q norm is defined as ‖vk‖p,q =

∥∥[‖v0‖p, ..., ‖vk‖p]
∥∥
q
.

Notably, ‖vk‖p,∞ = maxt∈{0,...,k} ‖vt‖p.

II. NEURAL NARX MODEL

NNARX models [15] are nonlinear, time-invariant,
discrete-time models with input u, assumed to lie in a
compact set U ⊆ Rm, and output y ∈ Rp. In this paper,
a square system is assumed, i.e., p = m. Letting k be
the discrete time index, at time k the future output yk+1

is computed as a nonlinear regression function η on past N
input and output samples:

yk+1 = η(yk, yk−1, ..., yk−N+1, uk, uk−1, ...uk−N ; Φ), (1)

where Φ indicates the model’s parameters. It is easy to
rewrite model (1) in state space form by defining, for i ∈
{1, ..., N},

zi,k =

[
yk−N+i

uk−N−1+i

]
, (2)

and by denoting the state vector xk = [z′1,k, ..., z
′
N,k]′ ∈ Rn,

the model can be compactly rewritten as{
xk+1 = Axk +Buuk +Bxη(xk, uk; Φ)

yk = Cxk
(3)

where A, Bu, Bx, and C are fixed matrices with known
structure and elements equal to zero or one, see [15].

In NNARX models, the regression function η in (1) is a
Feed-Forward Neural Network (FFNN), i.e. a static map of
M layers of neurons. Each layer is a linear combination of

its inputs, squashed by a suitable nonlinear function, named
activation function. A compact formulation of η is

η(xk, uk) = U0ηM (ηM−1(...η1(xk, uk), uk), uk) + b0 (4)

where ηl is the nonlinear relation between l-th and the
previous layer, which can be stated as

ηl(ηl−1, uk) = ψl
(
Wluk + Ulηl−1 + bl

)
, (5)

where ψl is a Lipschitz-continuous activation function, ap-
plied element-wise on its argument, having Lipschitz con-
stant Lψl and satisfying ψl(0) = 0. The matrices Wl, Ul and
bl are the weights of the layer, which constitute the network’s
parameters Φ = {U0, b0, {Ul,Wl, bl}l=1,...,M}. An example
of activation function is the tanh function, see [15]. For
compactness, the NNARX model is henceforth denoted as,

Σ :

{
xk+1 = f(xk, uk)

yk = Cxk
, (6)

where the dependency on Φ is omitted for compactness.
The weights Φ are learned from the input-output data

collected from the system during the so-called training
procedure, in which the parameters that best explain the
measured data are sought. Generally, one seeks the set of
weights minimizing the simulation error, i.e. the open-loop
prediction error between the model and the real system.
Entering into the details of this procedure is not among the
aims of this article: the interested reader is referred to [15].

Under the assumption that the motion of the plant to be
identified displays stability properties1, as discussed in [15]
it is possible to include an additional term in the training
loss function that allows to learn a provenly ISS and δISS
NNARX model. The definition of δISS for a generic state-
space nonlinear system, such as (6), is reported below.

Definition 1 (δISS): A system is δISS if there exist func-
tions β of class KL and γ of class K∞ such that, for any pair
of initial states xa,0 and xb,0, and any pair of input sequences
ua and ub, where ua,k ∈ U and ub,k ∈ U , such that

‖xa,k−xb,k‖2 ≤ β(‖xa,0−xb,0‖2, k)+γ(‖ua,k−ub,k‖2,∞)
(7)

for any k ≥ 0, where x∗,k denotes the state trajectory of the
system initialized in x∗,0 and fed by the sequence u∗,k.

Henceforth, it is assumed that the NNARX is trained
according to the prescriptions detailed in [15] in order to
ensure its δISS, allowing to verify the following assumption.

Assumption 1: The NNARX model (3) is δISS.

III. CONTROLLER DESIGN

The main goal of this paper is, given the NNARX model
(6) of the system, to propose a solution for problem of
offset-free tracking of constant references. Specifically, for
some constant output reference ȳ, we want to design an

1In particular, we assume that the plant is δISS [10]. This property can
either be known a-priori, e.g. by physical arguments, or it can verified
numerically on the collected data.



MPC law which guarantees that the output error converges
asymptotically to zero, i.e.

ek = ȳ − yk −−−−→
k→∞

0. (8)

A. Linearization

To solve this problem, we will rely upon the linearization
of model (6) around an equilibrium point (x̄, ū, ȳ) satisfying{

x̄ = f(x̄, ū)

ȳ = Cx̄
(9)

where ū is assumed to belong to U . Let us first denote by

Aδ =
∂f(x, u)

∂x

∣∣∣∣
(x̄,ū)

, Bδ =
∂f(x, u)

∂u

∣∣∣∣
(x̄,ū)

, (10)

the matrices of the linearized system around the equilibrium
(x̄, ū, ȳ). To characterize the stability properties of Aδ , the
following result is provided.

Proposition 1: Consider a nonlinear system in the form
of (6). Assume that it is δISS in the sense specified by
Definition 1, and that function β admits an exponential form,
i.e. that there exist constants ρ > 0 and λ ∈ (0, 1) such that
β(‖xa,0 − xb,0‖2, k) ≤ ρ‖xa,0 − xb,0‖2 λk. Then, for each
equilibrium (x̄, ū, ȳ) satisfying (9), the matrix Aδ (10) is
Schur stable.

Proof: See the Appendix.
Let us remark that the exponential form of function

β is indeed enjoyed by δISS RNNs, see [12], [13], and
specifically [15] for NNARXs. Moreover, let us introduce
the following Assumption.

Assumption 2: The tuple (Aδ, Bδ, C) is reachable, ob-
servable, and does not have invariant zeros at z = 1.

Under Assumption 2, in light of Theorem 1 in [20], one
can guarantee the existence of an open neighborhood of ȳ,
denoted by Γ(ȳ) ⊆ Rm, where, for any ỹ ∈ Γ(ȳ), there
exists an equilibrium (x̃(ỹ), ũ(ỹ), ỹ), where{

x̃(ỹ) = f(x̃(ỹ), ũ(ỹ))

ỹ = Cx̃(ỹ)
. (11)

This local result allows to conclude that it is possible to move
the output reference signal in a neighborhood of the output
equilibrium ȳ and still guarantee that a feasible solution to
the tracking problem exists.

B. The control architecture

Once the conditions for the existence of a solution to the
output tracking problem have been established, we are in the
position to describe the main elements of the adopted control
architecture, depicted in Figure 1, listed below

i. The system is augmented with the integral of the out-
put tracking error ek = ȳ − yk. Indeed, in light of
the Internal Model Principle [21], such integral action
guarantees robust asymptotic zero-error regulation for
constant reference signals, i.e. ek −−−−→

k→∞
0, and plant’s

parametric uncertainties, provided that the closed-loop
stability guarantees are maintained.

Plant

Optimizer

Augmented 
Model

Augmented System

MPC

Control Architecture

Fig. 1. Schematic of the proposed control architecture

ii. The model is augmented with a derivative action on
MPC’s control variable v. This guarantees that, at steady
state, the MPC contribution is null and the control vari-
able entirely relies on the integral action. This approach,
later detailed, is useful in the definition of suitable
terminal constraints to be used in the formulation of the
stabilizing MPC algorithm. The aim of the MPC regu-
lator is that of performance enhancement and constraint
handling during transients.

As clear from Figure 1, the control action u is composed
of two terms

uk = ξk + γk, (12)

where ξk ∈ Rm and γk ∈ Rm are the integral and derivative
actions, respectively. More specifically, the integral action is
ruled by

ξk+1 = ξk + µ(ȳ − Cxk), (13)

where µ denotes the gain of the integral action. Also, the
derivative action γk is defined as{

θk+1 = vk

γk = vk − θk
. (14)

Thus, the augmented system is obtained combining (6),
(12), (13), and (14), and it reads as

xk+1 = f(xk, uk)

ξk+1 = ξk + µ(ȳ − Cxk)

θk+1 = vk

γk = vk − θk
uk = ξk + γk

yk = Cxk

, (15)

which will henceforth be compactly denoted as

Σa :

{
χk+1 = fa(χk, vk, ȳ)

ζk = ga(χk)
, (16)

where χk = [x′k, ξ
′
k, θ
′
k]′ denotes the state of the augmented

system and ζk = [y′k, u
′
k]′ its output.

The first step of the design procedure consists of tuning
the gain µ, following the guidelines of [22], such that



the enlarged system (16) displays stability properties. The
following proposition can be stated.

Corollary 1: Assume that Aδ is Schur stable, and that
Assumption 2 holds. Then, there exists µ̌ > 0 such that,
for any µ̃ ∈ (0, µ̌), the integrator gain

µ = µ̃
[
Cδ(I −Aδ)−1Bδ

]−1
(17)

makes the enlarged system (16), linearized around (χ̄, v̄, ζ̄),
asymptotically stable, where χ̄ =

[
x̄′, ξ̄′, θ̄′

]′
=
[
x̄′, ū′, v̄′

]′
,

ζ̄ = [ȳ′, ū′]′, and v̄ is any constant value.
Proof: In light of Proposition 1, the matrix Aδ is Schur

stable. Then, thanks to Assumption 2, the results shown in
[22] can be applied to prove the corollary.

C. MPC design

Having defined the augmented system model Σa, a stabi-
lizing nonlinear MPC law can be designed. Letting χ̄ and ζ̄
be the target state and output introduced in Corollary 1, the
stabilizing MPC can be stated as follows2.

min
v0|k,...,vNp−1|k

Np∑
i=0

[∥∥χi|k − χ̄∥∥2

Q
+
∥∥ζi|k − ζ̄∥∥2

R

]
(18a)

s.t. ∀i ∈ {0, ..., Np − 1}
χ0|k = χk (18b)
χi+1|k = fa(χi|k, vi|k, ȳ) (18c)
ζi|k = ga(χi|k) (18d)
Euζi|k ∈ U (18e)
χNp|k = χ̄ (18f)

The adopted cost function (18a) penalizes the deviation of
the augmented system’s state and output from their value
at equilibrium. Note that the target equilibrium for the
integrator state ξ is ū, as the integral action is assumed
to provide the input’s equilibrium at steady state. The
equilibrium value of the derivator state, v̄, is arbitrary but
constant, so that γ̄ = 0, i.e. the contribution of the derivative
action converges to zero. The weight matrices are defined
as Q = diag(Qx, Qξ, Qθ) and R = diag(Re, Ru), where
diag(·) indicates the block-diagonal operator. The weights
Re and Ru penalize the output error and control effort,
respectively, while Q penalizes the distance of the augmented
state from its equilibrium value. Note that the deviation of θ
from its arbitrary equilibrium is only penalized for numerical
reasons. It is hence advisable to select Qθ � Qx, Qξ.

The augmented model Σa is used as predictive model, see
(18c) and (18d), and it is initialized in the known state χk, see
(18b). The inputs saturation constraints are also embedded
via constraint (18e), where Eu is a selection matrix that
extracts ui|k out of ζi|k = [y′i|k, u

′
i|k]′. Lastly, as customary

in MPC, the terminal constraint (18f) is imposed.
According to the Receding Horizon principle, at time k the

optimization problem (18) is solved, retrieving the optimal

2To reduce the computational burden of the optimization problem, a
control horizon smaller than the prediction horizon could be adopted [23].

metal

Fig. 2. Water-heating system illustration

control sequence v∗0|k, ..., v
∗
Np−1|k, and only the first control

move, i.e. v∗0|k, is applied. At the successive time step the
procedure is repeated, based on the measured state χk+1.

Remark 1: The MPC law formulated in (18) is a standard
MPC with terminal constraint. Hence, its nominal recursive
feasibility and closed-loop stability can be guaranteed [23].

IV. NUMERICAL EXAMPLE

A. Benchmark system description

The proposed control architecture has been tested on the
water-heating benchmark system depicted in Figure 2. The
objective of this system is to control the temperature of the
water in a reservoir so as to provide the users with the re-
quired flow of water at the desired temperature. Specifically,
the water is heated through a metal plate placed under the
tank, which is heated by means of a gas burner.

The water demand w, expressed in kg/s, represent a
disturbance. For simplicity, it is assumed that the water
flow rate at the inlet matches the demand, so that the level
dynamics are neglected. We indicate by Ti the temperature
of the water at the inlet, and by T the temperature of the
water served to the users. Both temperatures are expressed
in K, and the water temperature is assumed to be uniform
throughout the tank. The water is heated by the metal plate,
having temperature Tm, which is radiated by the flames
resulting from the combustion of the gas, whose flow rate is
denoted by wc. Assuming the absence of heat loss, and that
the flame heat is exchanged only via radiation, the following
model of the system can hence be formulated:

P :


Ṫ =

1

ρwAtzw

[
w (Ti − T ) +

klmAt
cw

(Tm − T )

]
Ṫm =

1

Mmcm

[
−klmAt (Tm − T ) + σkfwc

(
T 4
f − T 4

m

)] .
(19)

This model has one controllable input u = [wc], one output
yp = [T ], and two states xp = [T, Tm]′. Moreover, system
(19) is affected by two disturbances, dp = [w, Ti]

′, whose
nominal values are reported, alongside the other parameters
of the model, in Table I. The gas flow rate wc is also subject



TABLE I
BENCHMARK SYSTEM PARAMETERS

Parameter Description Value Units

At Tank’s cross-section π
4

m2

ρw Water’s density 997.8 kg
m3

cw Water’s specific heat 4180.0 J
kg·K

Mm Metal plate’s mass 617.32 kg

cm Metal’s specific heat 481.0 J
kg·K

σ Radiation coefficient 5.67 × 10−8 W
m2·K4

klm Heat exchange coefficient 3326.4 kg
s3·K

Tf Flame’s temperature 1200 K

kf Heat exchange coefficient 8.0 m2·s
kg

zw Water level 2.0 m

w̄ Nominal water demand 1.0 kg
s

T̄i Nominal inlet water temperature 298 K

to saturation, i.e.

wc ∈ [0.05, 0.18]. (20)

A simulator of the benchmark system has been imple-
mented in Simulink, so as to collect the training data and to
test the proposed control architecture.

B. NNARX model training

In order to collect the data used to train the NNARX
model of the plant (19), the simulator has been forced with a
Multilevel Pseudo-Random Signal (MPRS), so as to properly
excite the system. The input-output data has been recorded
with sampling time τs = 120 s, for a total of 2500 time
steps. According to the Truncated Back-Propagation Through
Time (TBPTT) principle, Nt = 120 random subsequences
of length Ts = 400, denoted by (u

{i}
Ts
,y
{i}
p,Ts

), with i ∈
It = {1, ..., Nt}, have been extracted from the experiment
data. Other two shorter experiments have been performed,
from which Nv = 30 and Nf = 1 subsequences have
been extracted as validation and independent test datasets,
respectively. These two datasets are denoted by the set of
indices Iv = {Nt + 1, ..., Nt +Nv} and If = {Nt +Nv +
1, ..., Ns}, respectively, where Ns = Nt +Nv +Nf .

The training procedure has been conducted using PyTorch
1.9. The adopted NNARX model features a single-layer
(M = 1) FFNN regression function with 30 neurons, and the
past N = 5 input-output data has been used as regressors.
Following the guidelines of [10], [15], the model has been
trained by minimizing the simulation Mean Square Error
(MSE) over the training set It, i.e. the MSE between the
NNARX open-loop prediction (given the input sequence
u
{i}
Ts

) and the measured output sequence y
{i}
p,Ts

. The δISS
property of the NNARX model has been enforced during
training by including a suitable regularization term in the loss
function [15], so that Assumption 1 is satisfied. The NNARX
model has been trained for 1288 epochs, when its modeling
performances on the validation set stopped improving.

Eventually, the model performances have been assessed on
the independent test set. In Figure 3 the test input sequence,
u
{ι}
Ts

, with ι ∈ If , is depicted, while in Figure 4 the
corresponding open-loop simulation of the NNARX model is

0 2 4 6 8 10 12

Time [  104 s]

0.05

0.1

0.15

0.2

c
 [
°K

]

Fig. 3. Input sequence used for testing the performances of the trained
NNARX model.
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Time [  104 s]
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340
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]

Fig. 4. Modeling performances of the trained NNARX model: open-loop
prediction (red line) versus ground truth (blue dotted line).

compared to the ground truth y
{ι}
p,Ts

. The performance have
been quantified using the FIT [%] index, defined as

FIT = 100

(
1−

∑Ts

k=0 ‖y
{ι}
k − y{ι}p,k‖2∑Ts

k=0 ‖y
{ι}
p,k − yavg‖2

)
, (21)

where y{ι}k indicates the output of the NNARX model (6)
fed by the input sequence u

{ι}
k and initialized in a random

initial state, and yavg is the average of y{ι}p,k over time. The
FIT scored by the trained model is 92.8%, which indicates
fair modeling performances of the NNARX model.

Having trained a δISS NNARX model of the system, the
control architecture proposed in Section III can be tested.

C. Control synthesis

The proposed control architecture has been implemented,
with the primary goal of tracking piecewise-constant wa-
ter temperature references, while asymptotically rejecting
possible (unmeasured) disturbances associated to variations
of the water demand w or the water temperature at the
inlet Ti. To assess the offset-free tracking capabilities and
the robustness of the proposed architecture, the temperature
reference depicted in Figure 5 and the disturbances illustrated
in Figure 6 have been considered.

It should be noted that, since the output reference is piece-
wise constant, at every change of the setpoint ȳ, the nominal
equilibrium triplet (x̄, ū, ȳ) of the corresponding nominal
equilibrium of the augmented system (χ̄, v̄, ζ̄) needs to be
computed by solving (9). Moreover, if the new setpoint is not
in the neighborhood of the previous equilibrium, Assumption
2 should also be verified, and the integral action’s gain
µ should be recomputed according to Corollary 1. The
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Fig. 5. Piecewise-constant output reference trajectory.
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Fig. 6. Disturbance applied to the system. Water demand w (black
continuous line) compared to its nominal value (black dotted line), and
inlet water temperature Ti (yellow continuous line) compared to its nominal
value (yellow dotted line).

prediction horizon of the adopted MPC law is Np = 50,
while the weights are chosen as Re = 10, Ru = 0.1,
Qx = diag(R,R,R,R,R), Qξ = 1, and Qθ = 10−5.

Concerning the tuning of the integral action gain µ,
Corollary 1 has been verified numerically. For the three
setpoints considered in Figure 5, any gain µ ∈ (0, 0.251)
results in a locally asymptotically stable augmented system.
Specifically, µ = 0.14 has been chosen.
Alternative approach for comparison

In order to evaluate the performances of the proposed
control architecture, the popular offset-free MPC strategy
described in [17] has also been implemented. In brief, this
control strategy, henceforth named Disturbance Estimation
Based MPC (DEB-MPC), requires to augment the NNARX
model with a fictitious matched disturbance on the input, for
the estimation of which a Moving Horizon Estimator (MHE)
is designed. Then, a standard state-feedback nonlinear MPC
law is designed to stabilize the augmented model, featuring
a prediction horizon Np = 50, and weights in line with those
used for the proposed control architecture.
Closed-loop results

The closed-loop output tracking performances achieved
by the proposed approach are compared to those of DEB-
MPC in Figure 7. It is apparent that, while initially the
DEB-MPC scheme is able to compensate the plant-model
mismatch thanks to a reliable estimate of the fictitious
matched disturbance, after the instant t = 7 · 104s – when
disturbances occur, see Figure 6 – the tracking performances
of such control scheme are lost. In contrast, the proposed
control architecture is able to attain zero tracking error, even
in the presence of the severe disturbances that affect the
system. In Figure 8, the control variable requested by the two
schemes is compared. In both schemes the input constraints
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Fig. 7. Closed-loop output tracking performances of the proposed approach
(red continuous line) compared to that of the DEB-MPC (green dashed-
dotted line). The setpoint is represented by the blue dotted line.
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Fig. 8. Control action of the proposed approach (red continuous line)
compared to that of the DEB-MPC (green dashed-dotted line).

are fulfilled, although it can be observed that the control
action issued by DEB-MPC is less moderate, mainly due
to the transients of the disturbance estimator. It should be
noted that in DEB-MPC, the choice of the disturbance model
is crucial to achieve satisfactory performance. Recent works
proposing alternative disturbance estimation-based strategies,
see [24], will thus be object of future investigations.

V. CONCLUSIONS

In this paper, a nonlinear Model Predictive Control
(MPC) strategy is proposed to achieve offset-free tracking
of constant references for system learned by Neural NARX
(NNARX) models. To this end, we proposed to augment the
NNARX model with the integrator of the output tracking
error and with a derivative action, and then to design a
stabilizing MPC law for such augmented model. The pro-
posed control scheme attains nominal closed-loop stability
and offset-free tracking capabilities. The control law was
tested on a water heating benchmark system, demonstrating
satisfactory closed-loop performance and a good degree of
robustness to the disturbances affecting the plant.
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[24] P. Tatjewski and M. Ławryńczuk, “Algorithms with state estimation in
linear and nonlinear model predictive control,” Computers & Chemical
Engineering, vol. 143, p. 107065, 2020.

[25] H. K. Khalil, Nonlinear systems; 3rd ed. Prentice-Hall, 2002.
[26] N. Bof, R. Carli, and L. Schenato, “Lyapunov theory for discrete time

systems,” arXiv preprint arXiv:1809.05289, 2018.

APPENDIX

A. Proof of Proposition 1

Let δxk and δuk be the displacement from the equilibrium
point (x̄, ū), i.e. xk = x̄ + δxk and uk = ū + δuk. The
nonlinear system (6) can be rewritten as

δxk+1 + x̄ = f(x̄+ δxk, ū+ δuk). (22)

Since the goal is to analyze the asymptotic stability of the
linearized system, for simplicity it is assumed that δuk = 0.
It is worth noticing, however, that this proof could be easily
extended to consider δuk 6= 0, at the price of more involved
computations. Under this simplification, (23) reads

δxk+1 + x̄ = f(x̄+ δxk, ū). (23)

System (23) can be recast as its linearization plus the
linerization error ε

δxk+1 = Aδδxk + ε(δxk), (24)

where
Aδ =

∂f

∂xk

∣∣∣∣
x̄,ū

. (25)

The goal is to show that the linear system

δxk+1 = Aδδxk (26)

is asymptotically stable. Along the lines of [25], the lin-
earization error is first bounded as follows.

Consider the i-th state component, with i ∈ {1, ..., n}. In
light of the Mean Value Theorem there exists x̃ between x̄
and x̄+ δxk such that

fi(x̄+ δxk, ū)− fi(x̄, ū) =
∂fi(x, ū)

∂x

∣∣∣∣
x̃,ū

δxk

=
∂fi(x, ū)

∂x

∣∣∣∣
x̄,ū

δxk +

[
∂fi(x, ū)

∂x

∣∣∣∣
x̃,ū

− ∂fi(x, ū)

∂x

∣∣∣∣
x̄,ū

]
δxk

= Aδiδxk + ε̃i(δxk)δxk
(27)

Under the customary assumption that the gradient of f(x, ū)
with respect to x is Lipschitz continuous with Lipschitz
constant L1, it holds that

‖ε̃i(δxk)‖22 ≤

∥∥∥∥∥ ∂fi(x, ū)

∂x

∣∣∣∣
x̃,ū

− ∂fi(x, ū)

∂x

∣∣∣∣
x̄,ū

∥∥∥∥∥
2

2

≤ L2
1‖x̃− x̄‖22 ≤ L2

1‖δxk‖22.

(28)

Hence, being ε(δxk) = ε̃(δxk)δxk, the linearization error
can be bounded as

‖ε(δxk)‖2 ≤ ‖δxk‖2

√√√√ n∑
i=1

∥∥ε̃i(δxk)
∥∥2

2
‖δxk‖22

≤ Lε‖δxk‖22,

(29)

where Lε = L1
√
n.

At this stage, let us recall that the δISS property implies
the Global Asymptotic Stability (GAS) of any equilibrium.
Indeed, recalling that δuk = 0, from (7) it follows that

‖xk − x̄‖2 ≤ β(‖x0 − x̄‖2, k).



Moreover, in light of the assumption on β, the exponential
GAS property of any equilixbrium can be shown, since

‖δxk‖2 ≤ ρ‖δx0‖2λk. (30)

This allows to invoke Theorem 5.8 of [26] which, under
the assumption of exponential GAS, guarantees the existence
of a quadratic Lyapunov function V (δx) for the nonlinear
system (23). That is, there exist positive constants c1, c2, c3,
c4, such that

c1‖δxk‖22 ≤ V (δxk) ≤ c2‖δxk‖22, (31a)

V (Aδδxk + ε(δxk))− V (δxk) ≤ −c3‖δxk‖22 (31b)∥∥∥∥∂V (Aδδxk + ε(δxk))

∂ε

∥∥∥∥
2

≤ c4‖δxk‖2. (31c)

The goal is to show that V (δxk) is also a Lyapunov function
for the linear system (26). To this end, let us add and subtract
V (Aδδxk) from the left-hand side of (31b), leading to

V (Aδδxk)− V (δxk) +
[
V (Aδδxk + ε(δxk))− V (Aδδxk)

]
≤ −c3‖δxk‖22

(32)
In light of (31c) and (29), V (Aδδxk + ε(δxk))−V (Aδδxk)
can be bounded as∥∥V (Aδδxk + ε(δxk))− V (Aδδxk)

∥∥
2

≤
∥∥∥∥∂V (Aδδxk + ε(δxk))

∂ε

∥∥∥∥
2

‖δxk‖2

≤ c4Lε‖δxk‖32.

(33)

Owing to the bound (33) and to the exponential GAS (30),
recalling that λ ∈ (0, 1), from (32) it holds that

V (Aδδxk)− V (δxk) ≤ −c3‖δxk‖22 − c4Lε‖δxk‖32
≤ −c3‖δxk‖22 − ρc4Lε‖δx0‖2‖δxk‖22
≤ −

(
c3 − ρc4Lε‖δx0‖2

)
‖δxk‖22.

(34)
Hence, there exist constants c5 > 0 and r0 > 0 such that,
∀δx0 ∈ {δx0 : ‖δx0‖2 ≤ r0},

V (Aδδxk)− V (δxk) ≤ −c5‖δxk‖22.

Hence, the asymptotic stability of the linear system (26)
is proven by using V (δxk) as Lyapunov function, which
implies that Aδ is Schur stable. �
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