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ABSTRACT. We study the convergence of deterministic policy gradient algorithms in continuous state and
action space for the prototypical Linear Quadratic Regulator (LQR) problem when the search space is
not limited to the family of linear policies. We first provide a counterexample showing that extending the
policy class to piecewise linear functions results in local minima of the policy gradient algorithm. To solve
this problem, we develop a new approach that involves sequentially increasing a discount factor between
iterations of the original policy gradient algorithm. We finally prove that this homotopic variant of policy
gradient methods converges to the global optimum of the undiscounted Linear Quadratic Regulator problem
for a large class of Lipschitz, non-linear policies.

1. INTRODUCTION

Recent advances in machine learning have strongly depended on techniques from reinforcement
learning to generate their superhuman results on tasks that were previously deemed “unachievable” by
artificial intelligence models. Some of the most spectacular examples are the recent breakthroughs in
the games of Go and Starcraft 2 [24, 25, 31] and the robotics tasks such as learning how to walk or
controlling a hand [12, 21].

A shared aspect of these recent advances is the use of policy gradient algorithms (and their variants)
[28]. Given the simplicity of these algorithms, their success in solving non-convex optimization problems
is rather surprising. In the past few years, there has been significant progress made in the development
of our understanding of the convergence of these algorithms - especially in the tabular setting [13, 19].
However, many of the games and control problems mentioned in the first paragraph have incredibly large
(or infinite in the case of robotics) state and action spaces, so that tabular representation is computationally
prohibitive. Due to this complexity, none of the above breakthroughs would have been possible without
the use of nonlinear function approximation – most commonly, (deep) neural networks – in combination
with policy gradient algorithms: With parametric function approximation, only the parameters of the
approximator need to be stored rather than a table of all possible game-states.

Nevertheless, the current body of theoretical work still does not explain the success policy gradient
methods have experienced in Go and Starcraft 2 due to an insufficient understanding of how such methods
behave when neural networks are used as the function approximator of choice. One obstruction in this
sense stems from the nonlinear behavior of neural networks, resulting in optimization landscapes that are
highly non-convex [10], preventing us from using many of the tools developed in classical optimization
theory. This large gap between empirical success and theory of nonlinear function approximation in
reinforcement learning algorithms is also related to our limited theoretical understanding of their interplay.
In this paper, we contribute to filling this gap by proving convergence results for nonlinear deterministic
policies in a prototypical control problem with continuous state and action space: the Linear Quadratic
Regulator (LQR) problem. In previous work by [4, 6, 8, 33], global convergence results have been
obtained in this context by restricting to the linear policy class. This choice of search space favorably
aligns with the policy gradient update since the optimal policy of the LQR is known to be a linear function
of the state. Our work extends these results to a larger class of non-linear policies. To do so, we first
construct an example to demonstrate the potential for negative interplay between the expressiveness of
the policy class and the local nature of the policy gradient algorithm. We then consider a new perspective
in solving reinforcement learning problems that involves iteratively updating a discount factor. With this
perspective, we reduce the global convergence problem to a local one, allowing us to work with a wider
policy class and to avoid potential local minima. These stronger convergence results do not come without
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a cost, though; the process of iteratively updating a discount factor necessarily results in more training
iterations.

1.1. Related Works.

In light of the advantages provided by policy-based approaches to reinforcement learning, there has
been a recent wave of research seeking to provide theoretical guarantees for these algorithms that have
been shown to work in practice.

Most of the recent work on the convergence of policy gradient methods focuses on the finite action
space setting. In this context, [18] has shown that, in finite action spaces, algorithms like TRPO [22]
and PPO [23] converge to the globally optimal policy. More results on the global convergence of policy
gradient dynamics and extensions to function approximation are obtained in [1, 17, 19, 32]. However,
in the aforementioned publications, the assumption of a finite action space is essential in obtaining
the results; when considering continuous action spaces, we use the LQR as a proxy for more general
environments since the LQR setting is well understood and allows for more straightforward analysis.

In the continuous action-space setting, [8] show that deterministic policy gradient methods for the
policy class of linear policies converge to the globally optimal policy of the LQR problem. Building off
of [8], [6] provides strong positive results in an explicit characterization of the LQR when learning with
linear policies showing that the cost is smooth and coercive and that the discretization of various gradient
flows lead to algorithms with linear convergence rates. Similarly, [33] provides a convergence guarantee
for Actor-Critic methods in the LQR setting by considering the class of linear-Gaussian policies with
fixed variance. Other recent work [14] also considers the class of linear policies but works in the finite
time-horizon setting. Rather than working with a more complex learning task such as the finite-horizon
LQR, our work instead tackles the problem of nonlinear function approximation and thus we prove our
results in the simpler setting of the infinite-horizon, noiseless LQR; however, unlike previous work in this
setting, we consider a wider (deterministic) policy class that can be understood as linear combinations of
nonlinear functions. Furthermore, most works only consider the evolution of the policy with respect to
time/iterations; we also consider the evolution of the optimal policy with respect to the discount factor.
This new perspective allows us to use some new tools in proving the convergence of policy gradient
methods in the LQR.

Most relevant to our work, [9] discusses the effect of changing the dscount factor during training of
reinforcement learning algorithms. This study, although strictly empirical, shows that our homotopic
variant of policy gradient methods can reduce the number of training iterations needed to learn an
optimal policy, i.e., that this modified reinforcement learning procedure not only improves the optimality
properties of reinforcement learning algorithms but also their convergence speed. On the theoretical
side, a team at DeepMind [29] has studied how the value function behaves as function of the discount
factor and develop a set of interpolating objectives to go from a myopic value function Vγ to the true
objective Vγ∗ ; they also show that their family of interpolating objectives yields faster convergence and
better asymptotic performance on MuJoCo tasks.

1.2. Contributions.

Our work continues along a line of work using the LQR as a proxy for more general learning
environments [3, 5, 7, 8, 11, 14–16, 30]. In this paper, we present a homotopy-based approach inspired by
the human learning process to iteratively update the policy until reaching the globally optimal policy, and
in particular, we directly extend the result of [8] to nonlinear policy classes. We show that by continuously
updating the discount factor after policy improvements, one can reach the global optimum regardless of
the quality of the initial policy, subject to a few assumptions on the parametrization and expressiveness of
the policy (e.g., our policy parametrization is linear in the parameters). Although this approach can be
understood as a new type of policy-gradient algorithm, our focus is theoretical and we mainly consider
the homotopy approach as a tool to prove convergence results.

The intuition behind the homotopy-based algorithm comes from the observation that when teaching
children, one does not expect the child to consider the long term consequences of their actions. Instead,
children are first taught to learn the basics (i.e., learn with a discount factor close to zero) before moving

2



on to developing their long-term planning ability (increasing to a larger discount factor). Heuristically,
one can make sense of this by reasoning that it’s likely easier to learn the optimal policy having learned
the basics than it is learning it from scratch. Mathematically, the homotopy approach relies on the fact
that the optimal policy of the LQR is continuous with respect to the discount factor. In more challenging
environments such as Chess or Go, this may not be the case.

Summarizing, the main contributions of this work are as follows:

• We show that one can not always expect policy gradient methods to converge even with relatively
well-behaved function approximators. We provide an example policy that is linear in the parame-
ters, contains the globally optimal policy, but does not converge to such globally optimal policy
when trained with a fixed discount factor. Furthermore, this example satisfies all assumptions
needed for our convergence result.
• We formulate the policy gradient learning process as a homotopy between various optimal

policies along the discount factor. By leveraging this idea, we provide a convergence result for an
expanded policy class consisting of linear combinations of non-linear functions (in state space)
under some mild assumptions on the expressiveness and parametrization of the policy class (see
Assumptions 1, 2).

As a corollary, our result also shows that the assumption of a stabilizing initial policy in [8] is not
necessary. By using our homotopy algorithm, any linear policy will converge to the optimal policy of
the undiscounted LQR. This is ultimately a trade-off between initial information and number of training
iterations; the homotopy approach allows us to start the learning process with less background information
at the cost of more training iterations. This type of trade-off has been considered before, most notably
in [24] and [25] where AlphaGo was initially trained on human games via supervised learning before
engaging in self-play but AlphaZero was trained entirely via self-play and no human input.

1.3. Organization.

The paper is organized as follows. In the coming section, we provide the necessary background
information to understand the context of our problem (Section 2). In Section 3 we provide our result
regarding the convergence of policy gradient methods with a non-linear function approximator in the
LQR using the aforementioned homotopy approach inspired by the human learning process. In this
section, we also provide the counterexample where policy gradient methods do not converge to the global
optimum. The discussion is contained in Section 4. The full proofs of the results, as well as some
numerical examples corroborating our claims, obtained are housed in Appendices A, B and C.

2. PRELIMINARIES AND BACKGROUND

In this paper, we study a reinforcement learning problem where an agent interacts in discrete time with
the environment with the goal of minimizing some cost function that depends on the agent’s states and
actions. The agent does this by sequentially choosing actions over time which influence the agent’s state
in the environment. Throughout, for given n,m ∈ N we respectively define X = Rn and U = Rm as
the set of possible states and actions of the agent. Correspondingly, for t ∈ Z≥0 we denote by xt ∈ X
and ut ∈ U the state and action of the agent at time t. The function that maps a state to action of
the agent in that state is called the policy π : X → U , and the motivation behind this paper is to
investigate the conditions under which an agent will learn the optimal policy of a specific environment:
the Linear-Quadratic Regulator.

2.1. The Linear-Quadratic Regulator.

The Linear-Quadratic Regulator (LQR) is a classic optimal control problem. In this paper, we are
interested in the special case where the dynamics are linear, time-invariant with no disturbance or added
noise and the cost function is quadratic in the state and the control action. We consider the discounted
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infinite time-horizon problem,

minimize Ex0∼%0

[ ∞∑
t=0

γt (xᵀtQxt + uᵀtRut)

]
(2.1)

with xt+1 = Axt +But,(2.2)

where A : X → X and B : U → X are the system (or transition) matrices, Q : X → X and
R : U → U are positive definite cost matrices, x0 ∈ X is randomly distributed according to probability
distribution %0 on X , and γ ∈ [0, 1] is the discount factor. For a given policy π, the expression to be
minimized in (2.1) is referred to as the cost associated to π, which we denote by C(π). In the entirety of
this work, the pair (A,B) is assumed to be controllable and (A,D) is assumed to be observable (where
Q = DTD).

It is known [2] that the optimal control for the LQR problem is a linear function of the state,

ut = K∗xt.

If A,B,Q,R, γ are known, the optimal control K∗ can be calculated explicitly. Let Pγ denote the unique
positive definite solution to the discounted discrete-time algebraic Riccati equation (DARE)

Pγ = γAᵀPγA− γ2AᵀPγB (R+ γBᵀPγB)−1BᵀPγA+Q ,

for which we know the solution exists and since (A,B) is assumed controllable and (A,D) is assumed
observable [2]. We can then write the optimal control as

(2.3) K∗γ = −γ (2R+ γBᵀPγB)−1BᵀPγA.

Later, we will sometimes omit the subscript γ when the dependencies are clear from context.
Note that, in general, the optimal policy for the discounted LQR is different from the optimal policy

for the undiscounted LQR. For instance, the optimal policy with respect to the discounted LQR may not
even be stabilizing [20].

Throughout the remainder of the paper, we will use γ to denote the discount rate which we choose
given an initial policy. We assume that γ ∈ [0, 1] is small enough such that the cost function is still
bounded from above for all initial states x0 ∈ supp (%0), where %0 is the distribution of initial states.

Why LQR?. Although the assumptions for the linear-quadratic system are rather restrictive, the LQR is
still an important problem for multiple reasons. Firstly, it is one of the few problems where the closed-
form of the optimal control exists. This fact by itself makes the LQR a pleasant environment to work
with. Secondly, the LQR has a continuous state and action space. Thirdly, despite its simplicity, there is
still a lack of theoretical guarantees regarding convergence of reinforcement learning algorithms in this
setting. All of these factors have certainly contributed to its re-emergence as a benchmark environment
in reinforcement learning theory; it is both nice to work with mathematically and difficult enough to be
applicable to the real world.

2.2. Policy Gradient Methods.

Policy gradient methods are a general class of reinforcement learning algorithms where the agent
directly learns a policy – which is assumed to be in a certain parametric family of functions – rather than
first learning a value function. During training, the parameters of the policy are updated via gradient
descent on the cost function. As mentioned in the introduction, policy gradient methods have increasingly
become the approach of choice for solving difficult reinforcement learning problems. One reason for this
popularity is that policy-based methods, as opposed to value-based, can easily learn stochastic policies,
whereas action-value based methods have no natural and flexible way to do so.

The fundamental result underlying the successful application of these methods is the policy gradient
theorem [28] which provides an explicit formula for the gradient of the performance in terms of the
gradient of the policy w.r.t its parameters – importantly, the gradient of the state distribution is not needed,
greatly simplifying the application of these methods.

The analogous theorem in the deterministic setting (first proven by [26]) allows one to conveniently
compute the gradient of the cost function when considering a class of deterministic policies, as is the case
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in this paper. Furthermore, as shown in [8], it is possible to explicitly compute the gradient of the LQR
cost function for linear policies. They show that for a linear policy K,

∇C(K) = 2
(

(R+ γBTPKB)K + γBTPKA
)

ΣK

where PK denotes the “cost to-go” matrix (i.e., C(K) = Ex0∼%0
[
xT0PKx0

]
) and ΣK is the state

covariance matrix.
In our work, we consider the same LQR setup as in [8]. That is, we also consider a deterministic policy

rather than a stochastic policy, a randomly distributed initial state, and noiseless dynamics. Note that it
is known [2] that the inclusion of additive zero-mean white noise to the LQR dynamics (2.2) does not
change the optimal control.

3. MAIN RESULTS

Notation. We use ‖·‖ as the operator norm of a matrix or the Euclidean norm of a vector. We will use
λmin(·) to refer to the smallest eigenvalue of a matrix.

In the first subsection, we construct the aforementioned example where vanilla (fixed discount factor)
policy gradients only yield convergence to a local optimum. Importantly, this policy class of the example
satisfies the assumptions needed for our convergence result. In the following subsection, we provide the
main theorems which show convergence of the homotopy algorithm. The lemmas and additional details
for both subsections have been omitted for clarity, the full details can be found in Appendices C and B.
We denote by {xt} the sequence generated by the dynamics xt+1 = Axt + Bπϑ(xt). Throughout, πϑ
denotes the parametric policy of choice evaluated with parameters ϑ ∈ Rd. In this paper, we consider
policies of the form

πϑ(xt) =
d∑

k=1

ϑkfk(xt) (3.1)

where each fk : Rn → Rm is a non-linear, globally Lipschitz function and ϑk ∈ R is a parameter to be
learned.

To establish our results we make the following assumptions:

Assumption 1. The functions fk are linearly independent.

Assumption 2. For the LQR problem defined by (A,B,Q,R), for all γ ∈ [0, 1], the γ-optimal policy K∗γ
can be represented by πϑ, i.e. K∗γ ∈ Span{fk}.

Assumption 1 is a standard assumption when considering function approximation via linear combina-
tion. We need this assumption to guarantee the uniqueness of policy parametrization. Assumption 2 is
necessary to guarantee that, for any choice of γ, the optimal policy is in the parametric policy class being
considered.

We note that the assumption of linear independence is, however, not essential for our proofs; rather, it
is made for technical convenience to simplify our proofs of Lemma C.4 and Theorem 3.5, guaranteeing
local strict convexity of the landscape. For example, in the proof of Lemma C.4, if we were to relax
Assumption 1, we would see that the eigenvectors that now correspond to the zero eigenvalue of the
Hessian would be the directions where the policy is unaffected by changing the parameters. Therefore,
we could relax the assumption to allow overparameterization and in turn to allow for wider networks in
Remark 3.2.

Lemma 3.1. Assumptions 1 and 2 imply that the optimal parameters are continuous in the discount factor.
In other words, for γ ∈ [0, 1] and for any ε > 0, ∃δ > 0 such that for γ′ ∈ [0, 1] such that |γ − γ′| < δ,
‖ϑ∗γ − ϑ∗γ′‖ < ε, where ϑ∗γ denotes the parameters that correspond to K∗γ for the policy class of (3.1).

Proof. Let {gk} denote the orthonormal set obtained from {fk} via Gram-Schmidt. We can then write

πϑ =
d∑

k=1

ϑk

d∑
l=1

〈fk, gl〉gl =
d∑
l=1

〈
d∑

k=1

ϑkfk, gl

〉
gl =:

d∑
l=1

ϑ̂lgl
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Thus, we see that

‖πϑ − πϑ′‖2 =

d∑
l=1

(
ϑ̂l − ϑ̂′l

)2

By Lemma C.1 we see that the optimal controls K∗γ are continuous in γ. Thus we conclude that

|γ − γ′| < δ =⇒ ‖πϑ∗γ − πϑ∗γ′‖ < ε =⇒ ‖ϑ̂− ϑ̂′‖ < ε.

Now, notice that we can also write the hat-coefficients asϑ̂1
...
ϑ̂d

 =

〈f1, g1〉 · · · 〈fd, g1〉
...

. . .
...

〈f1, gd〉 · · · 〈fd, gd〉


ϑ1

...
ϑd

 ,
and this change-of-basis matrix is invertible by Assumption 1. Thus, denoting the above matrix by A, we
conclude that

‖ϑ̂− ϑ̂′‖ < ε =⇒ ‖ϑ− ϑ′‖ < ‖A−1‖ε
�

Remark 3.2. 2-layer ReLU neural networks (without bias and with a slightly modified architecture)
trained in the random features regime satisfy the above assumptions. In this regime, we only train the
weights of the output layer {ϑk} = {ak} ∪ {bk}. For the i’th component of the control, we can write

πi(x) =

n∑
k=1

akσ(wT
kx) + bkσ(−wT

kx),

where σ(x) = max(0, x) is the rectified linear unit (ReLU), x ∈ Rn is the state, and wk ∼ N(0, In) are
the first layer weights fixed at initialization. This type of modification with duplicated ReLU neurons has
been considered before (see Appendix F of [34]).

Proof of Remark 3.2. Recall that x ∈ Rn. For Assumption 1, we note that {wk} is a linearly independent
set with probability 1. With this architecture, for every x ∈ Rn there will be exactly n terms in the sum
that are non-zero. Since {wk} forms a basis of Rn, Assumption 2 follows. �

Remark 3.3. The policy class {fk} = {1i,j} ∪ {F} for some globally Lipschitz function F satisfies the
above assumptions. Here 1i,j ∈ Rm×n denotes the matrix with all 0’s except for a 1 in the i, j’th entry.
This policy can be written as

ut = Kxt + ϑF (xt) ,

where K ∈ Rm×n, ϑ ∈ R are the parameters to be learned. This will be the policy class we consider in
Section 3.1 to construct our counterexample.

3.1. Counterexample with a Globally Lipschitz Policy.

We now proceed to construct the aforementioned example where vanilla (fixed discount factor) policy
gradients may result in convergence to a local optimum. Importantly, the policy class of this example
satisfies the assumptions needed for the convergence result provided in the subsequent section. The
lemmas and additional details for both subsections have been omitted for clarity, the full details can be
found in Appendices B and C.

We consider a simple 1-dimensional system (X = U = R, γ ∈ (0, 1)). Fix γ, we then choose
(A,B) = (0, 1) and (Q,R) = (1, R) as our system matrices (see (2.2)) for any R ∈ (0, γ). Notice that
this system is controllable and observable so there is an optimal control. For a ∈ R and δ > 0, we define
the spike or tent function of width 2δ centered at a:

Λa,δ(x) :=


x−(a−δ)

δ if x ∈ [a− δ, a]
(a+δ)−x

δ if x ∈ [a, a+ δ]

0 else
.
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FIGURE 1. A cobweb diagram for the first step of the LQR dynamics in the coun-
terexample. The blue line represents the dynamics of the system at initialization
(ϑ0 = 0, ϑ1 = 1). Our initial distribution of states is heavily weighted around the
two points (x0 and y0) that map to the two small tents on the right; this requires the
points to lie somewhere in the domain of the spike on the left because all other states are
mapped to negative numbers.

Next, we define the control as

ut = ϑ0xt + ϑ1F (xt) where F (xt) := ω0|xt|+
3∑
i=1

ωiΛai,δi(xt), (3.2)

for a choice of parameters ω0 ∈ (−1, 0) and {ai, ωi, δi}3i=1 where a2, a3 < |a1| that are fixed during
training of the model. We set

ω0 = −0.5, δ1 = 0.1, a1 = −2, ω1 = 3, a2 = 1.5, a3 = 1.8, δ2 = δ3 = δ, ω2 = ω3 = 0.2,
(3.3)

for a parameter δ to be chosen later. The dynamics resulting from this choice of parameters are depicted
in Figure 1. We note that the optimal policy for the LQR belongs to this policy class and corresponds to
the parameters (0, 0).

We choose the initial condition (ϑ0, ϑ1) = (0, 1) and define the distribution of the initial state as the
following measure with support on (−5, 5)

µ0(x) =
1− ε

2
δx0 +

1− ε
2

δy0 +
ε

10
, (3.4)

where x0 = minF−1(a2) and y0 = minF−1(a3), i.e., we define x0 and y0 as the smaller of the two
pre-images for a2 and a3, respectively.

Proposition 3.4. Fix γ ∈ (0, 1) and 0 < R < γ. For the LQR problem with (A,B) = (0, 1), (Q,R) =
(1, R), policy class (3.2) with parameters chosen in (3.3), and initial state distribution µ0 from (3.4),
there exists δ > 0 and ε > 0 such that the point in parameter space ϑ = (0, 1) is a local minimum of the
LQR cost function.

To prove that the point (0, 1) is a local minimum of the cost function, and therefore a suboptimal
fixed point of the policy gradient algorithm, we show that any infinitesimal change in ϑ0 and ϑ1 around
(ϑ0, ϑ1) = (0, 1) will increase such cost function.
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To understand why this is the case, consider first the trajectory of the points x0 and y0. It is easy to
see that, by the design of the control, any small perturbation of the parameters that change the image
of x0 and y0 will result in a state of larger absolute value, resulting in turn in a larger cost for those
trajectories. On the other hand, it is also possible that a change in parameters actually lowers the cost for
some trajectories starting in x ∈ [−5, 5] \ {x0, y0}. Still, by our choice of ε it is possible to show that
the increase in cost for x0, y0 outweighs the decrease. More specifically, the proof follows the following
steps (the full details are presented in Appendix B):

(1) For both x0, y0, we first prove that we can choose the parameter δ > 0 (see (3.3)) such that
outside of a small cone in parameter space, we can bound the change in cost from below to show
that it is always positive.

(2) We then guarantee that we can pick the parameters of the model such that the cones described
above corresponding to x0 and y0 only intersect at the origin.

(3) Next, we show that the cost difference is still positive even if the infinitesimal change in (ϑ0, ϑ1)
belongs inside one cone and outside of the other.

(4) Lastly, we bound the contribution of the uniform distribution term in µ0, showing that it is
negligible with respect to any of the contributions to the cost function from the trajectories
starting at x0 or y0.

Qualitatively, we can plot the cost landscapes for our example around ϑ = (0, 1) to see that this
point indeed is a local minimum (see Figure 3 in the appendix). The example we have described is only
one member of a family of possible counterexamples. The proofs we provide have used some of the
specifics of our example; however, they can be very easily generalized to describe a set of parameters and
constraints necessary for the point ϑ = (0, 1) to correspond to a local minimum of the cost function. We
only present this specific example as it is sufficient to demonstrate the failure of vanilla policy gradients
in the LQR.

3.2. Convergence Results.

In this section we present our convergence result for policies of the form

πϑ(xt) =
d∑

k=1

ϑkfk(xt)

where each fk : Rn → Rm is a non-linear, globally Lipschitz function and ϑk ∈ R is a parameter to be
learned. We prove our results under Assumptions 1 and 2, restated here for convenience.

Assumption 1. The functions fk are linearly independent.

Assumption 2. For the LQR problem defined by (A,B,Q,R), for all γ ∈ [0, 1], the γ-optimal policy K∗γ
can be represented by πϑ, i.e. K∗γ ∈ Span{fk}.

We prove the convergence of policy gradient methods for the policy class of (3.1) by using the
homotopy idea discussed in the introduction. Informally, our idea is that if one updates γ by increasing it
an infinitesimally small amount to γ′, one might expect that the optimal policies for the corresponding
discount factors might not be too far from each other. Then if these policies, and importantly their
parameterizations, are sufficiently close, policy gradient methods will yield convergence from the γ-
optimal policy to the γ′-optimal policy. It’s important to remember that one should not expect this
behavior in general; we have the simplicity of the LQR to thank for the continuity of the optimal policy
in the discount factor, but in more challenging settings such as Chess or Go, this may not be the case.
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Algorithm 1: Homotopy algorithm for LQR. Here PG(ϑ, γ) denotes the fixed point of the policy
gradient algorithm for the given LQR problem with discount factor γ and initial condition ϑ.

Result: Optimal policy of the LQR problem
ϑ̂∗ = ϑ(0), {γn}Nn=1;
for n ∈ {1, . . . , N} do

γ ← γn ;
ϑ̂∗ ← PG(ϑ̂∗, γ) ;

end
return ϑ̂∗

In other words, given some initial parameters ϑ(0) and an increasing sequence of discount factors
γn ∈ [0, 1], we run the policy gradient algorithm until convergence to the optimal policy of the first
discount factor. We then use this optimal policy as the initial policy for the system with the next discount
factor, and let the policy gradient algorithm converge to the corresponding optimum. We continue
iterating until we have converged to the optimal policy of the undiscounted LQR. To prove this algorithm
converges, we need to prove that policy gradients yield convergence from the γ-optimal policy to the
γ′-optimal policy if γ and γ′ are sufficiently close, and that for any arbitrary initialization, the first
iteration of the algorithm converges.

The proof is split into two main steps:

(1) Prove convergence of arbitrary initializations to the γ = 0 optimal policy.
(2) Prove local convergence of policy gradient methods. In other words, we show that for discount

factors γ′ and γ sufficiently close, policy gradient methods yield convergence from the γ-optimal
policy to the γ′-optimal policy.

The first step brings policies into the “homotopy” regime, while the second step shows that we can iterate
this process to go from the γ = 0 optimal policy to the γ = 1 (undiscounted) optimal policy. We remark
that it is also reasonable to ignore this first step and to initialize the policy to the zero function as is
occasionally done in practice.

In the statements of the theorems and their proofs, we recall that ϑ ∈ Rd denotes the parameters of the
model and ϑ∗γ ∈ Rd denotes the optimal parameters for the given value of γ, which exist and are unique
by Assumptions 1, 2.

Theorem 3.5 (Convergence at γ = 0). Let {fk}dk=1 be a set of globally Lip(fk)-Lipschitz continuous
functions, and let %0 (the distribution of the initial state) have full support on Rd. Under Assumptions 1,
2, any random initialization of the parameters ϑ will converge to the optimal policy for discounted LQR
with γ = 0.

We first note that the discount factor of this first iteration does not need to be γ = 0; however, to make
it easier to prove convergence of the first iteration, we can assume that γ = 0. With such high myopia,
the learning task becomes much easier, since the optimal policy for the LQR with γ = 0 is simply the
zero function.

The proof uses the fact that we can write a differential equation describing the evolution of the cost
difference Cγ(ϑ(s))− Cγ(ϑ∗γ) over time, where Cγ(ϑ) denotes the cost for the policy πϑ with discount
factor γ. This results in an expression that is similar to gradient-domination bounds and from this the
conclusion follows.

We now state the result about the local convergence of policy gradient methods in a neighborhood of
the optimal policy for the chosen discount factor:

Theorem 3.6 (Convergence Near γ-Optimality). Under the same conditions as Theorem 3.5, for any γ ∈
(0, 1) there exists δ > 0, λ > 0 such that for all initial conditions ϑ(0) with ∆ϑ(0) := ‖ϑ(0)− ϑ∗γ‖ < δ,

Cγ(ϑ(s))− Cγ(ϑ∗γ) ≤ e−sλ
(
Cγ(ϑ(0))− Cγ(ϑ∗γ)

)
,

and that lims→∞ ϑ(s) = ϑ∗γ .
9



The main idea behind the proof of this result is to leverage a Taylor expansion of the cost function
Cγ( · ) around its minimum ϑ∗γ for any fixed value of γ ∈ (0, 1). We show that by considering the second
order Taylor expansion in a small neighborhood around optimality, the landscape of the policy gradient
algorithm is locally convex. This allows to show that from any point within this neighborhood, policy
gradient methods experience exponential convergence to the γ-optimal policy by applying Grönwall’s
inequality.

Lastly, we want to show that by continuously updating the discount factor, we can ensure that we are
always within a small neighborhood of the optimal policy for the next discount factor, eventually reaching
the undiscounted optimal.

Theorem 3.7 (Convergence to Undiscounted Optimal). For any initial parameters ϑ0, Algorithm 1 will
converge to the undiscounted optimal policy ϑ∗.

Corollary 3.8. There exists an increasing sequence {γn}n of discount factors such that Algorithm 1
converges to the global optimum of the undiscounted LQR.

Proof of Theorem 3.7. Theorem 3.5 shows that any initialization of the policy will converge to the optimal
policy of the γ = 0 system. Theorem 3.6 together with positive-definiteness of Hγ then tells us that
policy gradient methods experience local exponential convergence near optimality. Corollary C.2 and
Lemma 3.1 tell us that for |γ′ − γ| sufficiently small, ϑ∗γ will be in close enough to ϑ∗γ′ for Theorem 3.6
to apply. One can iterate this process until reaching the undiscounted optimal policy. �

4. DISCUSSION AND CONCLUSION

This paper provides a convergence guarantee for model-based policy gradient methods in the setting
of the LQR with the policy class {

∑d
k=1 ϑkfk(x) | ϑk ∈ R} contingent on a few assumptions on the

expressiveness and parametrization of the policy class. Unlike previous works, we adopt a new approach
for proving convergence, namely, the homotopy-based approach which, to the best of our knowledge, has
not been used before in theoretical reinforcement learning. Using a discount factor to guarantee finite
costs and well-defined updates can also be applied to solving issues involving a chaotic policy, such as
the one arising naturally from piece-wise linear policies such as the tent map.

Furthermore, we provide an example illustrating a situation where expanding the policy class in the
LQR case leads to local minima of vanilla policy gradient algorithms. This issue is resolved by applying
the homotopic variant of policy gradients developed in this paper.

Limitations. It is important to note that our work considers an idealized, model-based and infinitesimal-
stepsize approach. To generalize our results to the model-free perspective, one could proceed in a similar
fashion to [8] by showing that when the roll-out is sufficiently long, the cost function and covariance
of the state trajectory can be accurately approximated and that with enough samples, the true gradient
can be approximated within a desired accuracy. Some other interesting avenues include relaxing the
assumption of continuous updating, i.e., to consider the stochastic approximation problem resulting from
the real-life setting of finite samples and finite step-size and establishing quantitative bounds for the
homotopy method.

Furthermore, the approach proposed in this work results in a significant increase in the computational
cost of training when compared to the vanilla policy gradient algorithm. This results in a trade-off
between computational cost and convergence guarantees for solving the control problem at hand. While
this trade-off may not be of immediate interest in practice, what we propose is a new paradigm for
studying the convergence of reinforcement learning algorithms.

Future Work. The problem of extending our proofs to establish convergence for the policy class of neural
networks remains open. We expect that it should be possible to extend our result to linearized neural
networks (such as the Neural Tangent Kernel regime) but we leave this result for future research.

Societal Impact. In the much bigger picture, our work is related to the issue of bias in machine learning.
The common practice of seeding reinforcement learning agents with human training data can be problem-
atic when the human-generated data contains implicit biases that we do not want in the agent — almost all
data associated with humans will contain such biases. Our work specifically shows that we can do away
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with some assumptions on the initial knowledge of reinforcement learning agents (e.g., assuming the
initial policy of the LQR is stabilizing), and thus, in applicable settings, do away with any dependence on
human-generated data. We choose to include this reminder because it is imperative to keep this question
in mind when designing machine learning models with the goal of bettering human lives. A simple
example is the autonomous vehicle trolley problem. In some cultures, it may be preferable to crash into
one individual over the other, and thus a model trained in one country may have disastrous consequences
when deployed in another.
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APPENDIX A. NUMERICAL EXPERIMENTS

A.1. Running Algorithm 1.

FIGURE 2. Evolution of the cost during Algorithm 1 as a function of training iterations.
The blue line is the cost during training of the homotopy algorithm in a similar setting
to the one described in Section 3.1. The orange dots represent a point at which γ was
updated. The red lines are the optimal costs for the various values of γ. The graph on the
left is a close-up of the cost between iterations 0 and 105, the one on the right represents
the full training process. The dashed red line on the plot on the right is the optimal cost
for γ = 1.

We run Algorithm 1 to solve the LQR problem (2.1), (2.2) in dimension n = m = 1 with (A,B) =
(0.1, 1) and (Q,R) = (1, 0.1) with the parametric policy class described in Section 3.1 and setting
δ = 5e-4. We do so by writing a policy using PyTorch and updating the parameters via gradient descent
with a stepsize of 1e-3. We increased γ by 0.02 whenever the absolute values of both partial derivatives
with respect to the parameters ϑ0, ϑ1 were less than a tolerance hyperparameter, in our case set to 1e-4.
Note that the initial states x0 and y0 described in Section 3.1 can be explicitly calculated to be −117/59
and −588/295, respectively.

We trained the model for a total of 500000 episodes. During each episode, we interacted with the
LQR system for a fixed number of steps, in our case, 5. Since the value for ε determined by our model
is negligibly small (i.e., ε < 1e-12), we simultaneously simulate the roll-outs from x0 and y0 during
training and update using the total sum of discounted costs experienced in both roll-outs. We update the
parameters after every episode. To highlight the homotopy algorithm, we initialize our policy with the
parameters ϑ = (0, 0) which correspond to the γ = 0 optimal policy.
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A.2. Counterexample.

(A) Notice, in the top-right figure, the two “good” directions in parameter space.

(B) Close-up of the above plots.

FIGURE 3. Landscape of the cost function from the example of Section 3.1 in a neigh-
borhood around ϑ = (0, 1). The local minimum at (0, 1) can be clearly seen in these
plots.

We compute the landscape of the cost function to verify numerically the result of Proposition 3.4 and
represent the lanscape in Figure 3. These results were generated by evaluating the cost experienced by the
policy with parameters (ϑ0, ϑ1) in a neighborhood of (0, 1) for the choice of parameters in Section 3.1
and setting ε = 0 and δ = 5e-4. The cost of a policy was evaluated by rolling out the policy from both x0

and y0 for 5 steps and computing the discounted sum of the instantaneous costs. Plots were made using
the contour plot method from matplotlib.pyplot.
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APPENDIX B. PROOFS FOR THE COUNTEREXAMPLE

Before stating and proving our results, we give a roadmap for the structure of the proof. In Lemma B.1
we show that the cost associated to trajectories starting at x0 or y0 is lower-bounded locally by the `1
norm of the perturbation of the parameters ‖dϑ‖1 outside of 2 cone in parameter space (one for each
initial condition). Then, in Lemma B.2 we show that a similar lower bound – with a reduced constant –
holds when the perturbation dϑ lies in one such cone (e.g. the one associated to x0) but outside of the
other (e.g. the one associated to y0), i.e., in such regions the positive contribution to the cost of one of
the trajectories outweights the one of the other. Combining this with Lemma B.3 showing that for a
choice of parameters the cones do not overlap, we obtain in Corollary B.4 that the joint contribution to
the cost function associated to trajectories starting at x0, y0 is lower-bounded locally by (a constant times)
the `1 norm of the perturbation of the parameters ‖dϑ‖1. We conclude by further combining this with
Lemma B.5, showing that the contribution to the calculation of the uniform measure is negligible, so that
the lower bound stated above holds for µ0.

Throughout, we define

C[x0](ϑ) :=

∞∑
t=0

γt (xt(ϑ)ᵀQxt(ϑ) + πϑ(xt(ϑ))ᵀRπϑ(xt(ϑ)))

where xt(dϑ) ∈ Rn denotes the trajectory of the LQR with control πϑ+dϑ for ϑ = (0, 1) and initial
condition x0.

Notation. We will use zt to denote the t’th state of the unperturbed trajectory and we will use zt(dϑ) for
the corresponding state of the perturbed trajectory (i.e., generated by policy πϑ+dϑ).

Lemma B.1. Let ϑ = (0, 1) and let z0 ∈ (x0, y0) defined in Section 3.1. For any α > 0, there exists
δ > 0, K > 0 such that for any i ∈ {2, 3} and dϑ = (dϑ0, dϑ1) satisfying

|z0dϑ0 + F (z0)dϑ1| ≥ α‖dϑ‖1,

the cost difference between the contribution to the cost function using the perturbed and unperturbed
policies for trajectories starting from z0 is strictly positive and bounded from below:

C[z0](ϑ+ dϑ)− C[z0](ϑ) ≥ 3K
4δ
‖dϑ‖1 .

Proof of Lemma B.1. Throughout, let z, a, ω be generic variables that can be replaced by either (x, a2, ω2)
or (y, a3, ω3). We first consider how the cost of a trajectory changes for any infinitesimal variation of
the parameters dϑ = (dϑ0, dϑ1). To do so we calculate the first order corrections (in dϑ) to the first
two timesteps of the trajectory zt(dϑ) starting at z0. For the first timestep, since along the unperturbed
trajectory we have z1 = F (z0) = a, we have

z1(dϑ) = dϑ0z0 + (1 + dϑ1)F (z0)

= z1 + (adϑ1 + z0dϑ0) , (B.1)

where here and throughout this section zt = zt(0) denotes the unperturbed trajectory. For the second
timestep,

z2(dϑ) = dϑ0z1(dϑ) + (1 + dϑ1) (ω0|z1(dϑ1)|+ ωΛa,δ(z1(dϑ1)))

= dϑ0z1 + (1 + dϑ1)

(
ω0|z1|+ ω0(adϑ1 + z0dϑ0)

+ ω
(
Λa,δ(z1) + Λ′a,δ(z1)(adϑ1 + z0dϑ0)

))
= adϑ0 + (1 + dϑ1)

(
z2 + ω0(adϑ1 + z0dϑ0)− ω

δ
|adϑ1 + z0dϑ0|

)
= z2 +

(
z2dϑ1 + adϑ0 + ω0(adϑ1 + z0dϑ0)− ω

δ
|adϑ1 + z0dϑ0|

)
=: z2 + dz2
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where dz2 := z2dϑ1 + adϑ0 + ω0(adϑ1 + z0dϑ0)− ω
δ |adϑ1 + z0dϑ0| is the first order correction to the

second timestep of the trajectory. We then note that since z2 ∈ (−1, 0) due to our choice of parameters,
the future cost from z2 is given by

γ2C[z2](ϑ+ dϑ) = γ2
∞∑
t=0

γt
(
Q(zt+2)2 +R(ut+2)2

)
= γ2

∞∑
t=0

γt
(
Q(zt+2)2 +R(zt+3)2

)
= γ2

(
Q(z2)2 +

∞∑
t=0

γt
(
γQ(zt+3)2 +R(zt+3)2

))

= γ2

(
Q(z2)2 + (γQ+R)

∞∑
t=0

γt((dϑ0 + ω0(1 + dϑ1))t+1 z2)2

)

= γ2(z2)2

(
Q+

(γQ+R)(ω0 + (dϑ0 + ω0dϑ1))2

1− γ (ω0 + (dϑ0 + ω0dϑ1))2

)
Since z2(dϑ) ∈ (−1, 0) by construction as well, the above expression also holds for z2(dϑ). Therefore,
since Q = 1 and 1 +Rω2

0 > 0, the cost of trajectory from z2 onward will vary (to first order in dϑ) by

γ2z2(dϑ)2 1 +R(ω0 + (dϑ0 + ω0dϑ1))2

1− γ (ω0 + (dϑ0 + ω0dϑ1))2 = γ2 1 +R(ω0 + (dϑ0 + ω0dϑ1))2

1− γ (ω0 + (dϑ0 + ω0dϑ1))2

(
(z2)2 + 2z2dz2

)
=
γ2
(
1 +Rω2

0

)
1− γω2

0

(
(z2)2 + 2z2dz2

)
+

2γ2ω0(γ +R)(
1− γω2

0

)2 (dϑ0 + ω0dϑ1) (z2)2

=
γ2

1− γω2
0

((
1 +Rω2

0

)
(z2)2 +

(
1 +Rω2

0

)
2z2dz2

+
2ω0(γ +R)

1− γω2
0

(dϑ0 + ω0dϑ1) (z2)2

)
Inserting the expression of dz2,

RHS =
γ2
(
1 +Rω2

0

)
1− γω2

0

(
(z2)2 + 2z2

(
− ω

δ
|adϑ1 + z0dϑ0|+ z2dϑ1 + adϑ0

+ ω0(adϑ1 + z0dϑ0) +
ω0(γ +R)(

1 +Rω2
0

)
(1− γω2

0)
z2(dϑ0 + ω0dϑ1)

))
(B.2)

≥
γ2
(
1 +Rω2

0

)
1− γω2

0

(
(z2)2 − 2z2

3ωα

4δ
‖dϑ‖1

)
=
γ2
(
1 +Rω2

0

)
1− γω2

0

(
(z2)2 + 2|z2|

3ωα

4δ
‖dϑ‖1

)
,

since z2 is negative. The inequality comes from the fact that whenever |z0dϑ0 + adϑ1| ≥ α‖dϑ‖1 we
can choose δ > 0 sufficiently small such that∣∣∣∣ω|adϑ1 + z0dϑ0|

4δ

∣∣∣∣ ≥ ∣∣∣∣ωα‖dϑ‖14δ

∣∣∣∣
≥ 4 max

(∣∣∣∣∣z2dϑ1 + adϑ0

∣∣∣∣∣,
∣∣∣∣∣ω0(adϑ1 + z0dϑ0)

∣∣∣∣∣ , (B.3)∣∣∣∣∣ ω0(γ +R)(
1 +Rω2

0

)
(1− γω2

0)
z2(dϑ0 + ω0dϑ1)

∣∣∣∣∣,
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∣∣∣∣∣ (γ +R)a|adϑ1 + z0dϑ0|
z2γ2

(
1 +Rω2

0

)
/(1− γω2

0)

∣∣∣∣∣
)

Bounding the right-hand-side by triangle inequality, the above is satisfied when

δ ≤ |ωα|
4 max {M0,M1}

,

where

M0 = 4 max

{
|z2|, |ω0a|,

∣∣∣∣∣ |z2|ω2
0(γ +R)(

1 +Rω2
0

)
(1− γω2

0)

∣∣∣∣∣,
∣∣∣∣a2(γ +R)(1− γω2

0)

|z2|γ2(1 +Rω2
0)

∣∣∣∣
}

M1 = 4 max

{
|a|, |ω0z0|,

∣∣∣∣∣ z2ω0(γ +R)(
1 +Rω2

0

)
(1− γω2

0)

∣∣∣∣∣,
∣∣∣∣az0(γ +R)(1− γω2

0)

z2γ2(1 +Rω2
0)

∣∣∣∣
}
.

In other words, we have shown that for all dϑ ∈
{

(dϑ0, dϑ1) ∈ R2
∣∣ |z0dϑ0 + F (z0)dϑ1| ≥ α‖dϑ‖1

}
,

C[z0](ϑ+ dϑ)− C[z0](ϑ) =
(
z2

0 + (γ +R)z1(dϑ)2 + γRz2(dϑ)2 + γ2C[z2(dϑ)](ϑ+ dϑ)
)

−
(
z2

0 + (γ +R)z2
1 + γRz2

2 + γ2C[z2](ϑ)
)

≥ γ2 (C[z2(dϑ)](ϑ+ dϑ)− C[z2](ϑ))− 2(γ +R)|z1||z1(dϑ)− z1|
= γ2 (C[z2(dϑ)](ϑ+ dϑ)− C[z2](ϑ))− 2(γ +R)a (adϑ1 + z0dϑ0)

≥ 3
2|z2|γ2

(
1 +Rω2

0

)
ωα(

1− γω2
0

)
4δ

‖dϑ‖1 (B.4)

=:
3K
4δ
‖dϑ‖1.

for

K :=
2|z2|γ2

(
1 +Rω2

0

)
ωα

1− γω2
0

(B.5)

where the first inequality comes from our assumption that dϑ lies outside of the cone in parameter
space (|z0dϑ0 + F (z0)dϑ1| ≥ α‖dϑ‖1) and the last one results from our choice of δ small enough from
(B.3). �

Based on the above, the only variation of the parameters that does not increase the cost of the policy is
when dϑ is inside the cone

|z0dϑ0 + F (z0)dϑ1| ≤ α‖dϑ‖1,
for z0 ∈ {x0, y0}. For the statement of the next lemma, for a choice of z0 ∈ {x0, y0} we define
z̄0 ∈ {x0, y0} \ z0 as the other initial condition and by z̄t(dϑ) the corresponding perturbed trajectory.

Lemma B.2. Suppose dϑ ∈ {|z0dϑ0 + F (z0)dϑ1| ≤ α‖dϑ‖1} ∩ {|z̄0dϑ0 + F (z̄0)dϑ1| ≥ α‖dϑ‖1}.
For the same δ,K > 0 as determined by Lemma B.1, the cost difference is strictly positive and can be
bounded by ∫

R
(C[x](ϑ+ dϑ)− C[x](ϑ))µ0,pp(dx) ≥ 1− ε

2

K
12δ
‖dϑ‖1 .

Here µ0,pp = 1−ε
2 (δx0 + δy0) denotes the pure-point, or discrete, part of µ0.

Proof of Lemma B.2. The proof proceeds similarly to the proof of Lemma B.1. We start by bounding from
below the variation of the cost due to the trajectory zt starting at z0 with |z0dϑ0 + F (z0)dϑ1| ≤ α‖dϑ‖1.
Recalling the expression for the first-order variation of the cost (B.2) from the proof of Lemma B.1
and that z2 < 0 by our choice of parameters, we bound the negative part of the contribution to the cost
function for t ≥ 2 as:

(γ2C[z2(dϑ)](ϑ+ dϑ)− γ2C[z2](ϑ))−

=
γ2
(
1 +Rω2

0

)
1− γω2

0

2z2

(
z2dϑ1 + adϑ0 + ω0(adϑ1 + z0dϑ0)
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− ω

δ
|adϑ1 + z0dϑ0|+

ω0(γ +R)(
1 +Rω2

0

)
(1− γω2

0)
z2(dϑ0 + ω0dϑ1)

)
+

=
γ2
(
1 +Rω2

0

)
1− γω2

0

ω2

δ
2|z2||adϑ1 + z0dϑ0|

+
γ2
(
1 +Rω2

0

)
1− γω2

0

2z2

(
z2dϑ1 + adϑ0 + ω0(adϑ1 + z0dϑ0)

+
ω0(γ +R)(

1 +Rω2
0

)
(1− γω2

0)
z2(dϑ0 + ω0dϑ1)

)
+

≥
γ2
(
1 +Rω2

0

)
1− γω2

0

2z2

(
z2dϑ1 + adϑ0 + ω0(adϑ1 + z0dϑ0)

+
ω0(γ +R)(

1 +Rω2
0

)
(1− γω2

0)
z2(dϑ0 + ω0dϑ1)

)
+

where (b)− := min(0, b), (b)+ := max(0, b) denote the positive and negative part of b ∈ R respectively.
We can assume that the quantity on the LHS above is negative; if it were positive, then the proof is done
since we are aiming to lower bound the total difference, so we could ignore this term if it were positive.
Since we are using the same δ as chosen in Lemma B.1, recalling the definition of K > 0 and that z2 < 0
we obtain

γ2 (C[z2(dϑ)](ϑ+ dϑ)| − C[z2](ϑ))− ≥ −
2γ2|z2|

(
1 +Rω2

0

)
1− γω2

0

∣∣∣∣ω2α‖dϑ1‖
4δ

∣∣∣∣ = −K
4δ
‖dϑ‖1 .

Then, recalling that z1 = F (z0) = a and 0 < R < γ, the total cost difference from the initial point z0 (to
first order) can then be bounded as follows for ‖dϑ‖ sufficiently small:

C[z0](ϑ+ dϑ)− C[z0](ϑ) ≥ (C[z0](ϑ+ dϑ)− C[z0](ϑ))−

=
( (
z2

0 + (γ +R)z1(dϑ)2 + γRz2(dϑ)2 + γ2C[z2(dϑ)](ϑ+ dϑ)
)

−
(
z2

0 + (γ +R)z2
1 + γRz2

2 + γ2C[z2](ϑ)
) )
−

≥ −(γ +R)
∣∣z1(dϑ)2 − z2

1

∣∣+ γR
(
z2(dϑ)2 − z2

2

)
−

+ γ2 (C[z2(dϑ)](ϑ+ dϑ)− C[z2](ϑ))−
≥ −2(γ +R)|z1||z1(dϑ)− z1|

+ 2γ2 (C[z2(dϑ)](ϑ+ dϑ)− C[z2](ϑ))−

≥ −2(γ +R)|z1|α‖dϑ‖1 −
2K
4δ
‖dϑ‖1

≥ −2K
3δ
‖dϑ‖1.

where in the second inequality we have used that z2(dϑ)2−z2
2 > 0. For any dϑ ∈ {|z0dϑ0+F (z0)dϑ1| ≤

α‖dϑ‖1} ∩ {|z̄0dϑ0 + F (z̄0)dϑ1| ≥ α‖dϑ‖1}, we can then compute that∫
R

(C[x](ϑ+ dϑ)− C[x](ϑ))µ0,pp(dx)

=
1− ε

2

(∫
R
C[x](ϑ+ dϑ)− C[x](ϑ)δ(z0)dx+

∫
R
C[x](ϑ+ dϑ)− C[x](ϑ)δ(z̄0)dx

)
≥ 1− ε

2

(
3K
4δ
‖dϑ‖1−

2K
3δ
‖dϑ‖1

)
≥ 1− ε

2

K
12δ
‖dϑ‖1

where µ0,pp denotes the discrete part of the measure µ0. �
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Lemma B.3. For any x0 6= y0 such that x0, y0 < 0 and F (x0), F (y0) > 0, there exists an α > 0 such
that

{|x0dϑ0 + F (x0)dϑ1| ≤ α‖dϑ‖1} ∩ {|y0dϑ0 + F (y0)dϑ1| ≤ α‖dϑ‖1} = {(0, 0)}.

The above directly implies that

Corollary B.4. For the same δ,K > 0 as determined by Lemma B.1, and for every dϑ ∈ Rd with
‖dϑ‖ < δ we have that∫

R
(C[x](ϑ+ dϑ)− C[x](ϑ))µ0,pp(dx) ≥ 1− ε

2

K
12δ
‖dϑ‖1 .

Here µ0,pp denotes the pure-point, or discrete, part of µ0.

Proof of Corollary B.4. For our choice of parameters (3.3), Lemma B.3 gives us an α > 0 such that the
cones determined by x0 and y0 in parameter space do not overlap except at dϑ = (0, 0). By Lemma B.1,
for any such α there exists a δ > 0 such that the claim holds. �

Proof of Lemma B.3. By assumption, the lines

dϑ1

dϑ0
=
−x0

F (x0)
and

dϑ1

dϑ0
=
−y0

F (y0)

only intersect at the origin. Then, the bisector of the central angle between these two lines can be written
as

dϑ1

dϑ0
=

−
√
x20+F (x0)2√
y20+F (y0)2

y0 − x0

√
x20+F (x0)2√
y20+F (y0)2

F (y0) + F (x0)
=: M > 0 .

We can assume without loss of generality that the line corresponding to x0 lies above the bisector (i.e.,
−x0/F (x0) > M ). Then, it suffices to choose α such that neither of the sets

{|x0dϑ0 + F (x0)dϑ1| ≤ α‖dϑ‖1} , {|y0dϑ0 + F (y0)dϑ1| ≤ α‖dϑ‖1} (B.6)

intersects the line `M = {(dϑ0, dϑ1) ∈ R2 : dϑ0 = Mdϑ1} outside of (0, 0).
Notice that the boundaries of the sets in (B.6) that are closest to `M can be explicitly written as the

lines
dϑ1

dϑ0
=
−α− x0

α+ F (x0)
and

dϑ1

dϑ0
=

α− y0

−α+ F (y0)
.

Then, noting that we can replace −x0 with |x0| and −y0 with |y0| since x0, y0 < 0, we have that the only
intersection of the sets in (B.6) with `M is (0, 0) if

M <
−α− x0

α+ F (x0)
and M >

α− y0

−α+ F (y0)
,

which is equivalent to the conditions

α <
|x0| −MF (x0)

1 +M
and α <

MF (y0)− |y0|
1 +M

.

Since we have assumed that
|x0|
F (x0)

> M >
|y0|
F (y0)

and that F (x0), F (y0) > 0, we know that the bounds in both constraints are strictly positive. Thus, we
can choose any

α <
1

2
min

(
|x0| −MF (x0)

1 +M
,
MF (y0)− |y0|

1 +M

)
and this proves the claim. �
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Lemma B.5. There exists K′ > 0 such that for any initial point u0 ∼ U(−5, 5), the average cost
difference can be bounded from above by∣∣∣∣∫ 5

−5
(C[u](ϑ+ dϑ)− C[u](ϑ))

du

10

∣∣∣∣ ≤ K′‖dϑ‖1 .
Proof of Lemma B.5. For any u0 ∈ [−5, 5], we can write the cost difference as

∆C[u0](dϑ) := C[u0](ϑ+ dϑ)− C[u0](ϑ)

=
(
u2

0 +Ru1(dϑ)2 + γC[u1(dϑ)](ϑ+ dϑ)
)
−
(
u2

0 +R(u1)2 + γC[u1](ϑ)
)

= γ∆C[u1(dϑ)](dϑ) +R(u1(dϑ)2 − (u1)2) + γ (C[u1(dϑ)](ϑ)− C[u1](ϑ))

≤ γ∆C[u0](dϑ) +R(u1(dϑ)2 − (u1)2) + γ (C[u1(dϑ)](ϑ)− C[u1](ϑ))

≤ γ∆C[u0](dϑ) + 2Ru1|F (u0)dϑ1 + u0dϑ0|+ γ (C[u1(dϑ)](ϑ)− C[u1](ϑ))

≤ γ∆C[u0](dϑ) + 2R(2.5)(5)‖dϑ‖1 + γ (C[u1(dϑ)](ϑ)− C[u1](ϑ)) ,

since we assume, in the construction of the example, that 0 < R < γ. Iterating the bound established
above we obtain

∆C[u0](dϑ) ≤
∞∑
t=0

γt (2R(2.5)(5)‖dϑ‖1 + γ (C[u1(dϑ)](ϑ)− C[u1](ϑ)))

=
2R(2.5)(5)‖dϑ‖1 + γ (C[u1(dϑ)](ϑ)− C[u1](ϑ))

1− γ
(B.7)

We now proceed to estimate the numerator of the above expression. To do so, let L = |ω0|+|ω1|
δ1

denote
the Lipschitz constant of F on (−5, 5). Notice that in the interval (−1, 1), the Lipschitz constant of
F restricted to this interval is |ω0| and that on (−5, 5) F is non-expansive (|F (x)| ≤ |x|) and F 2 is
contractive (∃k ∈ [0, 1) s.t. |F 2(x)| ≤ k|x|) by construction. Since 5|ω0|2 > 1 but 5|ω0|3 < 1, any
initial point will take at most three steps before it is mapped into the region with Lipschitz constant |ω0|.

C[u1(dϑ)](ϑ)− C[u1](ϑ) ≤ (1 +R)

γ∑
t=0

γt
(
F ◦ · · · ◦ F︸ ︷︷ ︸
t times

(u1(dϑ))2 − F ◦ · · · ◦ F︸ ︷︷ ︸
t times

(u1)2

)

≤ (1 +R)

(
3∑
t=0

γtL2t
(
u1(dϑ)2 − (u1)2

)
+ γ4

∞∑
t=0

γt|ω0|2t
(
u1(dϑ)2 − (u1)2

))

≤ (1 +R)

(
L6 +

γ4

1− γω2
0

)(
u1(dϑ)2 − (u1)2

)
= (1 +R)

(
L6 +

γ4

1− γω2
0

)(
2u1 (F (u0)dϑ1 + u0dϑ0) + (F (u0)dϑ1 + u0dϑ0)2

)
≤ L′′‖dϑ‖1,

for ‖dϑ‖ small enough, taking only the first order term. Combining the above with (B.7) and defining
L′ = γL′′ + 25R finally gives

∆C[u0](dϑ) ≤ K′‖dϑ‖1 , for K′ := L′

1− γ
‖dϑ‖1 , (B.8)

as claimed. �

Proposition 3.4. Fix γ ∈ (0, 1) and 0 < R < γ. For the LQR problem with (A,B) = (0, 1), (Q,R) =
(1, R), policy class (3.2) with parameters chosen in (3.3), and initial state distribution µ0 from (3.4),
there exists δ > 0 and ε > 0 such that the point in parameter space ϑ = (0, 1) is a local minimum of the
LQR cost function.

Proof of Proposition 3.4. Recalling the definitions of K,K′ from (B.5) and (B.8) respectively, for any

0 < ε <
K

24δK′ +K
,(B.9)
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and for dϑ 6= 0 sufficiently small, since µ0 = µ0,pp + ε
10 for µ0,pp = 1−ε

2 δx0 + 1−ε
2 δy0 we have that∫ 5

−5
(C(ϑ+ dϑ)−C(ϑ))dµ0(x) =

=
1− ε

2

∫ 5

−5
(C(ϑ+ dϑ)− C(ϑ)) dµ0,pp + ε

∫ 5

−5
(C(ϑ+ dϑ)− C(ϑ))

dx

10

≥ 1− ε
2

K
12δ
‖dϑ‖1 − εK′‖dϑ‖1

=
K

24δ
‖dϑ‖1 − ε

(
K′ + K

24δ

)
‖dϑ‖1 > 0,

where in the second line we have combined Corollary B.4 and Lemma B.5. Thus, we see that the point in
parameter space corresponding to ϑ = (0, 1) is a local minimum of the cost function.

�

APPENDIX C. PROOFS OF CONVERGENCE OF THE HOMOTOPY ALGORITHM

For notational convenience, we define

A := A+BK

Q := Q+KTRK

We use ∆ϑ = (∆ϑ1, . . .∆ϑd) to denote a perturbation of the parameters. We study the behavior of the
parameters in the setting where ϑ = ϑ∗ + ∆ϑ.

Lemma C.1. For a fixed quadruple (A,B,Q,R) that is controllable and observable, let Pγ denote the
unique positive semi-definite solution to the discounted discrete algebraic Riccati equation (discounted
DARE) with discount factor γ ∈ [0, 1]

Pγ = γAᵀPγA− γ2AᵀPγB (R+ γBᵀPγB)−1BᵀPγA+Q

Then, f : (0, 1)→ Rn×n, f(γ) = Pγ is a continuous function.

Proof of Lemma C.1. For any γ ∈ [0, 1], since (A,B) is controllable, we know that (
√
γA,B) also

controllable and thus stabilizable. Similarly, (
√
γA,D) is also observable, and by the positive definiteness

of R and positive semidefiniteness of Pγ , (R+ γBᵀPγB)−1 exists and is continuous. By [27, Theorem
2.4], we conclude that Pγ is a continuous function of γ ∈ [0, 1]. �

Since the optimal policy is a continuous function of Pγ , Lemma C.1 immediately gives us

Corollary C.2. The optimal policy K∗γ is continuous in γ.

We preface the next two lemmas by reminding the reader that the expansion of the cost function that
we consider is around the optimal policy K∗γ . However, since this notation is a bit tedious, we simply use
K to refer to this optimal policy in our coming computations. Here, we are using Assumption 2 when we
stipulate that πϑ∗ = K∗γ .

Lemma C.3. The first-order term in the Taylor expansion of the cost (with respect to the parameters)
evaluates to zero at optimality.

Let π denote the policy and let π̃ denote the perturbation of π (i.e., πϑ∗+∆ϑ = πϑ∗ + π̃). Furthermore,
recall that our policy representation is linear in the parameters. We first compute the zero’th, first, and
second order terms of the expansion of the trajectory.

x
(0)
t = Atx0

x
(1)
t =

t−1∑
l=0

AlBπ̃(x
(0)
t−l−1)

x
(2)
t =

t−1∑
l=1

AlB
(
π̃(x

(0)
t−l−1 + x

(1)
t−l−1)− π̃(x

(0)
t−l−1)

)
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where we ignore all non-second-order terms to reach the last equality. We note that, by the Lipschitz
continuity of policy π, all remaining terms in the first order term of the Volterra expansion for the given
system are of order higher than 1.

We can bound the Euclidean norm of the second order term in the expansion using the assumed
Lipschitz continuity of π:

‖x(2)
t ‖ =

∥∥∥∥∥
t−1∑
l=1

AlB
(
π̃(x

(0)
t−l−1 + x

(1)
t−l−1)− π̃(x

(0)
t−l−1)

)∥∥∥∥∥
≤

t−1∑
l=1

‖AlB‖‖π̃(x
(0)
t−l−1 + x

(1)
t−l−1)− π̃(x

(0)
t−l−1)‖

≤ Lip(π̃)

t−1∑
l=1

‖AlB‖‖x(1)
t−l−1‖

Proof of Lemma C.3. We consider a perturbation of the parameters of the policy. For any x0 ∈ supp (%0),
the first order term of the Taylor approximation is

C(1)[x0] =

∞∑
t=1

γt
((

x
(1)
t

)T
Qx

(0)
t +

(
x

(0)
t

)T
Q
(
x

(1)
t

))

+
∞∑
t=0

γt
(
π̃(x

(0)
t )TRKx

(0)
t +

(
x

(0)
t

)T
KTRπ̃(x

(0)
t )

)

=
∞∑
t=1

γt
t−1∑
l=0

(
At−l−1Bπ̃(x

(0)
l )
)T
QAtx0 +

∞∑
t=1

γt
(
Atx0

)T
Q

t−1∑
l=0

(
At−l−1Bπ̃(x

(0)
l )
)

+
∞∑
t=0

γt
(
π̃(x

(0)
t )TRKAtx0 +

(
Atx0

)T
KTRπ̃(x

(0)
t )
)

=
∞∑
t=1

γt

(
t−1∑
l=0

(
At−l−1Bπ̃(x

(0)
l )
)T
QAtx0 +

(
Atx0

)T
Q

t−1∑
l=0

ω
(
At−l−1Bπ̃(x

(0)
l )
))

+

∞∑
t=0

γt
(
π̃(x

(0)
t )TRKAtx0 +

(
Atx0

)T
KTRπ̃(x

(0)
t )
)

Let s = t− l, changing the order of summation, we get

=
∞∑
l=0

γlπ̃(x
(0)
l )T

[
BT

( ∞∑
s=1

γs
(
As−1

)T
QAs−1

)
A

]
Alx0

+

∞∑
t=0

γtπ̃(x
(0)
t )T [RK]Atx0

+

∞∑
l=0

γl
(
Alx0

)T [
AT

( ∞∑
s=1

γs
(
As−1

)T
QAs−1

)
B

]
π̃(x

(0)
l )

+
∞∑
t=0

γt
(
Atx0

)T [
KTR

]
π̃(x

(0)
t )

=

∞∑
l=0

γlπ̃(x
(0)
l )T

(
γBTPγ (A+BK) +RK

)
Alx0

+
∞∑
l=0

γl
(
Alxl

)T (
γ (A+BK)T PγB +KTR

)
π̃(x

(0)
l )
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which evaluates to zero at K∗ since K∗ = −γ
(
R+ γBTPγB

)−1
BTPγA. This is consistent with the

fact that the first order term is the gradient multiplied by ∆ϑ. This calculation gives us an explicit form
of the term that will simplify the proof of the next lemma. �

Lemma C.4. Let %0 have full support, then the Hessian is symmetric and strictly positive definite at
optimality.

Proof of Lemma C.4. For any x0 ∈ supp (%0), the second order term in the approximation of the cost is
as follows.

C(2)[x0] =

∞∑
t=2

γt
(
x

(2)
t

)T
Qx

(0)
t +

∞∑
t=2

γt
(
x

(0)
t

)T
Qx

(2)
t

+
∞∑
t=1

γt
(
x

(1)
t

)T
Qx

(1)
t +

∞∑
t=0

γt
(
π̃(x

(0)
t )
)T
R
(
π̃(x

(0)
t )
)

+

∞∑
t=1

γt
((

x
(1)
t

)T
KTRπ̃(x

(0)
t ) +

(
π̃(x

(0)
t + x

(1)
t )− π̃(x

(0)
t )
)T
RKx

(0)
t

)

+
∞∑
t=1

γt
(
π̃(x

(0)
t )TRKx

(1)
t +

(
x

(0)
t

)T
KTR

(
π̃(x

(0)
t + x

(1)
t )− π̃(x

(0)
t )
))

Notice we can ignore the underlined sum since it is already symmetric. In the remainder of this calculation,
we will use a red underline to highlight the symmetric terms that we will omit for clarity. The remaining
terms of interest are

=
∞∑
t=1

γt
(
x

(1)
t

)T
Qx

(1)
t +

∞∑
t=2

γt
t−1∑
l=1

(
π̃(x

(0)
l + x

(1)
l )− π̃(x

(0)
l )
)T
BT
(
At−l−1

)T
QAtx0

+
∞∑
t=2

γt
t−1∑
l=1

(
Atx0

)T
QAt−l−1B

(
π̃(x

(0)
l + x

(1)
l )− π̃(x

(0)
l )
)

+
∞∑
t=1

γt
((

x
(1)
t

)T
KTRπ̃(x

(0)
t ) +

(
π̃(x

(0)
t + x

(1)
t )− π̃(x

(0)
t )
)T
RKAtx0

)

+

∞∑
t=1

γt
(
π̃(x

(0)
t )TRKx

(1)
t +

(
Atx0

)T
KTR

(
π̃(x

(0)
t + x

(1)
t )− π̃(x

(0)
t )
))

Like the proof of Lemma C.3, we define s = t− l and change the order of summation to get

=

∞∑
l=1

γl
(
π̃(x

(0)
l + x

(1)
l )− π̃(x

(0)
l )
)T [

BT
∞∑
s=1

γs
(
As−1

)T
QAs−1 (A+BK)

]
x

(0)
l

+
∞∑
l=1

γl
(
x

(0)
l

)T [
(A+BK)T

∞∑
s=1

γs
(
As−1

)T
QAs−1B

](
π̃(x

(0)
l + x

(1)
l )− π̃(x

(0)
l )
)

+
∞∑
t=1

γt
(
π̃(x

(0)
t + x

(1)
t )− π̃(x

(0)
t )
)T [

RK

]
x

(0)
t +

∞∑
t=1

γt
(
x

(1)
t

)T
KTRπ̃(x

(0)
t )

+

∞∑
t=1

γt
(
x

(0)
t

)T [
RK

](
π̃(x

(0)
t + x

(1)
t )− π̃(x

(0)
t )
)

+

∞∑
t=1

γtπ̃(x
(0)
t )TRKx

(1)
t

+
∞∑
t=2

γt
(
x

(1)
t

)T
Q

t−1∑
m=1

(
At−m−1Bπ̃(x(0)

m )
)

+
∞∑
t=2

γt
t−1∑
m=1

(
At−m−1Bπ̃(x(0)

m )
)T
Qx

(1)
t

+
∞∑
t=1

γt (π̃(x0))TBT
(
At−1

)T
QAt−1Bπ̃(x0)
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We have dealt with the term containing two copies of x(1)
t by splitting it into two pieces: the sum of all

terms where both indices of the inner sums are 0 and everything else. The former is symmetric, so we
can omit it. Noticing that Pγ =

∑∞
t=0 γ

t(At)>Q̄At we continue from above

=
∞∑
l=1

γl
(
π̃(x

(0)
l + x

(1)
l )− π̃(x

(0)
l )
)T [

γ(R+ γBTPγB)K + γBTPγA

]
x

(0)
l

+
∞∑
l=1

γl
(
x

(0)
l

)T [
γKT(R+ γBTPγB) + γATPγB

](
π̃(x

(0)
l + x

(1)
l )− π̃(x

(0)
l )
)

+
∞∑
t=2

γt
t−1∑
l=0

π̃(x
(0)
l )TBT

(
At−l−1

)T
Q

t−1∑
m=1

(
At−m−1Bπ̃(x(0)

m )
)

+

∞∑
t=2

γt
t−1∑
m=1

(
At−m−1Bπ̃(x(0)

m )
)T
Q

t−1∑
l=0

At−l−1Bπ̃(x
(0)
l )

+

∞∑
t=1

γt
(
x

(1)
t

)T
KTRπ̃(x

(0)
t ) +

∞∑
t=1

γtπ̃(x
(0)
t )TRKx

(1)
t

=

∞∑
l=1

γl
(
π̃(x

(0)
l + x

(1)
l )− π̃(x

(0)
l )
)T [

γ(R+ γBTPγB)K + γBTPγA

]
x

(0)
l

+
∞∑
l=1

γl
(
x

(0)
l

)T [
γKT(R+ γBTPγB) + γATPγB

](
π̃(x

(0)
l + x

(1)
l )− π̃(x

(0)
l )
)

+
∞∑
t=2

γt
t−1∑
l=0

π̃(x
(0)
l )TBT

(
At−l−1

)T
Q

t−1∑
m=1

(
At−m−1Bπ̃(x(0)

m )
)

+

∞∑
t=2

γt
t−1∑
m=1

(
At−m−1Bπ̃(x(0)

m )
)T
Q

t−1∑
l=0

At−l−1Bπ̃(x
(0)
l )

+

∞∑
t=1

γt
t−1∑
l=0

(
π̃(x

(0)
l )
)T
BT
(
At−l−1

)T
KTRπ̃(x

(0)
t )

+
∞∑
t=1

γt
t−1∑
l=0

π̃(x
(0)
t )TRKAt−l−1Bπ̃(x

(0)
l )

=
∞∑
l=1

γl
(
π̃(x

(0)
l + x

(1)
l )− π̃(x

(0)
l )
)T [

γ(R+ γBTPγB)K + γBTPγA

]
x

(0)
l

+
∞∑
l=1

γl
(
x

(0)
l

)T [
γKT(R+ γBTPγB) + γATPγB

](
π̃(x

(0)
l + x

(1)
l )− π̃(x

(0)
l )
)

+

∞∑
l=0

γl
(
π̃(x

(0)
l )
)T
BT

[ ∞∑
s=1

γs
(
As−1

)T
KTRπ̃(x

(0)
l+s)

+
∞∑
s=2

γs
(
As−1

)T
Q
s−1∑
r=1

(
As−r−1Bπ̃(x

(0)
l+r)

)]

+

∞∑
l=0

γl

[ ∞∑
s=1

γsπ̃(x
(0)
l+s)

TRKAs−1
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+

∞∑
s=2

γs
s−1∑
r=1

(
As−r−1Bπ̃(x

(0)
l+r)

)T
QAs−1

]
Bπ̃(x

(0)
l )

To finish the proof, notice that the bracketed terms are almost identical the first-order term from
Lemma C.3. We also note that the terms multiplied to the bracketed terms are guaranteed to be fi-
nite due to the assumed Lipschitz continuity of F .[

· · ·

]
= 0 since K∗ = −γ

(
R+ γBTPγB

)−1
BTPγA[

· · ·

]
=
∞∑
s=2

γs
s−2∑
r=0

(
Ar+1As−r−2

)T
QAs−r−2B

(
π̃(x

(0)
l+r+1)

)
+

∞∑
s=1

γs
(
As−1

)T
KTR

(
π̃(x

(0)
l+s)

)
=

∞∑
r=0

γr+1 (Ar)T
[
AT

∞∑
m=2

γm−1
(
Am−2

)T
QAm−2B

](
π̃(x

(0)
l+r+1)

)
+
∞∑
s=0

γs+1 (As)TKTR
(
π̃(x

(0)
l+s+1)

)
=

∞∑
r=0

γr (Ar)T
[
γ (A+BK)T PγB +KTR

](
π̃(x

(0)
l+r+1)

)
= 0

Thus, the second-order term of the expansion of the cost function around optimality for the trajectory
with initial condition x0 reads

C(2)[x0] =
∞∑
t=0

γt
(
π̃(x

(0)
t )TRπ̃(x

(0)
t ) + π̃(x0)TBT

(
At
)T
QAtBπ̃(x0)

)
= π̃(x0)TBTPγBπ̃(x0) +

∞∑
t=0

γtπ̃(x
(0)
t )TRπ̃(x

(0)
t )

Since the policy is linear in the parameters, we can formally write this as an inner product where we define
multiplication between an m×m matrix and a vector of m× 1 vectors to be carried out component-wise.

= ∆ϑT


f1(x0)

...
fd(x0)


T

BTPB

f1(x0)
...

fd(x0)

+
∞∑
t=0

γt

f1(xt)
...

fd(xt)


T

R

f1(xt)
...

fd(xt)


∆ϑ

= ∆ϑT


f1(x0)TBTPγBf1(x0) · · · f1(x0)TBTPγBfd(x0)

...
. . .

...
fd(x0)TBTPγBf1(x0) · · · fd(x0)TBTPγBfd(x0)


+

∞∑
t=0

γt

f1(xt)
TRf1(xt) · · · f1(xt)

TRfd(xt)
...

. . .
...

fd(xt)
TRf1(xt) · · · fd(xt)

TRfd(xt)


∆ϑ

To avoid writing this large expression again, we denote the matrix in the parentheses by Hγ . We use this
matrix to define the quadratic form used as the Lyapunov function in the proof of Theorem 3.6. Given
this expression for C(2), we notice that it is always non-negative and is zero if and only if the policy is
optimal for the given initial condition, x (i.e., ∆ut = 0∀t). Consequently, integrating this term against
the initial distribution %0 will result in a nonzero outcome if and only if the trajectory of almost all initial
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condition is optimal. Since %0 has full support, and by Assumption 1

C(2) =

∫
R
C(2)[x] d%0(x) = 0 ⇐⇒ C(2)[x] = 0 [%0]-a.e. ⇐⇒ π̃(x

(0)
t ) = ~0 ∀t ⇐⇒ ∆ϑ = ~0

�

Theorem 3.5 (Convergence at γ = 0). Let {fk}dk=1 be a set of globally Lip(fk)-Lipschitz continuous
functions, and let %0 (the distribution of the initial state) have full support on Rd. Under Assumptions 1,
2, any random initialization of the parameters ϑ will converge to the optimal policy for discounted LQR
with γ = 0.

Proof of Theorem 3.5. Let ϑ be the randomly initialized parameters. When γ = 0, the cost can be written
as

C0(ϑ) = Ex0∼%0
[
xT0Qx0 + uT0Ru0

]
For convenience, we will omit the subscripts. Notice that the optimal parameters are ϑ∗ = ~0 which
correspond to the optimal action of u = 0. We can calculate

d

ds
(C0(ϑ(s))− C0(ϑ∗0)) = E

[
d

ds

(
uTRu

)]
= E

[
2uTR

d

ds
u

]
= E

[
2uTR

(
d

ds
πϑ(s)(x)

)]
= E

[
2uTR〈∇ϑπϑ(x),

d

ds
ϑ(s)〉

]
= E

[
2uTR〈∇ϑπϑ(x),−∇ϑC0(ϑ)〉

]
= E

[
2uTR〈∇ϑπϑ(x),− d

du
C0(ϑ) · ∇ϑπϑ(x)〉

]
= E

[
−4〈uTR∇ϑπϑ(x), uTR∇ϑπϑ(x)〉

]
= −Tr

(
∇ϑCT

0∇ϑC0

)
where 〈·, ·〉 denotes the scalar product in Rd. To prove convergence, what remains is to show that the only
extremum is the global minimum. In other words, we want to show

∇ϑC0(ϑ) = 0 ⇐⇒ ϑ = ϑ∗0

(⇐) This direction is straightforward. At ϑ = ϑ∗γ , we see that u = 0 for any x, thus,∇C = 0.

(⇒) Recall that for f ≥ 0,
∫
fdµ = 0 ⇐⇒ f = 0 [µ]-a.e. and if f is continuous, then f ≡ 0. This

tells us

−4〈πϑ(x)TR∇ϑπϑ(x), πϑ(x)TR∇ϑπϑ(x)〉 = −‖2πϑ(x)TR∇ϑπϑ(x)‖2 = 0 ∀x

This condition is equivalent to(
d∑

k=0

ϑkfk(x)Rfi(x)

)2

= 0 ∀x ∈ Rn, i ∈ {1, . . . , d}

and
d∑

k=0

ϑkfk(x)Rfi(x) = 0 ∀x ∀x ∈ Rn, i ∈ {1, . . . , d}

Since we assumed that {fk} is linearly independent (Assumption 1), by positive definiteness
of R we get that ϑ = ϑ∗γ .

�
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For the next theorem, we recall the definition of the positive definite Hessian Hγ appearing in the proof
of Lemma C.4:

∆ϑTHγ∆ϑT = ∆ϑT


f1(x0)

...
fd(x0)


T

BTPB

f1(x0)
...

fd(x0)

+
∞∑
t=0

γt

f1(xt)
...

fd(xt)


T

R

f1(xt)
...

fd(xt)


∆ϑ

Theorem 3.6 (Convergence Near γ-Optimality). Under the same conditions as Theorem 3.5, for any γ ∈
(0, 1) there exists δ > 0, λ > 0 such that for all initial conditions ϑ(0) with ∆ϑ(0) := ‖ϑ(0)− ϑ∗γ‖ < δ,

Cγ(ϑ(s))− Cγ(ϑ∗γ) ≤ e−sλ
(
Cγ(ϑ(0))− Cγ(ϑ∗γ)

)
,

and that lims→∞ ϑ(s) = ϑ∗γ .

Proof of Theorem 3.6. Consider the Lyapunov function

U(s) =
1

2

(
ϑ(s)− ϑ∗γ

)T
Hγ

(
ϑ(s)− ϑ∗γ

)
where Hγ is a symmetric positive-definite matrix defined at the end of Lemma C.4.

In this regime we can expand the cost function Cγ( · ) around its minimum ϑ∗γ . By Lemmas C.3 and
C.4, the second-order Taylor expansion of the cost is

Cγ(ϑ(s)) = C(0)
γ |ϑ∗γ + C(1)

γ |ϑ∗γ + C(2)
γ |ϑ∗γ + o(‖∆ϑ(s)‖2)

= Cγ(ϑ∗γ) +
1

2
∆ϑ(s)THγ∆ϑ(s) + o(‖∆ϑ(s)‖2)

Cγ(ϑ(s))− Cγ(ϑ∗γ) = U(s) + o(‖∆ϑ(s)‖2)

By chain rule,
d

ds
U(s) = 〈∇∆ϑU(s),

d

ds
∆ϑ(s)〉

= 〈Hγ∆ϑ(s),−∇ϑC(ϑ(s))〉
= −∆ϑ(s)TH2

γ∆ϑ(s) + o(‖∆ϑ(s)‖2)

≤ −λmin(Hγ)U(s) + o(‖∆ϑ(s)‖2)

where λmin(Hγ) is the smallest ofHγ . By Grönwall’s Inequality, this immediately gives, for ‖∆ϑ(0)‖ < δ
for δ > 0 sufficiently small, that

U(s) ≤ e−sλmin(Hγ)/2U(0) ,

recovering the claim for λ = λmin(Hγ)/2. �
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