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Abstract— Motivated by a need to characterize transient
behaviors in large network systems in terms of relevant signal
norms and worst-case input scenarios, we propose a novel
approach based on existing theory for matrix pseudospectra.
We extend pseudospectral theorems, pertaining to matrix expo-
nentials, to an input-output setting, where matrix exponentials
are pre- and post-multiplied by input and output matrices.
Analyzing the resulting transfer functions in the complex plane
allows us to state new upper and lower bounds on system
transients. These are useful for higher-order matrix differ-
ential equations, and specifically control of double-integrator
networks such as vehicle formation problems. Therefore, we
illustrate the theory’s applicability to the problem of vehicle
platooning and the question of string stability, and show how
unfavorable transient behaviors can be discerned and quantified
directly from the input-output pseudospectra.

I. INTRODUCTION

Characterizing dynamic properties of systems with struc-
ture, in particular, network structure, is a long-standing prob-
lem in the field. While questions of stability and convergence
have dominated the literature since the early works [1],
[2], important questions pertaining to the performance and
robustness of network systems are increasingly gaining at-
tention. For example, [3] and later [4], [5] have described
fundamental limitations to the performance of large networks
subject to structural (sparsity) constraints, stated in terms of
system norms.

A particular area where dynamic behaviors have received
more attention is that of vehicle platooning, that is, the
control of strings of vehicles, see [6], [7] for early works.
Here, it is fundamentally important to prevent disturbance
propagation through the string (to avoid collisions!), and
therefore, to have uniform bounds on error amplifications
during transients. This has motivated the notion of string
stability, see e.g., [8], [9] or [10], [11] for more recent
surveys. Conditions for string stability fall, roughly speaking,
into two categories: 1) bounding the amplification of a
disturbance from vehicle i to vehicle j, or 2) requiring
that bounded initial errors lead to bounded output errors,
independently of the string length. The choice of signal
norms, however, is central for the bounds in this literature,
and the interpretations they allow for. Many works have
done analyses based on L2 to L2 string stability, see [9],
[12], [13] while the, as argued e.g. in [14], possibly more
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important L∞ to L∞ disturbance amplification has received
significantly less attention even if considered in [7], [8]. In
this work, we shed light on a new approach to analyzing such
bounds for input-output systems in general, and networks and
vehicle strings in particular.

This approach takes off from the literature on pseudospec-
tra. Pseudospectra, which complement spectral analysis of
linear systems, especially for those with non-normal opera-
tors, have seen usage in describing the transient behavior
of both differential and difference equations. The works
are too numerous to mention, but we refer to [15] for an
excellent textbook on the subject. Through pseudospectra
one can state lower and upper bounds on the transient of
the exponential matrix, i.e., on supt≥0 ‖etA‖, and thereby
on the solution to a linear differential equation. In other
words, on the transient response of the internal states of a
linear system. The most famous such bounds are given by the
Kreiss theorem [16]. However, in control, and in particular,
network applications including vehicle platooning, we are not
necessarily interested in the transients of the internal states.
For instance, vehicular formation dynamics tend to have a
double integrator rendering certain internal states unbounded,
while inter-vehicular distances may be well-behaved. To
cope with this one can incorporate measurement and input
matrices C,B and then bound supt≥0 ‖CetAB‖ instead.

The extension of pseudospectral bounds to such an input-
output setting is the main focus of the present work. For
this purpose we will define a notion of input-output pseu-
dospectra. These will, in the case of higher-order systems
(by which we mean systems with more than one integrator),
become closely related to structured pseudospectra, which
have been studied in [17], [18] and applied to mechanical
systems in [19]. In these works the main focus has been on
the robustness of solutions to matrix polynomial equations
including the quadratic eigenvalue problem. The related
analysis of transient behavior of ‖CetAB‖ has, to the best
of our knowledge, barely received attention, though some
structured Kreiss-like theorems were proven in [20], [21].

This paper aims to highlight the potential usefulness of
the pseudospectral framework for networked systems and
systems with higher-order dynamics. Platooning, where ve-
hicles are modeled as double integrators (the acceleration
is actuated), and which have a string network topology,
is a prototypical example. We first generalize certain key
results from [15] to an input-output setting. Furthermore,
we use complex analysis to derive new upper bounds on
the transients of state space realizations, which are espe-
cially useful for systems that have high-order dynamics.
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The generalizations lead to lower and upper bounds on the
transient supt≥0 ‖CetAB‖, which under given input scenarios
imply bounds on the output supt≥0 ‖y(t)‖ (in any p-norm).
Through examples we show how the new bounds can be
applied. For a large-scale platooning problem, we compute
bounds on the deviations from equilibrium for a worst-case
bounded initial condition.

The remainder of this paper is organized as follows. In
Sec. II we introduce the preliminaries of this work. Lower
and upper bounds on the transient of supt ‖y(t)‖ and simple
examples illustrating how to apply the bounds are presented
in Sec. III. Then we illustrate an application of our results in
the form of vehicle strings in Sec. IV. Lastly our conlusions
are presented in Sec. V.

II. PRELIMINARIES

Consider the linear time-invariant system

ξ̇(t) = Aξ(t) + Bu(t)

y(t) = Cξ(t),
(1)

where the state ξ ∈ RN , A ∈ RN×N , B ∈ RN×P , C ∈
RQ×N , and output y ∈ RQ. The initial condition is ξ(0) =
ξ0. We will interpret C(sI−A)−1B as a transfer matrix and
call the system (1) input-output stable if all poles of this
transfer matrix lie in the open left half plane. Denote by
σ(A) the spectrum, i.e., the set of eigenvalues of A.

We will often let the system in (1) model matrix differen-
tial equations of the form

x(l)(t) +Al−1x
(l−1)(t) + · · ·+A0x(t) = Bu(t)

y(t) = Cξ(t),
(2)

where x(t) ∈ Rn and x(k) denotes the kth time deriva-
tive of x: x(k)(t) = dkx(t)

dtk
. In this case, ξ(t) =

[x, ẋ, . . . , x(l−1)]> ∈ Rnl, with nl = N . This system can
be equivalently stated on block-companion form as

ξ̇(t) =


0 In 0 . . .
...

. . . . . . 0
0 . . . 0 In
−A0 −A1 . . . −Al−1


︸ ︷︷ ︸

A

ξ(t) +


0
...
0
B


︸ ︷︷ ︸
B

u(t)

y(t) = Cξ(t).

(3)

A. Signal and system norms

Norms are central to this work. Here we will consider the
standard vector p-norms:

‖x‖p =


(∑N

k=1 |xk|p
) 1
p

if 1 ≤ p <∞
maxk |xk| if p =∞,

where x ∈ CN . For matrices we consider the corresponding
induced norms, i.e.

‖A‖ = sup
‖x‖=1

‖Ax‖,

where A ∈ CM×N .

In general, our results can be interpreted in any of these
norms and we will often omit the subscript to indicate that
the results are valid for all of them. What we need for our
theorems is, more specifically, that the matrix norms are
submultiplicative, which means that the following inequality
is valid for any two compatible matrices A1, A2

‖A1A2‖ ≤ ‖A1‖‖A2‖.

It is well known that this is true for all the p-norms.

B. Input-output scenarios

We will present bounds in terms of the scaled exponential
matrix CeAtB. Its norm can be seen as bounds on the tran-
sient response of the system (1) in the following scenarios:

1) Impulse response: Consider the input signal {u(t) =
δ(t)u0} with u0 ∈ RP and let ||u0|| = 1 in some norm. The
solution of (1) is given by

y(t) = CetABu0 (4)

and the worst possible transient of y(t) is given by

sup
t
‖y(t)‖ = sup

t
sup
‖u0‖=1

‖CetABu0‖ = sup
t
‖CetAB‖.

2) Response to an initial condition: An initial condition
response is given by

y(t) = CetAξ(0).

To study the worst possible initial condition with respect to
resulting deviations in the output y(t) we may consider

sup
t
‖y(t)‖ = sup

t
sup
‖ξ0‖=1

‖CetAξ0‖ = sup
t
‖CetA‖.

The corresponding analysis for the worst-case structured
initial condition is done by multiplying ξ0 by B. In this case,

sup
t
‖y(t)‖ = sup

t
sup
‖ξ0‖=1

‖CetABξ0‖ = sup
t
‖CetAB‖.

For example, B = (I, 0, . . . , 0)T in (3) corresponds to all
initial derivatives being zero.

C. Complex analysis

The basis for our upcoming theorems is three Laplace
transform results, which were also used to derive key results
in [15]. For completeness they are also presented.

Lemma 1 ( [15, Theorem 15.1] ): Let A be a matrix.
There exist ω ∈ R and M ≥ 1 such that

‖etA‖ ≤Meωt ∀t ≥ 0. (5)

Any s ∈ C with Res > ω is in the resolvent set of A, with

(sI −A)−1 =

∫ ∞
0

e−stetAdt. (6)

If A is a matrix or bounded operator, then

etA =
1

2πi

∫
Γ

est(sI −A)−1ds, (7)

where Γ is any closed and positively oriented contour that
encloses σ(A) once in its interior.



D. Pseudospectra
Pseudospectra have proven themselves to be a useful tool

for analysing the transient behavior and robustness of differ-
ential equations, see e.g. [19]. There are several equivalent
definitions of the pseudospectra of a matrix A ∈ CN×N .
Two equivalent and well known are:

Definition 1 (ε-pseudospectra):

σε(A) = {s ∈ C | ‖(sI −A)−1‖ > ε−1} (8)
and

Definition 2 (ε-pseudospectra):

σε(A) = {s ∈ C | s ∈ σ(A+ E) . . .

. . . for some E ∈ CN×N with ‖E‖ < ε}, (9)

where σ(A) denotes the (usual) spectrum of a matrix A. We
will also make use of the ε-pseudospectral abscissa, defined
as αε = sups∈σε Res.

From the two definitions of σε we can get an idea of what
they are used for. The first relates to the size of the resolvent
and enables complex analysis in line with Lemma 1. The lat-
ter relates to the robustness of the matrix under perturbations.
By considering level curves of pseudospectra for various ε-
levels it is possible to get an understanding of the solutions
of the linear differential equation ẋ(t) = Ax(t) and of how
sensitive the system is to perturbations.

When one is concerned with the transient behaviour of an
input-output system as defined in (1) it will be proven useful
to generalize Definition 1 in the following way:

Definition 3 (Input-output ε-pseudospectra):

σε(A,B, C) = {s ∈ C | ‖C(sI −A)−1B‖ > ε−1}.) (10)

The corresponding input-output pseudospectral abscissa we
define as

αε(A,B, C) = sup
s∈σε(A,B,C)

Re(s).

We also define the input-output spectrum σ(A,B, C) as the
set of poles of the transfer matrix C(sI −A)−1B.

E. Kreiss theorem
The transient behavior of a matrix exponential for a stable

matrix A ∈ RN×N can be bounded through the so called
Kreiss bounds [15, Thrm. 18.5]:

K(A) ≤ sup
t≥0
‖etA‖ ≤ eNK(A). (11)

Here the Kreiss constant is defined as

K(A) = sup
Res>0

Res‖(sI −A)−1‖. (12)

Comparing (12) to Definition 1, the relation between the
Kreiss bound and pseudospectra becomes evident. In fact, it
holds that K(A) = supε>0 αε/ε. In a controls context, it is
natural to not only consider the matrix exponential, but rather
an input-output setting. We therefore define the input-output
Kreiss constant

K(A,B, C) = sup
Res>0

Res‖C(sI−A)−1B‖ = sup
ε>0

αε(A,B, C)
ε

.

(13)

III. INPUT-OUTPUT TRANSIENT BOUNDS

We now make use of the theory in the previous section to
derive bounds on the transient performance of the system (1),
under the input-output scenarios introduced earlier. We will
give both lower and upper bounds. As a starting point,
consider the following proposition, which is a simple but
important extension to Lemma 1:

Proposition 2: Let A, B and C be matrices and let ‖ · ‖
denote a submultiplicative norm. There exist w ∈ R and
M ≥ ‖CB‖ such that

‖CetAB‖ ≤Meωt ∀t ≥ 0. (14)

Any s ∈ C with Res > ω is in the resolvent set of A, with

C(sI −A)−1B =

∫ ∞
0

e−stCetABdt, (15)

CetAB =
1

2πi

∫
Γ

estC(sI −A)−1Bds, (16)

and where Γ is any closed and positively oriented contour
that encloses σ(A,B, C) once in its interior.

Proof: First, (14) follows from the norm’s submulti-
plicativity and (5) as

‖CetAB‖ ≤ ‖C‖‖B‖‖etA‖ ≤ ‖C‖‖B‖M̂ewt,

with M = ‖C‖‖B‖M̂ . Letting t = 0 yields ‖CB‖ ≤M .
Next, (15) follows from linearity of the integral, i.e., the

fact that for any compatible matrices B, C, and f(x) we
have B

∫
(f(x)dx)C =

∫
Bf(x)Cdx.

Last, consider (16). Through linearity and (7), we get

CetAB =
1

2πi

∫
Γ′
estC(sI −A)−1Bds,

where Γ′ encircles σ(A). If σ(A,B, C) = σ(A) we are done.
If not, suppose that there are np distinct poles sp ∈ σ(A)
such that sp /∈ σ(A,B, C). Let Γ′ be the union of Γ and np
disjoint circles with radius ε with the poles sp at the center.
Let ε be sufficiently small such that the ε-circles are disjoint
from σ(A,B, C). Now, since the transfer matrix C(sI −
A)−1B does not contain any poles in the interior of the ε-
discs, each of the transfer functions is holomorphic in each
disc enclosed by the ε-circles. By the maximum modulus
principle they cannot have any strict local maximum in the
interior of each ε-disc. This implies that there is an Mε ≥ 0
such that each transfer function |(C(sI − A)−1B)i,j | ≤
Mε. In turn, this implies that ‖est(C(sI − A)−1B)‖∞ ≤
eRe(sp+ε)tMεP on any circle γ, where P is the number
of columns of B. The curve integral is thus bounded by∫
γ
‖C(sI − A)−1B‖∞ds ≤ PeRe(sp+ε)tMεε2π, which then

converges to 0 as ε→ 0. This is true for all np circles and so
we can ignore the part encircling the non-observable poles.
By equivalence of norms, this is true for any p-norm.

We will now make use of Proposition 2 to state upper and
lower bounds on the quantity supt≥0 ‖CetAB‖.



A. Lower bound
We begin by stating a lower bound analogous to the lower

bound in the Kreiss theorem (11). Despite its relevance
to control systems, this extension of the Kreiss theorem
has, to our knowledge, not been observed in the literature
apart from [20] and [21]. The short proof we present here,
however, is new.

Theorem 3 (Lower bound):

sup
t≥0
‖CetAB‖ ≥ sup

Res>0
Res‖C(sI −A)−1B‖ (17)

Proof: Let M = supt≥0 ‖CetAB‖ and Res > 0.
From (15) we have

‖C(sI −A)−1B‖ = ‖
∫ ∞

0

e−stCetABdt‖

=⇒ ‖C(sI −A)−1B‖ ≤M
∫ ∞

0

e−tResdt =
M

Res
,

multiplying both sides by Res proves the inequality.
The theorem reveals that the input-output Kreiss con-

stant K(A,B, C) defined in (13) can lower bound the tran-
sient of the system (1) under the input scenarios in Sec. II-B.

B. Upper bounds
Now we present three ways to bound the transient from

above, again, using Proposition 2 as a basis for the proofs.
Theorem 4 (First upper bound): If A, B, C are matrices

and Lε is the arc length of the boundary of σε(A,B, C) or
of its convex hull for some ε > 0, then

‖CetAB‖ ≤ Lεe
tαε(A,B,C)

2πε
, (18)

where αε(A,B, C) = sup{Res | ‖C(s−A)−1B‖ ≤ ε−1}.
Proof: For any closed contour Γ enclosing σ(A,B, C)

we have (16). Taking the norm on both sides gives

‖CetAB‖ =

∥∥∥∥ 1

2πi

∫
Γ

estC(sI −A)−1Bds

∥∥∥∥
≤ 1

2π

∫
Γ

‖estC(sI −A)−1B‖ds ≤ Lεe
tαε(A,B,C)

2πε
.

The second inequality follows since ‖C(sI−A)−1B‖ ≤ ε−1

along Γ. The convex hull can be used to reduce the length
Lε of Γ. This is possible as ‖C(sI −A)−1B‖ ≤ ε−1 on the
boundary of the convex hull.

Theorem 4 is a fairly straightforward extension of [15,
Theorem 15.2]. However, we next present a novel alternative
characterization which will prove useful, in particular for
classes of higher-order matrix differential equations.

Theorem 5 (Second upper bound): Let the system (1)
with (A,B, C) be input-output stable and let R = a‖A‖
for some a > 1. Then

‖CetAB‖ ≤ 1

2π

∫ R

−R
‖C(iω −A)−1B‖dω +

‖C‖‖B‖
2− 2a−1

(19)

Proof: By definition of input-output stability all poles
of the transfer matrix C(sI−A)−1B lie in the left half plane.
Furthermore, the spectrum σ(A) is contained in the disc
|s| ≤ ‖A‖ since for any eigenvector x of A with ‖x‖ = 1 we

have ‖A‖ ≥ ‖Ax‖ = |λ|. Now take Γ to be the semicircle
with radius R > ‖A‖ that goes up the imaginary axis and
then extends into the left half plane. Then this Γ encloses
the input-output spectrum σ(A,B, C) and (16) yields

‖CetAB‖ ≤ 1

2π

∫
Γ

etRe(s)‖C(s−A)−1B‖ds

≤ 1

2π

∫ R

−R
‖C(iω −A)−1B‖dω

+
1

2π

∫ 3π/2

π/2

‖C(Reiθ −A)−1B‖Rdθ.

If |s| = ‖A‖a and a > 1, then, the integral in the second
term can be bounded using the following series expansion
of the inverse:

‖(sI −A)−1‖ =

∥∥∥∥∥1

s

∞∑
k=0

(
A
s

)k∥∥∥∥∥ ≤ 1

‖A‖
1

a− 1

This, together with submultiplicativity yield ‖C(Reiθ −
A)−1B‖R ≤ ‖C‖B‖‖A‖a 1

‖A‖
1

a−1 which can be used to

upper bound the second integral to ‖C‖‖B‖2−2a−1 .
Now we will look into another bound, similar in its nature.
Theorem 6 (Third Upper bound): Let the system (1) with

(A,B, C) be input-output stable. If ‖C(sI − A)−1B‖ ≤
M |s|−β for all |s| ≥ K for some β > 1, M > 0, and
K > 0. Then

‖CetAB‖ ≤ 1

2π

∫ ∞
−∞
‖C(iω −A)−1B‖dω <∞. (20)

Proof: Taking the norm of (16), we get

‖CetAB‖ ≤ 1

2π

∫
Γ

‖estC(sI −A)−1B‖ds.

Now, use the same semicircle Γ as in the proof of Theorem 5
with radius R > ‖A‖. This Γ encloses the input-output
spectra σ(A,B, C). Furthermore if R > K we have

‖CetAB‖ ≤

1

2π
lim
R→∞

(∫ R

−R
‖eiωtC(iω −A)−1B‖dω + πRMR−β

)

=
1

2π

∫ ∞
−∞
‖C(iω −A)−1B‖dω,

where the last equality follows from the condition β > 1.
The condition on β in Theorem 6 can be related to

the relative degree of the system. For instance, if C(sI −
A)−1B = (s2I + sA1 + A0)−1 and is input-output stable,
then β = 2 and it is possible to apply the theorem.

The usefulness of the three upper bounds boils down to the
fact that the spectrum is usually difficult to characterize. For
the first bound (18), a good description of the pseudospectra
is needed, while in the second and third bounds (19)–(20)
good knowledge of the resolvent along the imaginary axis is
needed. We will clarify through two simple examples.

Example 1: Consider the dynamical system

ξ̇ =

[
0 1
−1 −2

]
ξ +

[
0
1

]
u

y =
[
1 0

]
ξ.

(21)



Suppose we are interested in the impulse response of the
system. Then we have

C(sI −A)−1B =
1

(s+ 1)2
.

In this case we can see that the ε-level curves of ‖C(sI −
A)−1B‖ = 1/ε are given by the circles |s + 1| =

√
ε.

From (18) we see that the upper bound for each ε is

‖CetAB‖ ≤ 2π
√
εet(−1+

√
ε)

2πε
=
et(−1+

√
ε)

√
ε

.

The lowest upper bound is achieved for ε = 1 and is simply
‖CetAB‖ ≤ 1.

The third upper bound (Theorem 6) requires input-output
stability, which is clearly satisfied. The relative degree is 2
which implies β = 2 > 1. To calculate the bound (20) we
need to calculate the integral along the imaginary axis. In
this case

‖CetAB‖ ≤ 1

2π

∫ ∞
−∞
‖C(ωiI −A)−1B‖dω

=
1

π

∫ ∞
0

1

ω2 + 1
dω =

1

2

A lower bound of this system can be calculated by only
considering the real axis (and in this case this is also
optimal). This leads to optimizing

sup
t≥0
‖CetAB‖ ≥ sup

x>0

∥∥∥∥ x

(x+ 1)2

∥∥∥∥ =
1

4
.

Since this system is very simple it is also possible to calculate
the actual maximum which is supt≥0 ‖CetAB‖ = 1/e.

As demonstrated above, Theorem 6 is useful if the relative
degree of the system transfer function is greater than 1. Now
we show a case where where we cannot use this theorem.

Example 2: Consider the same system (21) as before, but
now the response to a non-zero initial value ξ(0) = [x0, 0]>.
This can be represented by B = [1, 0]T . Then we have

C(sI −A)−1B =
s+ 2

(s+ 1)2
.

To calculate our first upper bound in (18) we need to encircle
the spectrum. The shape here is non-trivial but at least we
know that for any circle centered around −1 with radius
smaller than 1 we have∣∣∣∣ s+ 2

(s+ 1)2

∣∣∣∣ ≤ ∣∣∣∣ 2

(s+ 1)2

∣∣∣∣ .
The previous calculations give us the upper bound
‖CetAB‖ ≤ 2. In this case we cannot use Theorem 6 since
the relative degree is 1 and therefore β ≤ 1. However, we
can use the very similar Theorem 5 to give an upper bound.
‖A‖∞ = 3 and so for any R > 3 we can use the theorem. It
remains to calculate the curve integral along the imaginary
axis. Doing this with numerical integration for R = 9 yields
the upper bound ‖CetAB‖ / 2.025 (Through optimization
this bound can be lowered to ‖CetAB‖ / 2.023)

Through these examples we have shown that the best
upper bound depends on the situation. The upside of using

Theorems 5 and 6 is that they are quite easy to compute
numerically. Theorems 3 and 4 relate to the level curves of
the input-output pseudospectra and can be qualitatively seen
through inspection of these curves, as we will demonstrate
in the next section.

IV. APPLICATION TO NETWORKS: VEHICLE STRINGS

To illustrate our bounds, we consider the problem of
controlling a string of vehicles – the platooning problem.
While performance bounds on platoons and their relation
to the network or interaction structure has received ample
attention, as we stated in the introduction, the problem calls
for bounds relating to the quantity supt ‖y(t)‖∞, where
y captures a displacement error. Bounds of this type are
important, especially in platooning, since they directly re-
late to the allowable spacing between consecutive vehicles.
However, they tend to be difficult to derive analytically. Here
we illustrate how our pseudospectra-inspired approach can be
used to evaluate string stability properties for various platoon
structures in terms of this quantity.

For this purpose, consider a platoon of size n where
each unit is modelled as a double integrator in one spatial
dimension, i.e.

ẍk = uk

where xk is the position of the kth vehicle with respect to a
fix reference and uk is the input force at vehicle k.

To control the platoon we consider a control law that
depends on relative distances to neighboring vehicles and
relative to a speed reference. For k ∈ {2, . . . , n−1} we get:

uk = (1+βd)(ẋk−1−ẋk)−(1−βd)(ẋk−ẋk+1)+α(vref−ẋk)

+(1+βp)(xk−1−xk−d)−(1− βp)(xk−xk+1−d), (22)

where βd and βp are parameters capturing the degree of
symmetry in the control law (i.e., look-ahead vs. look-behind
control), d a desired intervehicle spacing, vref is a velocity
reference, and α ≥ 0 is a weight. For the first and last
vehicles, we simply define ẍ1 = −(1−βd)(ẋ1−ẋ2)+α(vref−
ẋ1)− (1− βp)(x1 − x2 − d), ẍn = (1 + βd)(ẋn−1 − ẋn) +
α(vref− ẋn) + (1 +βp)(xn−1−xn− d). By considering the
translated dynamics x̂k = xk+kd we get the same dynamics
as if we assume d = 0, so for simplicity we set d = 0 and
consider the dynamics around this equilibrium.

The closed-loop system can be written:[
ẋ
ẍ

]
=

[
0 I
−Lp −Ld − αI

] [
x
ẋ

]
+

[
0
α1

]
vref = Aξ + Bvref.

y =
[
C 0

] [x
ẋ

]
= Cξ, (23)

where Lp, Ld ∈ Rn×n are graph Laplacians capturing the
vehicle interactions (see further down for definitions). This
and similar systems are well studied, see e.g. [10].

A way to ensure the platoon is well-behaved (e.g. string
stable) is to make α large in comparison to Ld and Lp.
This, however, essentially transforms the problem to an open-
loop system, which is obviously problematic in a real-world
setting with disturbances and measurement noise or bias.



This motivates the use of a fairly small α, allowing the inter-
vehicle adjustments to dominate. In this example, we will
use α = 0.1.

We use the framework from Section III to analyze this
system for two cases, one where both Laplacians are asym-
metric (a directed string) and one where both are symmetric
(bidirectional string). For each system we consider the output

y =

 x1 − x2

xbN/2c − xbN/2c+1

xn−1 − xn

 ,
which samples three inter-vehicle distances: at the start,
middle, and end of the platoon. We will consider the initial
condition response, i.e. B = I2n. We expect a string unstable
system to perform poorly for at least one of these outputs.

One merit of our proposed method is the possibility to
analyze very large systems. In both cases considered here, we
therefore model a platoon of n = 400 vehicles. We remark
that it would of course be possible to simulate the systems
for many different inputs and through simulation bound the
possible outputs. But as n grows, this quickly becomes very
computationally heavy. Using our theorems generates bounds
on the worst case input without any additional effort.

A. Directed vehicle string
Consider the control law (22) with βp = βd = 1, which

renders it fully asymmetric. In this case, we obtain in (23)
Lp = Ld = Lasym, with

Lasym =


0
−2 2

. . . . . .
−2 2

 . (24)

In Fig. 1 we show the shape of the input-output pseudospec-
tra corresponding to an initial condition response, that is, the
level curves of the quantity ‖C(sI−A)−1I2n‖∞ of (23) with
n = 400 vehicles. We can see that the level curves extend
far into the right half plane with magnitudes of order 1030

where Re(s) is of order 10−1. Through the lower bound in
Theorem 3 we can immediately see that there will be a large
transient of ‖y(t)‖∞ in at least the orders of 1029. Through a
line search, starting at the maximum along the imaginary axis
and going into the right half plane we learn that the lower
bound in amplification from the worst-case initial conditions
to the output (see Section II-B) is at least

sup
t≥0
‖y(t)‖∞ ' 4.3 · 1031,

for some ξ0 such that ‖ξ0‖∞ ≤ 1.
Fig. 2 displays a Bode plot of the system for various

platoon sizes n. That is, we plot the amplitude ‖C(sI −
A)−1I2n‖∞ for s = iω, ω ∈ (0,∞). Here, we can see
the extreme amplification of the frequency response close to
the frequency ω = 1. According to our Theorem 5, we can
use this frequency response to calculate an upper bound on
the transient through integration. By numerical integration
we can estimate the upper bound to be

sup
t≥0
|y(t)‖∞ / 1.4 · 1033.
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Fig. 1: The input-output pseudospectra of (23) for a directed vehicle
string with n = 400 vehicles. The black dots are the eigenvalues
of A. The large values of the input-output pseudospectra even for
small s in the right half plane indicate an unfavorable lower bound
in Theorem 3.
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Fig. 2: Bode plot displaying the worst-case frequency response
of (23) for a directed vehicle string. The amplitude is measured
in ‖ · ‖∞ and the response is shown for various platoon lengths n.

From these two bounds we can already conclude that this
topology is not suitable for a string of vehicles.

Remark 1: The bounds were possible to compute, since
the inversion C(sI − A)−1 can be reduced to the sparse
problem C(s2I+sLd+Lp)

−1, where C ∈ R3,n. As Ld and
Lp are tridiagonal this can be computed in O(n) operations.

B. Bidirectional (symmetric) vehicle string

Now, let βd = βp = 0 in (22), leading to the symmetric
Laplacians Lp = Ld = Lsym, with

Lsym =


1 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 1

 . (25)

This corresponds to a bidirectional string of vehicles. In
Fig. 3 we show the shape of the input-output pseudospectra
corresponding to an initial condition response of (23) with
n = 400 vehicles. We can see that the input-output spectra is
quite well-behaved and do not extend far into the right half
plane, indicating transients will be modest. By Theorem 3
and a line search along the real axis, we learn that the lower
bound in amplification from initial conditions to output is

sup
t≥0
‖y(t)‖∞ ' 2.2,
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Fig. 3: The input-output pseudospectra of (23) for a bidirectional
vehicle string with n = 400 vehicles. The black dots are the
eigenvalues of A. The level curve corresponding to ‖C(sI −
A)−1‖ = 101.5 can be roughly inscribed in a 1 radius circle, which
hints through Theorem 4 that the transients of ‖y(t)‖∞ will be
small.
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Fig. 4: Bode plot displaying the worst-case frequency response
of (23) for a bidirectional vehicle string. The amplitude is measured
in ‖ · ‖∞ and the response is shown for various platoon lengths n.

for some ξ0 such that ‖ξ0‖∞ ≤ 1.
In Fig. 4 we can see the frequency response calculated

for various n. Interestingly, the common slope among the
curves seems to only behave like a square root which would
mean that there is an upper bound independent of the platoon
length which bounds the transients due to arbitrary non-zero
initial conditions. The numerical upper bound when n = 400
was calculated to

sup
t≥0
|CetAξ0‖∞ / 9.3.

This can be compared with the upper bound calculated for
n = 106 which evaluated at 9.4.

V. CONCLUSIONS

In this work we have proposed a pseudospectra-based
approach to analyze transient performance of input-output
systems, and generalized existing bounds for this pur-
pose. Through our bounds it is possible to quantify
supt≥0 ‖CetAB‖ in terms of lower and upper bounds. These
can be seen as bounding the performance from a worst-case
input disturbance to an output y(t) in any p-norm – otherwise
often intractable to study. Regarding the problem of control-
ling vehicle strings in Sec. IV, we illustrated one application
where we believe our bounds can be useful, opening the door

to future analysis. For instance, deriving analytical bounds
for special network structures. The theorems can also be
used to numerically calculate bounds for network structures
where the worst inputs are non-obvious, for instance when
the agents are non-homogeneous or interaction matrices non-
normal.
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