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Systèmes, 91190, Gif-sur-Yvette, France. Emails: lucas.brivadis@centralesupelec.fr,

antoine.chaillet@centralesupelec.fr, jean.auriol@centralesupelec.fr

October 10, 2022

Abstract

An adaptive observer is designed for online estimation of Hilbert-Schmidt opera-
tors from online measurement of part of the state for some class of nonlinear infinite-
dimensional dynamical systems. Convergence is ensured under detectability and persis-
tency of excitation assumptions. The class of systems considered is motivated by an
application to kernel reconstruction of neural fields, commonly used to model spatiotem-
poral activity of neuronal populations. Numerical simulations confirm the relevance of
the approach.

1 Introduction

The problem of online estimation of unknown parameters in dynamical systems from measured
state variables is a major issue in many control systems. It can be addressed by means of
adaptive observers, that are observers estimating the unmeasured part of the state and the
unknown parameters simultaneously. The theory of adaptive observer design, well-known for
linear finite-dimensional systems (see, e.g., [20]), is still an active area of research when it
comes to nonlinear [3,4,19] and/or infinite-dimensional [10,12,13] systems. In this paper, we
design an adaptive observer for a class of nonlinear infinite-dimensional systems that allows
the reconstruction of unknown linear operators appearing in the dynamics. These operators
are estimated in the Hilbert-Schmidt topology. Therefore, not only the state of the system is
infinite-dimensional, but also the “parameters” (now, operators) to be estimated.

The specific class of systems we consider is motivated by an application to kernel recon-
struction in neural fields. The offline estimation of these kernels is now a classical issue in
inverse problems for neuroscience (see [1, 18] and references therein), that can be addressed
for instance using a Tikhonov regularization. We instead rely on adaptive observer strategies
to address the online estimation problem. The crucial additional constraint is that the recon-
struction can only be based on past values of the measurements and estimates. The recent
work [7] considers a similar problem but uses finite-dimensional conductance-based models
(which differ from the infinite-dimensional Wilson- Cowan type equation considered here),
and estimate finite-dimensional parameters (while we reconstruct linear operators on infinite-
dimensional spaces).
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Notation Given a Hilbert space X, we denote by 〈·, ·〉X and ‖ · ‖X its corresponding scalar
product and norm. The identity operator over X is denoted by IdX . If Y is a Hilbert space,
we denote by L(X,Y ) the space of bounded linear operators from X to Y endowed with the
operator norm ‖ · ‖L(X,Y ), and we set L(X) = L(X,X). For all B ∈ L(X,Y ), we denote by
B∗ ∈ L(Y,X) its adjoint. If B ∈ L(X), we denote by Tr(B) the trace of B if it exists. The
operator P ∈ L(X) is said to be self-adjoint positive-definite if P = P ∗ and 〈Px, x〉X > 0 for
all x ∈ X \ {0}. For any open interval I ⊂ R, any m ∈ N and any p ∈ [1,+∞], Lp(I,X) and
Wm,p(I,X) stand for the usual Lebesgue and Sobolev spaces, endowed with their canonical
norms.

2 Problem statement

2.1 Functional setting

Let (X, ‖·‖X) and (Y, ‖·‖Y ) be two separable Hilbert spaces. Consider an infinite-dimensional
dynamical system of the following form:{

ẋ = A1(x) + ψ(y) + u1

ẏ = A2(y) +B1φ1(x) +B2φ2(y) + u2
(1)

where (x, y) is the state of the system lying in X × Y , u1 and u2 are inputs respectively
lying in X and Y , and A1 : D(A1) → X and A2 : D(A2) → Y are singled-valued m-
dissipative operators (see [17, Chapter 2] for a definition), respectively defined on dense
subsets D(A1) ⊂ X and D(A2) ⊂ Y , such that A1(0) = 0 and A2(0) = 0. The linear
operators B1 ∈ L(X,Y ) and B2 ∈ L(Y ) are bounded, and ψ : Y → X, φ1 : X → X
and φ2 : Y → Y are Lipschitz continuous on any bounded set. According to [21, Chapter
IV, Proposition 3.1], A1 and A2 are generators of nonlinear strongly continuous contraction
semigroups over X and Y respectively.

It follows from [21, Chapter IV, Theorems 4.1 and 4.1A] that if u1 and u2 are absolutely
continuous over R+, then for all (x0, y0) ∈ D(A1) × D(A2), there exists tmax ∈ (0,+∞]
such that (1) admits a unique strong solution (x, y) : [0, tmax) → X × Y , i.e., such that
(x(0), y(0)) = (x0, y0), (x, y) is absolutely continuous, satisfies (1) almost everywhere and lies
in D(A1)×D(A2). Moreover, if (x, y) is bounded in X × Y over [0, tmax), then tmax = +∞.

2.2 Problem formulation

In this paper, we consider the following online estimation problem.

Problem 2.1 From the knowledge of A1, A2, ψ, φ1, φ2 and the online measurement of u1,
u2 and y, estimate online x and the operators B1 and B2.

In addition to the hypotheses made to ensure the well-posedness of the system, we consider
the following two main assumptions.

Assumption 2.2 (Strong dissipativity) The nonlinear operator A1 is strongly dissipative,
that is, there exists a positive constant α such that for all (x1, x2) ∈ D(A1)2,

〈A1(x1)−A1(x2), x1 − x2〉X 6 −α‖x1 − x2‖2X . (2)
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Since A1 is supposed to be m-dissipative, we already have that 〈A1(x1)−A1(x2), x1−x2〉X 6
0, so that Assumption 2.2 is indeed a stronger dissipativity assumption. Assumption 2.2
implies that any two solutions of ẋ = A1(x) are exponentially converging to one another
in X at exponential rate α. Since y is supposed to be known online while x is unknown,
Assumption 2.2 can be interpreted as a detectability hypothesis: the unknown part of the
state has a contracting dynamics. In the estimation strategy, this allows to estimate x online
simply by simulating a particular trajectory of the x-subsystem (as all other solutions will
eventually converge to it). Note that, in some applications, the unmeasured state x can also
be assumed of null dimension (meaning full state measurement) , in which case the system
(1) reduces to

ẏ = A2(y) +B2φ2(y) + u2.

All the results of the paper are still valid in that easier case.

Definition 2.3 Let (V1, ‖ · ‖V1) and (V2, ‖ · ‖V2) be two separable Hilbert spaces. The linear
bounded operator B ∈ L(V1, V2) is said to be Hilbert-Schmidt if for any Hilbert basis (ek)k∈N
of (V1, ‖ · ‖V1),

‖B‖2L2((V1,‖·‖V1
),(V2,‖·‖V2

)) :=
∑
k∈N
‖Bek‖2V2

< +∞. (3)

We denote by L2((V1, ‖·‖V1), (V2, ‖·‖V2)) the Hilbert space of Hilbert-Schmidt operators from
V1 to V2, endowed with the norm defined in (3). When V1 and V2 are endowed with their
norms ‖ · ‖V1 and ‖ · ‖V2 respectively, we simply write L2(V1, V2). We set L2(V1) = L2(V1, V1).
By definition of the trace operator Tr and of the adjoint B∗ of B, we have ‖B‖2L2(V1,V2) =

Tr(B∗B) = ‖B∗‖2L2(V2,V1). Note that the topology induced by the Hilbert-Schmidt norm is

finer than the one induced by the operator norm since ‖ · ‖L(V1,V2) 6 ‖ · ‖L2(V1,V2).
If P ∈ L(V1) is a self-adjoint positive-definite operator, then 〈P ·, P ·〉V1 defines a new scalar

product on V1, whose associated norm ‖P · ‖V1 is weaker than or equivalent to ‖ · ‖V1 . Then,
for all B ∈ L2(V1, V2), ‖BP‖L2(V1,V2) = ‖PB∗‖L2(V1,V2) = ‖B∗‖L2((V1,‖·‖V1

),(V2,‖P ·‖V2
)). Thus

‖ · P‖L2(V1,V2) defines a norm on L2(V1, V2) that is weaker than or equivalent to ‖ · ‖L2(V1,V2).

Assumption 2.4 (Hilbert-Schmidt operators) The linear bounded operators B1 and B2

are in L2(X,Y ) and L2(Y ), respectively.

Then, Problem 2.1 consists in finding x̂(t), B̂1(t) and B̂2(t) for all t > 0 such that ‖x̂(t)−
x(t)‖X → 0, ‖B̂1(t) − B1‖L2(X,Y ) → 0 and ‖B̂2(t) − B2‖L2(Y ) → 0 as t → +∞ (when X
and Y are endowed with some norms). Such estimators must only depend at time t on the
knowledge of A1, A2, ψ, φ1, φ2, u1(s), u2(s) and y(s) for s ∈ [0, t].

3 Kernel reconstruction of neural fields

3.1 Neural fields

Problem 2.1 is motivated by an application to kernel reconstruction of neural fields. Neural
fields are nonlinear integro-differential equations modeling the spatiotemporal evolution of the
activity of neuronal populations. They are based on the seminal works [2,24] and surveys on
their extensive use in mathematical neuroscience can be found in [5,9]. Given a compact set
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Ω ⊂ Rq (where, typically, q ∈ {1, 2, 3}) representing the physical support of the population,
the evolution of neuronal activity z(t, r) ∈ Rn at time t ∈ R+ and position r ∈ Ω is modeled
as

τ(r)
∂z

∂t
(t, r) = −z(t, r) + u(t, r) +

∫
r′∈Ω

w(r, r′)S(z(t, r′))dr′, (4)

where n ∈ N represents the number of considered neuronal population types, τ(r) is a positive
diagonal matrix of size n×n continuous in r representing the time decay constant of neuronal
activity at position r, S : Rn → Rn is a nonlinear activation function (typically, a sigmoid),
w(r, r′) ∈ Rn×n defines a kernel describing the synaptic strength between location r and r′

and u(t, r) ∈ Rn is an input. We consider the problem of online reconstruction of the kernel
w from the measurement of the neuronal activity z.

3.2 Application

Now we show how (4) fits into (1) and discuss the relevance of Assumptions 2.2 and 2.4 in
this context. In order to ensure well-posedness, we make the following usual assumptions on
S and w:

• S is bounded, differentiable and has bounded derivative;

• w is square-integrable over Ω2.

These assumptions are standard in neural fields analysis. In particular, the boundedness
of S reflects the biological limitations of the maximal activity that can be reached by the
population.

We assume that the neuronal population can be decomposed into z(t, r) = (z1(t, r), z2(t, r)) ∈
Rn−m×Rm where z1 corresponds to the unmeasured part of the state and z2 to the measured
part. Such a decomposition is natural when the two considered populations are physically
separated, as it happens in the brain structures involved in Parkinson’s disease [8]. It can
also be relevant for imagery techniques that discriminate among neuron types within a given
population. Accordingly, we define τi, Si wij and ui of suitable dimensions for each population
i, j ∈ {1, 2} so that

τi(r)
∂zi
∂t

(t, r) = −zi(t, r) + ui(t, r) +

2∑
j=1

∫
r′∈Ω

wij(r, r
′)Sj(zj(t, r

′))dr′. (5)

Denote by m the dimension of the measured activity z2(t, r). In order to fit (5) in the form of
(1), set X = L2(Ω;Rn−m), Y = L2(Ω;Rm), x = z1, y = z2, Wij(zj) =

∫
r′∈Ωwij(·, r

′)zj(r
′)dr′,

A1 = τ−1
1 (− IdX +W11S1), D(A1) = X, A2 = −τ−1

2 IdY , D(A2) = Y , ψ = τ−1
1 W12S2, φj = Sj

and Bj = τ−1
2 W2j .

Since w is square-integrable, B1 andB2 are Hilbert-Schmidt integral operators with kernels
τ−1

2 w21 and τ−1
2 w22, hence Assumption 2.4 is satisfied. In order to satisfy the detectability

Assumption 2.2, we need to assume that z1 has a strongly dissipative internal dynamics,
namely, that A1 is strongly dissipative. Remark that due to the structure of A1, this is the
case if

`1‖W11‖L(X) < 1 (6)
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where `1 is the Lipschitz constant of S1. Indeed, it yields

〈A1(x1)−A1(x2), x1 − x2〉X
= −‖τ−1/2

1 (x1 − x2)‖2X + 〈W11(S1(x1)− S1(x2)), τ−1
1 (x1 − x2)〉X

6 −α‖x1 − x2‖2X

for α =
1−`1‖W11‖L(X)

maxΩ τ1
. We stress that condition (6) is commonly used in the stability analysis

of neural fields [16] and ensures dissipativity even in the presence of axonal propagation
delays [14].

We thus assume that each population is either measured online (taken into account in z2)
or unmeasured but internally strongly dissipative and with known kernels (taken into account
in z1). Problem 2.1 is now equivalent to online reconstruction of w21 and w22 (in L2(Ω2))
from the online measurement of z2 and ui and the knowledge of τi, w1i, Si for all i ∈ {1, 2}.
Note that if the full state z is measured (i.e. m = n), then no dissipative part z1 of the system
is required, hence the full kernel w is to be estimated.

4 Online estimation of Hilbert-Schmidt operators

4.1 Adaptive observer design

In order to solve Problem 2.1, we propose to consider B1 and B2 as additional constant
variables to system (1), so that the resulting state space is the Hilbert space H := X × Y ×
L2(X,Y )× L2(Y ). Set also D := D(A1)×D(A2)× L2(X,Y )× L2(Y ) ⊂ H. Inspired by the
estimator proposed in [3] for finite-dimensional nonlinear systems, we consider the following
observer over H: 

˙̂x = A1(x̂) + ψ(y) + u1

˙̂y = A2(y) + B̂1φ1(x̂) + B̂2φ2(y) + u2 − β(ŷ − y)

˙̂
B1 = −γ1(ŷ − y)φ1(x̂)∗

˙̂
B2 = −γ2(ŷ − y)φ2(y)∗

(7)

where β, γ1, and γ2 are positive constants, called observer gains, that need to be appropriately
tuned to guarantee the convergence of the observer state to the real state. Note that for
any v in Y and any w in X (resp. in Y ), vw∗ lies in L2(X,Y ) (resp. in L2(Y )) and
‖vw∗‖L2(X,Y ) = ‖v‖Y ‖w‖X (resp. ‖vw∗‖L2(Y ) = ‖v‖Y ‖w‖Y ). Reasoning as in Section 2.1,
one can show that the cascade system (1)-(7) is well-posed.

4.2 Main result

Our main result, proved in Section 4.4, relies on the notion of persistence of excitation.

Definition 4.1 (Persistence of excitation) A continuous signal g : R+ → V is persis-
tently exciting over the Hilbert space (V, ‖ · ‖V ) with respect to a self-adjoint positive-definite
operator P ∈ L(V ) if there exists positive constants T and κ such that∫ t+T

t
g(τ)g(τ)∗dτ > κP 2, ∀t > 0. (8)
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Remark 4.2 If V is finite dimensional, then Definition (4.1) coincides with the usual notion
of persistence of excitation since all norms on V are equivalent. However, if V is infinite-
dimensional, then there do not exist any persistently exciting signal with respect to the identity
operator on V . (Actually, it is a characterization of the infinite-dimensionality of V ). Indeed,
if P = IdV , then (8) at t = 0 together with the spectral theorem for compact operators implies

that
∫ T

0 g(τ)g(τ)∗dτ is not a compact operator, which is in contradiction with the fact that

the sequence of finite range operators
∑N

j=0 g( jTN )g( jTN )∗ converges to it in L(V ) as N goes to
infinity. This is the reason for which we introduce this new persistency of excitation condition
which is feasible even if V is infinite-dimensional.

Example 4.3 Let V = l2(N,R) be the space of square summable real sequences. The signal

g : R+ → V defined by g(τ) = ( sin(kτ)
k2 )k∈N is persistently exciting with respect to P ∈ L(V )

defined by P (xk)k∈N = (xk
k2 )k∈N with constant T = 2π and κ = π since

∫ 2π
0 sin2(kτ)dτ = π.

We now provide sufficient conditions for the convergence of the observer (7) to the state
of system (1), thus solving Problem 2.1.

Theorem 4.4 (Observer convergence) Suppose that Assumptions 2.2 and 2.4 are satis-
fied. Assume moreover that the functions φ1 and φ2 are bounded and that φ1 is globally
Lipschitz continuous with constant `1. Pick the observer gains β, γ1, γ2 such that γ1, γ2 > 0
and

4αβ > `21‖B1‖2L(X,Y ). (9)

Then, for any absolutely continuous u1 and u2 and any solution of (1) defined over R+, any
solution of (7) satisfies

lim
t→+∞

‖x̂(t)− x(t)‖X = 0, lim
t→+∞

‖ŷ(t)− y(t)‖Y = 0,

and ‖B̂1 −B1‖L2(X,Y ) and ‖B̂2 −B2‖L2(Y ) remain bounded.
Moreover, if PX ∈ L(X) and PY ∈ L(Y ) are self-adjoint positive-definite operators

such that t 7→ (φ1(x(t)), φ2(y(t))) is persistently exciting over X × Y with respect to P =(
PX 0
0 PY

)
∈ L(X × Y ), and if φ1 and φ2 are differentiable with bounded derivatives, then

lim
t→+∞

‖(B̂1(t)−B1)PX‖L2(X,Y ) = 0,

lim
t→+∞

‖(B̂2(t)−B2)PY ‖L2(Y ) = 0.

It is worth noting that the observer gains γ1 and γ2 play no qualitative role in the observer
convergence. Also, β can always be picked sufficiently large to fulfill (9). The main require-
ment therefore lies in the persistence of excitation requirement, which is a common hypothesis
to ensure convergence of adaptive observers (see for instance [3,15,20] in the finite-dimensional
context and [11, 13] in the infinite-dimensional case). Roughly speaking, it states that pa-
rameters to be estimated are sufficiently “excited” by the system dynamics. However, this
assumption is difficult to check in practice since it depends on the trajectories of the system
itself. In Section 5, we choose in numerical simulations a persistently exciting input (u1, u2)
in order to generate persistence of excitation in the signal (φ1(x), φ2(y)). This strategy seems
to be numerically efficient, but the theoretical analysis of the link between the persistence
of excitation of (u1, u2) and (φ1(x), φ2(y)) remains an open question, not only in the present
work but also for general classes of adaptive observers.
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4.3 Application to neural fields

As developed in Section 3.2, Theorem 4.4 directly applies to the neural fields context. With
the notations of Section 3.2, the adaptive observer takes the form

τ1
˙̂z1 = −ẑ1 +W11S1(ẑ1) +W12S2(z2) + u1

τ2
˙̂z2 = −z2 + Ŵ21S1(ẑ1) + Ŵ22S2(z2) + u2 − τ2β(ẑ2 − z2)

˙̂
W21 = −γ1(ẑ2 − z2)S1(ẑ1)∗

˙̂
W22 = −γ2(ẑ2 − z2)S2(z2)∗.

(10)

Then, we have the following, which immediately follows from Theorem 4.4 for this particular
system.

Corollary 4.5 (Neural fields estimation) Suppose that S1 (resp. S2) is bounded, differ-
entiable, and that its derivative is bounded by some `1 > 0 (resp. `2 > 0), and that w is
square-integrable over Ω2. Assuming that (6) is satisfied, pick the observer gains in such a
way that γ1, γ2 > 0 and

4
1− `1‖W11‖L(X)

maxΩ τ1
β > `21‖τ−1

2 W21‖2L(X,Y ). (11)

Consider any solution of (5) defined over R+ for some absolutely continuous inputs u1 and u2.
Then any solution of (10) satisfies limt→+∞ ‖ẑ1(t)−z1(t)‖X = 0, limt→+∞ ‖ẑ2(t)−z2(t)‖Y =
0, and ‖Ŵ21 −W21‖L2(X,Y ) and ‖Ŵ22 −W22‖L2(X,Y ) remain bounded.

Moreover, then if PX ∈ L(X) and PY ∈ L(Y ) are self-adjoint positive-definite operators
such that t 7→ (S1(z1(t)), S2(z2(t))) is persistently exciting over X × Y with respect to P =(
PX 0
0 PY

)
∈ L(X × Y ), then

lim
t→+∞

‖(Ŵ21(t)−W21)PX‖L2(X,Y ) = 0,

lim
t→+∞

‖(Ŵ22(t)−W22)PY ‖L2(Y ) = 0,

Here again, provided that condition (6) holds, β can always be picked large enough to
fulfill (11).

4.4 Proof of Theorem 4.4

Consider a solution (x, y) of (1) and the corresponding solution (x̂, ŷ, B̂1, B̂2) of (7). The
estimation error (x̃, ỹ, B̃1, B̃2) := (x̂, ŷ, B̂1, B̂2)− (x, y,B1, B2) is ruled by:

˙̃x = A1(x̂)−A1(x)

˙̃y = B̂1φ1(x̂)−B1φ1(x) + B̃2φ2(y)− βỹ
˙̃B1 = −γ1ỹφ1(x̂)∗

˙̃B2 = −γ2ỹφ2(y)∗.

(12)
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4.4.1 Proof that (x̃, ỹ)→ 0

We endow H with the squared norm ‖ · ‖2H = ‖ · ‖2X + ‖ · ‖2Y + 1
γ1
‖ · ‖2L2(X,Y ) + 1

γ2
‖ · ‖2L2(Y,Y ),

which is equivalent to the squared norm induced by the Cartesian product H = X × Y ×
L2(X,Y ) × L2(Y ). Given any initial state, denote by tmax ∈ (0,+∞] the maximal time of
existence of (x̃, ỹ, B̃1, B̃2). Using B̂1φ1(x̂)−B1φ1(x) = B̃1φ1(x̂) +B1(φ1(x̂)−φ1(x)), we have
almost everywhere on [0, tmax)

d

dt
‖(x̃, ỹ, B̃1, B̃2)‖2H = 〈A1(x̂)−A1(x), x̃〉X − β‖ỹ‖2Y + 〈B̃2φ2(y), ỹ〉Y

+ 〈B̃1φ1(x̂), ỹ〉Y + 〈B1(φ1(x̂)− φ1(x)), ỹ〉Y
− 〈ỹφ1(x̂)∗, B̃1〉L2(X,Y ) − 〈ỹφ1(y)∗, B̃2〉L2(X,Y ).

By Assumption 2.2, 〈A1(x̂) − A1(x), x̃〉X 6 −α‖x̃‖2X . By definition of the Hilbert-Schmidt
scalar product,

〈ỹφ1(x̂)∗, B̃1〉L2(X,Y ) = Tr(φ1(x̂)ỹ∗B̃1) = Tr(ỹ∗B̃1φ1(x̂))

= 〈B̃1φ1(x̂), ỹ〉Y

and, similarly, 〈ỹφ2(y)∗, B̃2〉L2(X,Y ) = 〈B̃2φ2(y), ỹ〉Y . Hence d
dt‖(x̃, ỹ, B̃1, B̃2)‖2H 6 −α‖x̃‖2X −

β‖ỹ‖2Y
+ 〈B1(φ1(x̂)− φ1(x)), ỹ〉X . By Cauchy-Schwartz inequality, for all ε > 0,

〈B1(φ1(x̂)− φ1(x)), ỹ〉X 6 `1‖B1‖L(X,Y )

(
ε

2
‖x̃‖2X +

1

2ε
‖ỹ‖2X

)
where `1 is the Lipschitz constant of φ1. Pick ε = α

`1‖B1‖L(X,Y )
+

`1‖B1‖L(X,Y )

4β > 0. Using

condition (9), we get that µ1 := α−`1‖B1‖L(X,Y )ε/2 > 0 and µ2 := β−`1‖B1‖L(X,Y )/2ε > 0.
Then

d

dt
‖(x̃, ỹ, B̃1, B̃2)‖2H 6 −µ1‖x̃‖2X − µ2‖ỹ‖2Y .

Thus (x̃, ỹ, B̃1, B̃2) remains bounded. Hence according to [17, Theorem 4.10], we obtain
tmax = +∞ i.e. the state (x̂, ŷ, B̂1, B̂2) is defined over R+. Moreover, we have d

dt‖x̃‖
2
X 6 0

and

d

dt
‖ỹ‖2Y 6 −β‖ỹ‖2Y + 〈B̃2φ2(y), ỹ〉Y + 〈B̂1φ1(x̂), ỹ〉Y − 〈B1φ1(x), ỹ〉Y

which is bounded since (x̃, ỹ, B̃1, B̃2) is bounded, B1 is constant, and φ1 and φ2 are bounded.
Hence, according to Barbalat’s lemma, (x̃(t), ỹ(t))→ 0 as t→ +∞.

4.4.2 Proof that (B̃1, B̃2)→ 0

Now assume that t 7→ (φ1(x(t)), φ2(y(t))) is persistently exciting over X × Y with respect
to P , and that φ1 and φ2 are differentiable with bounded derivatives. Note that B̂1φ1(x̂) −
B1φ1(x) = B̂1(φ1(x̂)− φ1(x)) + B̃1φ1(x). Hence the error dynamics (12) can be written as

˙̃y(t) = B̃1(t)g1(t) + B̃2(t)g2(t) + f0(t)

˙̃B1(t) = f1(t)

˙̃B2(t) = f2(t),

(13)
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where f0(t) := B̂1(φ1(x̂(t))−φ1(x(t)))−βỹ, f1(t) := −γ1ỹ(t)φ1(x̂(t))∗, f2(t) := −γ2ỹ(t)φ2(y(t))∗,
g1(t) := φ1(x(t)) and g2(t) := φ2(y(t)) for all t > 0. Since (x̃(t), ỹ(t)) → 0 as t → +∞, B̂1

is bounded, φ1 is globally Lipschitz and φ1 and φ2 are bounded, we get that fi(t) tends
toward 0 as t goes to +∞ for all i ∈ {0, 1, 2}. Set g := (g1, g2) : R+ → X × Y and
f1,2, B̃ : R+ → L2(X × Y, Y ), defined by f1,2(t)(ζ, ξ) = f1(t)ζ + f2(t)ξ. Set B̃(t)(ζ, ξ) =
B̃1(t)ζ + B̃2(t)ξ for all (ζ, ξ) ∈ X × Y and all t > 0, so that ˙̃y(t) = B̃(t)g(t) + f0(t). Remark
that ‖B̃(t)P‖2L2(X×Y,Y ) = ‖B̃1(t)PX‖2L2(X,Y ) + ‖B̃2(t)PY ‖2L2(Y ), so that it remains to show

that ‖B̃(t)P‖L2(X×Y,Y ) → 0 as t→ +∞ to conclude.

Applying twice Duhamel’s formula, we have for all t, τ > 0: ỹ(t+τ) = ỹ(t)+ B̃(t)
∫ τ

0 g(t+
s)ds

+
∫ τ

0

∫ s
0 f1,2(t+ σ)g(t+ s)dσds+

∫ τ
0 f0(t+ s)ds. Define O(t, T ) :=

∫ T
0 ‖ỹ(t+ τ)‖2Y dτ for any

T > 0 and t > 0. Since ỹ(t)→ 0, O(t, T )→ 0 as t→ +∞. Moreover,

O(t, T ) =

∫ T

0

∥∥∥ỹ(t) +

∫ τ

0

∫ s

0
f1,2(t+ σ)g(t+ s)dσds

+

∫ τ

0
f0(t+ s)ds

∥∥∥2

Y
dτ +

∫ T

0

∥∥∥B̃(t)

∫ τ

0
g(t+ s)ds

∥∥∥2

Y
dτ

+

∫ T

0

〈
ỹ(t) +

∫ τ

0

∫ s

0
f1,2(t+ σ)g(t+ s)dσds

+

∫ τ

0
f0(t+ s)ds, B̃(t)

∫ τ

0
g(t+ s)ds

〉
Y

dτ.

Since ỹ(t) and fi(t) tends toward 0 as t goes to +∞ for all i ∈ {0, 1, 2} and g and B̃ are
bounded, we get that

lim
t→+∞

∫ T

0

∥∥∥B̃(t)

∫ τ

0
g(t+ s)ds

∥∥∥2

Y
dτ = 0. (14)

For all t > 0, define h(t, τ) = B̃(t)
∫ τ

0 g(t+ s)ds. By (14), ‖h(t, ·)‖L2((0,T );Y ) → 0 as t→ +∞.

Note that ∂h
∂τ (t, τ) = B̃(t)g(t+τ) hence h(t, ·) ∈W 1,2((0, T );Y ) since g is bounded. Moreover,

˙̃y is bounded since B̃i and gi are bounded for i ∈ {1, 2} and ˙̃x = A1(x̂) − A1(x) is bounded
since A1 is m-dissipative (see [17, Corollary 3.7 and Theorem 4.20]). Hence, if φ1 and φ2

are differentiable with bounded derivatives, then so is g. Therefore, for all t > 0, h(t, ·) ∈
W 2,2((0, T );Y ) and ‖h(t, ·)‖W 2,2((0,T );Y ) 6 C1 for some positive constant C1 independent of
t. According to the interpolation inequality (see, e.g., [22, Section II.2.1]),

‖h(t, ·)‖2W 1,2((0,T );Y ) 6 C2‖h(t, ·)‖L2((0,T );Y )

for some positive constant C2 independent of t. Thus ‖∂h∂τ (t, τ)‖L2((0,T );Y ) → 0, meaning that

lim
t→+∞

∫ T

0

∥∥∥B̃(t)g(t+ τ)ds
∥∥∥2

Y
= 0. (15)

Now, let (ek)k∈N be a Hilbert basis of Y . Then ‖B̃(t)P‖2L2(X×Y,Y ) =
∑

k∈N ‖PB̃(t)∗ek‖2X×Y .
Since g is persistently exciting, we have, for some T, κ > 0,∫ T

0
|〈g(t+ τ), v〉X×Y |2dτ > κ‖Pv‖2X×Y , ∀t > 0,
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for all v ∈ X × Y . Then,

κ‖B̃(t)P‖2L2(X×Y,Y ) 6
∑
k∈N

∫ T

0
|〈g(t+ τ), B̃(t)∗ek〉X×Y |2dτ

=

∫ T

0

∥∥∥B̃(t)g(t+ τ)
∥∥∥2

Y
dτ.

Thus, by (15), ‖B̃(t)P‖2L2(X×Y,Y ) → 0 as t→ +∞, which concludes the proof. �

5 Numerical simulation of kernel reconstruction of neural fields

We provide a numerical simulation of the adaptive observer (10) in the case of a two-
dimensional neural field (namely, n = 2 and m = 1 in Section 3.2) over the unit circle
Ω = S1. We set parameters of system (5) and observer (10) as in Table 1, so that all as-
sumptions of Corollary 4.5 are satisfied. Initial conditions are given by z1(0, r) = z2(0, r) = 1,
ẑ1(0, r) = ẑ2(0, r) = 0 for all r ∈ Ω and Ŵ21(0) = Ŵ22(0) = 0. Kernels are given by Gaussian
functions depending on the distance between r and r′, as it is frequently assumed in practice
(see [8]): wij(r, r

′) = ωijg(r, r′)/‖g‖L2(Ω2;R), g(r, r′) = exp(−σ|r − r′|2) for constant parame-
ters σ and ωij given in Table 1. The inputs ui are chosen as spatiotemporal periodic signals
with irrational frequency ratio, i.e., ui(t, r) = 103 sin(λitr) with λ1/λ2 irrational. This choice
is made to ensure persistency of excitation of the input (u1, u2), which in practice seems to
be sufficient to ensure persistency of excitation of (S1(z1), S2(z2)). Note that for u1 = u2 = 0,
the persistency of excitation assumption seems to be not guaranteed, hence the observer does
not converge (the plot is not reported here). However, in practice, such a persistent input is
likely to occur due to exogenous signals coming from other unmodeled neuronal populations.
Simulations code can be found in repository [6]. The system is spatially discretized over Ω
with a constant space step ∆r = 1/20, and the resulting ordinary differential equation is
solved with an explicit Runge-Kutta (4, 5) method.

Si(z) = tanh(z) τi = 1 λ1 = 1 λ2 =
√

2

ω11 = 0.1 ω12 = 2 ω21 = −2 ω22 = 2

β = 1 γ1 = 100 γ2 = 100 σ = 60

Table 1: System and observer parameters for the numerical simulation of Figures 1 and 2

In Figure 1, the convergence of the observer, that is proved in Corollary 4.5, is numerically
verified. In Figure 2, we illustrate some iterations of the reconstructed kernel ŵ22(t) of Ŵ22(t),
which converges to the kernel w22 of W22.

6 Conclusion

In this paper, we have shown that an observer can be designed to estimate online linear oper-
ators arising in some nonlinear infinite-dimensional dynamical systems from the measurement
of part of the state variables, provided that the other variables have a strongly dissipative
internal dynamics. This estimation problem is motivated by an application to kernel recon-
struction for neural fields equations. The main assumption is the persistence of excitation

10
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Figure 1: Evolution of the estimation errors ‖Ŵ2i(t) −W2i‖L2(X,Y ) and ‖ẑi(t) − zi(t)‖X for
i ∈ {1, 2}.

of the system along its trajectories. Our simulations suggest that this requirement can be
ensured using appropriate exogenous inputs. In future works, we wish to investigate this hy-
pothesis by either designing inputs ensuring persistency of excitation, or designing observers
that do not rely on this assumption (see, e.g., [23]). Moreover, the use of this estimator in
closed-loop to stabilize the systems by means of dynamic output feedback will be investigated.
Finally, delayed neural fields in the form of [8] could be considered, as they do not fit into
the functional setting of the present paper although capturing meaningful biological processes
such as non-instantaneous axonal propagation.
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