
Fictitious Play with Maximin Initialization

Sam Ganzfried
Ganzfried Research

sam.ganzfried@gmail.com

Abstract

Fictitious play has recently emerged as the most accurate scalable algorithm for approximating Nash
equilibrium strategies in multiplayer games. We show that the degree of equilibrium approximation er-
ror of fictitious play can be significantly reduced by carefully selecting the initial strategies. We present
several new procedures for strategy initialization and compare them to the classic approach, which ini-
tializes all pure strategies to have equal probability. The best-performing approach, called maximin,
solves a nonconvex quadratic program to compute initial strategies and results in a nearly 75% reduction
in approximation error compared to the classic approach when 5 initializations are used.

1 Introduction

Nash equilibrium is the central solution concept in game theory. While a Nash equilibrium can be com-
puted in polynomial time for two-player zero-sum games, it is PPAD-hard for two-player general-sum and
multiplayer games and widely believed that no efficient algorithms exist [6, 7, 8]. The best algorithm for
computing an exact Nash equilibrium in multiplayer games is based on a non-convex quadratic program for-
mulation and only scales to relatively small games [10]. For larger games several iterative algorithms have
been considered; however, they have no theoretical guarantees and may have an extremely high degree of
error. It has recently been shown that fictitious play produces a smaller degree of equilibrium approximation
error in these games than regret minimization [11], though the average error still becomes relatively large
as the game size increases. For example, for 3-player games with 10 strategies per player and all payoffs
uniform random in [0,1], the average equilibrium error from fictitious play is 0.056. The classic version of
fictitious play initializes strategies for all players to play all actions with equal probability. In this paper we
will explore more sophisticated initialization approaches to improve the algorithm’s performance.

A strategic-form game consists of a finite set of players N = {1, . . . , n}, a finite set of pure strategies
Si for each player i ∈ N , and a real-valued utility for each player for each strategy vector (aka strategy
profile), ui : ×iSi → R. A mixed strategy σi for player i is a probability distribution over pure strate-
gies, where σi(si′) is the probability that player i plays pure strategy si′ ∈ Si under σi. Let Σi denote
the full set of mixed strategies for player i. A strategy profile σ∗ = (σ∗1, . . . , σ

∗
n) is a Nash equilibrium

if ui(σ∗i , σ
∗
−i) ≥ ui(σi, σ

∗
−i) for all σi ∈ Σi for all i ∈ N , where σ∗−i ∈ Σ−i denotes the vector of the

components of strategy σ∗ for all players excluding player i. Here ui denotes the expected utility for player
i, and Σ−i denotes the set of strategy profiles for all players excluding player i. It is well known that a
Nash equilibrium exists in all finite games [19]. In practice all that we can hope for is convergence of iter-
ative algorithms to an approximation of Nash equilibrium. For a given candidate strategy profile σ∗, define
ε(σ∗) = maxi maxσi∈Σi

[
ui(σi, σ

∗
−i)− ui(σ∗i , σ∗−i)

]
. The goal is to compute a strategy profile σ∗ with as

small a value of ε as possible (i.e., ε = 0 would indicate that σ∗ comprises an exact Nash equilibrium).
We say that a strategy profile σ∗ with value ε constitutes an ε-equilibrium. For two-player zero-sum games,
there are algorithms with bounds on the value of ε as a function of the number of iterations and game size,
and for different variations ε is proven to approach zero in the limit at different worst-case rates (e.g., [14]).

1

ar
X

iv
:2

20
3.

10
77

4v
5

 [
cs

.G
T

]
 1

9
N

ov
 2

02
2

In classic fictitious play (Algorithm 1), each player plays a best response to the average strategies of his
opponents thus far [3, 20]. Strategies for all players can be initialized arbitrarily at t = 0; frequently they
are initialized to play all pure strategies with equal probability. Then each player uses the following rule to
obtain the average strategy at time t:

σti =

(
1− 1

t+ 1

)
σt−1
i +

1

t+ 1
σ′ti ,

where σ′ti is a best response of player i to the profile σt−1
−i of the other players played at time t − 1. Thus,

the final strategy after T iterations, σT , is the average of the strategies played in the individual iterations.

Algorithm 1 Classic fictitious play for n-player games
Inputs: Game G, initial mixed strategies σ0

i for i ∈ N , number of iterations T
for t = 1 to T do

for i = 1 to n do
σ′ti = arg maxσi∈Σi

ui(σi, σ
t−1
−i)

σti =
(

1− 1
t+1

)
σt−1
i + 1

t+1σ
′t
i

return (σT1 , . . . , σ
T
n)

For a game with n players and m actions per player, and T iterations of fictitious play, Algorithm 1
runs in time O(nmnT). For each player we must compute a best response to strategy profile σt−1

−i of the
opponents. This requires iterating over all pure strategies for player i and all joint strategy profiles for
the opponents, of which there are mn−1. So the complexity of computing a best response for player i is
O(m ∗ mn−1) = O(mn). Since we must do this for n players, the total complexity of the best response
computations at each timestep is O(nmn). Note that the size of the game representation is nmn, since we
must represent a payoff for each player for each strategy profile. So we can view this procedure as being
efficient despite the exponential dependence in the number of players (furthermore we are typically only
interested in solving games for a small number of players). If we run the algorithm for k different initializa-
tions, the complexity becomes O(nmnTk). We could parallelize the algorithm in various ways to improve
speed if we have access to multiple cores. The most obvious way would be to run the different initializations
on separate cores. We could also compute the best responses σ′i in parallel for the different players, as well
as compute the expected value of each pure strategy in parallel for the best response calculation for a single
player. In this paper we will be focusing on parallelization only over different initializations.

2 Initialization approaches for fictitious play

In this section we will describe several approaches for generating different initial strategy profiles to use for
Algorithm 1. Once K strategy profiles have been created, we can then run fictitious play in parallel using K
cores, and output the resulting strategies with smallest value of ε (Algorithm 2). The most obvious approach
for generating the strategies would be to set the probability of each pure strategy to be uniform in (0,1), then
normalize 3. However, it turns out that this approach does not actually generate a uniform-random strategy
from the probability simplex for each player. In order to do this we must select the strategy probabilities from
an exponential distribution, and normalize. This can be done straightforwardly using Algorithm 4. If we use
the exponential distribution with parameter λ, the pdf is f(x;λ) = e−λx and cdf is F (x;λ) = 1 − e−λx,
over the domain x ≥ 0. If we sample U from Uniform(0,1) and set T = F−1(U), it turns out that T has an
exponential distribution, where F−1 is the quantile function,

F−1(p) =
− ln(1− p)

λ
.

2

Furthermore if U is uniform on (0,1) then 1 − U is as well. So we can generate a sample from f using
T = − lnU

λ [21]. We can achieve our goal of generating a uniform-random strategy from the simplex by
using any λ > 0, so we will just use λ = 1.

Algorithm 2 Fictitious play with multiple initializations
Inputs: Game G, set of K initial mixed strategies σ0

k,i for i ∈ N k = 1 . . . ,K, number of iterations T
ε∗ =∞
for k = 1 to K do

for t = 1 to T do
for i = 1 to n do

σ′k,i = arg maxσi∈Σi
ui(σi, σ

t−1
k,−i)

σtk,i =
(

1− 1
t+1

)
σt−1
k,i + 1

t+1σ
′t
k,i

εk = maxi maxσi

[
ui(σi, σ

T
k,−i)− ui(σTi , σTk,−i)

]
if εk < ε∗ then

σ∗ = σTk
ε∗ = εk

return σ∗

Algorithm 3 Naı̈ve algorithm for generating initial strategies
Inputs: Game G with n players and m strategies per player

for i = 1 to n do
Zi = 0
for j = 1 to m do

σi(j) = uniform random number in (0,1)
Zi = Zi + σi(j)

for j = 1 to m do
σi(j) = σi(j)

Zi

return σ = (σ1, . . . , σn)

One potential drawback of generating K strategies per player uniformly at random is that we may hap-
pen to select strategies that are very similar, eliminating the benefit of using multiple initializations. A sim-
ilar problem has been observed with the K-means clustering algorithm. The standard version of K-means
clustering selects the K initial cluster centers to be random points from the dataset (aka “MacQueen’s
method”) [18]. A second approach, called the maximin method, chooses the first center arbitrarily, and
for each subsequent center selects the point that has the greatest minimum distance to a previously se-
lected center [15, 17]. The K-means++ method essentially interpolates between MacQueen’s method and
the maximin method by selecting each point to be the next center with probability proportional to its squared
minimum distance from a previously selected center[2]. In a comparative study it has been shown that Mac-
Queen’s method and the maximin method “often perform poorly” and are significantly outperformed by
K-means++ [5].

Note that the goal of determining good initializations for equilibrium computation with fictitious play is
not necessarily the same as that of finding good initial centers for K-means clustering. While for clustering
we would typically want centers that are fairly evenly spread throughout the space, it is not clear that this is
best for fictitious play; for example, we may obtain better performance by choosing corner points or points
at the edge of the strategy simplex and no points near the center. Furthermore, for K-means we are given an
initial finite set of datapoints that are the candidate centers, while for fictitious play the initial points can be

3

Algorithm 4 Proper generation of uniform initial strategies
Inputs: Game G with n players and m strategies per player

for i = 1 to n do
Zi = 0
for j = 1 to m do

u = uniform random number in (0,1)
σi(j) = − ln(u)
Zi = Zi + σi(j)

for j = 1 to m do
σi(j) = σi(j)

Zi

return σ = (σ1, . . . , σn)

any points in the (infinite) strategy simplex. It is also not clear if randomness is helpful for selection of the
initial strategies in fictitious play.

If we wish to use approaches similar to the maximin method and K-means++ for fictitious play ini-
tialization, we have two options: we could apply them to the full space of strategy profiles, or we could
first create a “dataset” of H initial “points” selected uniformly at random (using Algorithm 4) and then
apply the algorithms to this dataset. We can implement the maximin method on the full simplex by solving
a non-convex optimization problem, though it seems computationally intractable for K-means++. For the
sampling approach, we can implement maximin initialization using Algorithm 5, and K-means++ initial-
ization using Algorithm 6, which we refer to as FictitiousPlay++. For the distance metric between strategy
profiles σ = (σ1, . . . , σn) and σ′ = (σ′1, . . . , σ

′
n) we use L2:

D(σ, σ′) =

√√√√√ n∑
i=1

m(=|Si|)∑
j=1

(σi(j)− σ′i(j))
2.

Algorithm 5 Maximin initialization for fictitious play
Inputs: Game G with n players and m strategies per player, number of initial strategy profiles K, total
number of sampled strategy profiles H

for h = 1 to H do
σh = strategy profile generated according to Algorithm 4

τ1 = one of the strategy profiles σh chosen uniformly at random
for k = 2 to K do

for each σh not chosen as one of the τ i yet do
Compute D(σh), the distance between σh and the nearest τ i that has already been chosen
Choose τk to be point σh with largest value of D(σh)

return (τ1, . . . , τK)

We can implement the maximin method on the full simplex by solving the following quadratically-
constrained program, which is nonconvex. The variable xij denotes the probability that player i plays pure
strategy j, for 1 ≤ i ≤ n, 1 ≤ j ≤ m. And the constant τ ijk is the probability that player j plays pure
strategy k under the ith center for 0 ≤ i ≤ t, where t is the number of centers that have already been
selected. The initial center τ0 is selected randomly according to Algorithm 4, and we solve the following
program for t = 1, 2, . . . , T. This program can be solved using Gurobi’s nonconvex quadratic solver [16].

4

Algorithm 6 FictitiousPlay++
Inputs: Game G with n players and m strategies per player, number of initial strategy profiles K, total
number of sampled strategy profiles H

for h = 1 to H do
σh = strategy profile generated according to Algorithm 4

τ1 = one of the strategy profiles σh chosen uniformly at random
for k = 2 to K do

for each σh not chosen as one of the τ i yet do
Compute D(σh), the distance between σh and the nearest τ i that has already been chosen
Choose τk at random using a weighted distribution where point σh is chosen with probability

proportional to D(σh)2

return (τ1, . . . , τK)

Note that this approach will often result in adding extreme points (i.e., pure strategy profiles) for the initial
values of t.

maxx,y y

s.t. y ≤
∑

j

∑
k

(
(xjk)

2 − 2τ ijkxjk +
(
τ ijk

)2)
∀i

0 ≤ xij ≤ 1∀i, j∑
j xij = 1∀i

In addition to using analogues of K-means initialization procedures for fictitious play initialization, we
can also consider actually running K-means on a set of H sampled points and outputting the computed
cluster means. This would produce K strategy profiles that are evenly spread throughout the simplex, and
would be very unlikely to produce any near-extreme points.

3 Experiments

In this section we experimentally evaluate the approaches described in the previous section. For MacQueen’s
method, we consider both the version that uses the correct uniform sampling (Algorithm 4) as well as
a version using the naı̈ve (and incorrect) sampling approach (Algorithm 3). For the maximin method we
consider both the approaches where the full strategy spaces are used and where the centers are selected from
a set of sampled points from the simplex. For FictitiousPlay++ we only consider the sampled version, since
the unsampled version is computationally intractable. We similarly only consider the sampled version for
the method based on K-means.

1. Classic fictitious play (classic)

2. MacQueen’s method using Algorithm 3 (macqueen-1)

3. MacQueen’s method using Algorithm 4 (macqueen-2)

4. Unsampled maximin initialization (maximin-u)

5. Sampled maximin initialization (maximin-s)

6. Sampled K-means++ initialization (fp++)

7. Initialization from K-means cluster centers (k-means)

5

For our first set of experiments we compared the seven approaches on games with n = 3 players and
m = 5 pure strategies per player, with all payoffs uniformly random in [0,1]. We ran all of the algorithms on
each of 10,000 randomly generated games. For each game, we computed five different initializations with
each algorithm (except for classic where we just used one), and chose strategies from the initialization that
produced the lowest ε out of the five (i.e., ε∗ in Algorithm 2). For each initialization, we ran fictitious play
for 10,000 iterations, as this value had been established previously as a balance between running time and
performance [13, 11, 12].

For each random game we generated 100,000 random strategies (using Algorithm 4) to be used for the
strategies requiring simulation (maximin-s, fp++, and k-means). For each application of K-means we used
the K-means++ initialization procedure, selecting the run that produced the clustering with lowest error
out of five different K-means++ initializations. For each of these initializations, we ran K-means for 50
iterations (or until the clusters stopped changing). We use the K = 5 cluster centers from the best of the
runs as the five initializations for fictitious play.

For these experiments we used a server with 64 cores, though parallelization was only used for maximin-
u, fp++, and K-means. For maximin-u the parallelization was used by Gurobi’s nonconvex quadratic solver,
while for fp++ and K-means the parallelization was used to iterate over the 100,000 total datapoints in
parallel. In addition to parallelizing each step of K-means, we also used a pruning technique that exploits
the triangle inequality [9] to reduce the runtime. Note that these experiments could have run significantly
faster had we not sampled new strategies or run K-means for each new game; however, doing these would
make the samples of ε not be independent for all algorithms, preventing us from concluding statistical
significance.

The results from these experiments are in Table 1. The classic version of fictitious play produced the
largest value of ε∗, with all other algorithms obtaining significantly smaller ε∗. Interestingly K-means pro-
duced the worst results out of the remaining algorithms. This indicates that we do not actually want the
initial strategies to be “evenly spread” throughout the space as cluster means, and that it is preferable to en-
sure that near-extreme points are included. The results indicate that macqueen-2 outperforms macqueen-1, as
expected (though the performance difference is not that large). The results also indicate that both macqueen
algorithms are outperformed by fp++, which in turn is outperformed by both maximin algorithms.

Algorithm Average value of ε∗

classic 0.02213 ± 6.87× 10−4

macqueen-1 0.00750 ± 3.25× 10−4

macqueen-2 0.00690 ± 3.10× 10−4

maximin-u 0.00579 ± 2.77× 10−4

maximin-s 0.00623 ± 2.93× 10−4

fp++ 0.00686 ± 3.06× 10−4

k-means 0.00818 ± 3.46× 10−4

Table 1: Results for uniform-random games with payoffs in [0,1] for n = 3, m = 5. Results over 10,000
random games, with 5 initializations for each algorithm (other than classic) and 10,000 iterations of fictitious
play per initialization. The lowest ε out of the 5 initializations was used. For the sampling algorithms we
randomly generated 100,000 strategy profiles for each game. For each algorithm we report the average ε∗

and the 95% confidence interval.

Since several of the algorithms obtained statistically indistinguishable performance and K-means took
longer to run than the other algorithms (while performing clearly worse), we next experimented on all the
algorithms except for K-means on 100,000 games. The results in Table 2 make it more clear that maximin
outperforms the other approaches; in particular, maximin-u produces a nearly 75% reduction in Nash ap-

6

proximation error. The results also indicate that the performances of fp++ and macqueen-2 are very similar.

Algorithm Average value of ε∗

classic 0.02234 ± 2.18× 10−4

macqueen-1 0.00743 ± 1.02× 10−4

macqueen-2 0.00685 ± 9.72× 10−5

maximin-u 0.00603 ± 9.05× 10−5

maximin-s 0.00622 ± 9.21× 10−5

fp++ 0.00680 ± 9.65× 10−5

Table 2: Results for uniform-random games with payoffs in [0,1] for n = 3, m = 5. Results over 100,000
random games, with 5 initializations for each algorithm (other than classic) and 10,000 iterations of fictitious
play per initialization.

We next experimented with the classic, macqueen-2, maximin-u, and fp++ approaches on 10,000 games
with n = 3, m = 10, with all the other parameters the same as before. The order of performance of the
algorithms was the same as for m = 5, though macqueen-2, maximin-u, and fp++ all achieved very similar
average ε∗ and their performances were not statistically distinguishable. All three approaches produced a
significant improvement over classic, reducing the average value of ε∗ by nearly 75%.

Algorithm Average value of ε∗

classic 0.05582 ± 8.94× 10−4

macqueen-2 0.01519 ± 4.18× 10−4

maximin-u 0.01459 ± 4.11× 10−4

fp++ 0.01467 ± 4.10× 10−4

Table 3: Results for uniform-random games with payoffs in [0,1] for n = 3, m = 10. Results over 10,000
random games, with 5 initializations for each algorithm (other than classic) and 10,000 iterations of fictitious
play per initialization. The lowest ε out of the 5 initializations was used. For fp++ we randomly generated
100,000 strategy profiles for each game.

We experimented with the same 4 algorithms on 10,000 games with n = 4, m = 3 and 5, using the
same parameters as the prior experiments. The relative ordering of the algorithms’ performances was the
same as in the 3-player experiments, with the three new algorithms significantly outperforming classic. The
best-performing algorithm was maximin-u, reducing average ε∗ by 70% compared to classic.

Algorithm Avg. ε∗ for m = 3 Avg. ε∗ for m = 5

classic 0.01993 ± 6.00× 10−4 0.04777 ± 7.55× 10−4

macqueen-2 0.00724 ± 2.98× 10−4 0.01511 ± 3.75× 10−4

maximin-u 0.00650 ± 2.83× 10−4 0.01422 ± 3.59× 10−4

fp++ 0.00719 ± 3.00× 10−4 0.01488 ± 3.69× 10−4

Table 4: Results for uniform-random games with payoffs in [0,1] for n = 4. Results over 10,000 random
games for each value of m.

Next we explored the performances of the algorithms for different numbers of initializations K (in all
the previous experiments we have usedK = 5). We variedK to be 2, 3, 5, 10, and 20 for several values ofm
and n. For each setting ofm and n, we generated 10,000 uniform random games with payoffs in [0,1], using
the same values as before for the other parameters. Our first experiments were for n = 3 and m = 5. As

7

before the relative ordering of the algorithms by performance was maximin-u, fp++, then macqueen-2. From
Figure 1 we can see that just using K = 2 resulted in a performance improvement of 45% for maximin-u
over classic, and using K = 20 resulted in an improvement of 90% (nearly a full order of magnitude).
For these experiments we divided up the 10,000 games over 64 cores and just used a single core for each
algorithm.

Figure 1: Average ε∗ as a function of number of initializations for n = 3, m = 5. Results over 10,000
random games, with 2, 3, 5, 10, and 20 initializations for the algorithms.

Results for similar experiments using n = 3,m = 10 are provided in Figure 2. The relative performance
ordering of the algorithms remains the same, and the improvement over classic is more significant than for
m = 5. Using K = 20 maximin-u reduces average ε∗ by 93% compared to classic. We also performed
similar experiments with n = 4, m = 5 (Figure 3). Again maximin-u outperformed the other algorithms,
reducing average ε∗ by 90% for K = 20.

Figure 2: Average ε∗ as a function of number of initializations for n = 3, m = 10. Results over 10,000
random games, with 2, 3, 5, 10, and 20 initializations for the algorithms.

4 Discussion

We have seen that we can obtain significantly smaller Nash equilibrium approximation error over classic fic-
titious play by selecting the best run over multiple initializations, even for a small number of initializations.

8

Figure 3: Average ε∗ as a function of number of initializations for n = 4, m = 5. Results over 10,000
random games, with 2, 3, 5, 10, and 20 initializations for the algorithms.

We often achieved a performance improvement over 40% just using K = 2, which gradually increased for
larger K and often achieved a 90% improvement for K = 20. We have seen a consistent ordering of the
algorithms’ performance which was statistically significant in many of the experiments: maximin followed
by fp++ followed by macqueen followed by k-means. The results not only indicate that using multiple ini-
tializations is important, but furthermore that it is beneficial to ensure that near-extreme points are used.
The worst-performing algorithm was standard K-means, which produces cluster centers that are relatively
evenly spread throughout the joint strategy space, making it very unlikely to select any near-extreme points.
It is interesting that K-means is outperformed by macqueen, which samples points uniformly and runs the
risk of selecting several initial strategies that are close together. This indicates that it is more important to
ensure that near-extreme points are included than it is to ensure that the initial points are spread out evenly.

It is interesting to compare the performance of the algorithms for fictitious play initialization to ana-
logues for K-means initialization. For K-means, where the ultimate goal is to produce cluster means that
are evenly spread throughout the space, it has been shown that MacQueen’s method and the maximin method
perform poorly and are significantly outperformed by K-means++ [5]. For fictitious play, we have shown
that the maximin method outperforms the others. Note that all three of these approaches achieve a significant
improvement over the classic approach, and the difference in performance between them was typically quite
small. While maximin consistently performed the best in these experiments, it is possible that macqueen or
fp++ can perform better in game classes other than uniform random; in particular, for games whose Nash
equilibria involve a large amount of randomization.

For several of the algorithms we had to first sample a large number of points from the joint strategy space
(maximin-s, fp++, and k-means). In order to obtain independence in the experiments, we sampled a new set
of points for each game (and furthermore we used the same set of sampled points for all algorithms to reduce
variance). We also came up with a new quadratic program formulation for implementing the maximin ap-
proach without requiring these samples, resulting in algorithm maximin-u which outperformed the sampled
version maximin-s. We also compared MacQueen’s method using the correct method for generating random
points from the simplex (macqueen-2) to a simple yet incorrect approach (macqueen-1). Not surprisingly
macqueen-2 outperformed macqueen-1, though macqueen-1 still obtained a significant improvement over
the classic algorithm.

9

5 Conclusion

Nash equilibrium is the central solution concept in game theory, and computing (or approximating) one in
games with more than two players is a notoriously challenging problem [6, 7, 8]. No scalable algorithms
exist with theoretical guarantees on performance. The best algorithm for computing an exact Nash equi-
librium in multiplayer games is based on a non-convex quadratic program formulation and only scales to
relatively small games [10]. For larger games several iterative algorithms have been considered; however,
they have no theoretical guarantees and may have an extremely high degree of error. It has recently been
shown that fictitious play produces a smaller degree of equilibrium approximation error in these games than
another scalable algorithm called counterfactual regret minimization (CFR) [11], though the average error
still becomes relatively large as the game size increases. For example, for 3-player games with 10 strategies
per player and all payoffs uniform random in [0,1], the average error of fictitious play is 0.056. CFR [22]
has produced strategies for six-player no-limit Texas hold ’em that defeated strong human professionals [4];
however there are no guarantees on its convergence to equilibrium, and it was shown to not converge to
equilibrium in the simplified game of three-player Leduc hold ’em [1]. While both fictitious play and CFR
are guaranteed to converge to Nash equilibrium in two-player zero-sum games, they have no general perfor-
mance guarantees in non-zero-sum and multiplayer games.

The classic version of fictitious play initializes strategies for all players to play all actions with equal
probability. We have developed approaches that use multiple initializations to achieve a significant reduc-
tion in Nash equilibrium approximation error over the classic version, in some cases by a full order of
magnitude. The best-performing algorithm, maximin, computes the initial strategies by solving a noncon-
vex quadratically-constrained program. Using this approach, we can compute close approximations of Nash
equilibrium strategies in large multiplayer games for the first time.

References

[1] Nick Abou Risk and Duane Szafron. Using counterfactual regret minimization to create competitive
multiplayer poker agents. In Proceedings of the International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), pages 159–166, 2010.

[2] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. In Proceedings
of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2007.

[3] George W. Brown. Iterative solutions of games by fictitious play. In Tjalling C. Koopmans, editor,
Activity Analysis of Production and Allocation, pages 374–376. John Wiley & Sons, 1951.

[4] Noam Brown and Tuomas Sandholm. Superhuman AI for multiplayer poker. Science, 365:885–890,
2019.

[5] M. Emre Celebi, Hassan A. Kingravi, and Patricio A. Vela. A comparative study of efficient initializa-
tion methods for the k-means clustering algorithm. Expert Systems with Applications, 40(1):200–210,
Jan 2013.

[6] Xi Chen and Xiaotie Deng. 3-Nash is PPAD-complete. Electronic Colloquium on Computational
Complexity, Report No. 134:1–12, 2005.

[7] Xi Chen and Xiaotie Deng. Settling the complexity of 2-player Nash equilibrium. In Proceedings of
the Annual Symposium on Foundations of Computer Science (FOCS), 2006.

10

[8] Constantinos Daskalakis, Paul Goldberg, and Christos Papadimitriou. The complexity of computing a
Nash equilibrium. SIAM Journal on Computing, 1(39):195–259, 2009.

[9] Charles Elkan. Using the triangle inequality to accelerate k-means. In Proceedings of the International
Conference on Machine Learning (ICML), 2012.

[10] Sam Ganzfried. Fast complete algorithm for multiplayer Nash equilibrium, 2020. arXiv:2002.04734
[cs.GT].

[11] Sam Ganzfried. Fictitious play outperforms counterfactual regret minimization, 2020.
arXiv:2001.11165 [cs.GT].

[12] Sam Ganzfried. Computing Nash equilibria in multiplayer DAG-structured stochastic games with
persistent imperfect information. In Proceedings of the Conference on Decision and Game Theory for
Security (GameSec), 2021.

[13] Sam Ganzfried, Conner Laughlin, and Charles Morefield. Parallel algorithm for Nash equilibrium
in multiplayer stochastic games with application to naval strategic planning. In Proceedings of the
International Conference on Distributed Artificial Intelligence (DAI), 2020.

[14] Andrew Gilpin, Javier Peña, and Tuomas Sandholm. First-order algorithm with O(ln(1/ε)) conver-
gence for ε-equilibrium in two-person zero-sum games. Mathematical Programming, 133(1–2):279–
298, 2012.

[15] Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical Computer
Science, 38:293–306, 1985.

[16] LLC Gurobi Optimization. Gurobi optimizer reference manual, 2022.

[17] I. Katsavounidis, C.-C. Jay Kuo, and Zhen Zhang. A new initialization technique for generalized Lloyd
iteration. IEEE Signal Processing Letters, 1(10):144–146, 1994.

[18] J. B. MacQueen. Some methods for classification and analysis of multivariate observations. In 5th
Berkeley Symposium on Mathematical Statistics and Probability, pages 281–297, Berkeley, California,
1967. University of California Press.

[19] John Nash. Non-cooperative games. PhD thesis, Princeton University, 1950.

[20] Julia Robinson. An iterative method of solving a game. Annals of Mathematics, 54:296–301, 1951.

[21] Wikipedia contributors. Exponential distribution — Wikipedia, the free encyclopedia. https:
//en.wikipedia.org/w/index.php?title=Exponential_distribution&
oldid=1075938908, 2022. [Online; accessed 14-March-2022].

[22] Martin Zinkevich, Michael Bowling, Michael Johanson, and Carmelo Piccione. Regret minimization in
games with incomplete information. In Proceedings of the Annual Conference on Neural Information
Processing Systems (NIPS), 2007.

11

https://en.wikipedia.org/w/index.php?title=Exponential_distribution&oldid=1075938908
https://en.wikipedia.org/w/index.php?title=Exponential_distribution&oldid=1075938908
https://en.wikipedia.org/w/index.php?title=Exponential_distribution&oldid=1075938908

	1 Introduction
	2 Initialization approaches for fictitious play
	3 Experiments
	4 Discussion
	5 Conclusion

