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A Differentiable Signed Distance Representation for Continuous Collision

Avoidance in Optimization-Based Motion Planning

James Guthrie

Abstract— This paper proposes a new set of conditions
for exactly representing collision avoidance constraints within
optimization-based motion planning algorithms. The conditions
are continuously differentiable and therefore suitable for use
with standard nonlinear optimization solvers. The method rep-
resents convex shapes using a support function representation
and is therefore quite general. For collision avoidance involving
polyhedral or ellipsoidal shapes, the proposed method intro-
duces fewer variables and constraints than existing approaches.
Additionally the proposed method can be used to rigorously
ensure continuous collision avoidance as the vehicle transitions
between the discrete poses determined by the motion planning
algorithm. Numerical examples demonstrate how this can be
used to prevent problems of corner cutting and passing through
obstacles which can occur when collision avoidance is only
enforced at discrete time steps.

I. INTRODUCTION

Motion planning is a core component of the autonomy

stack in robots, drones, and self-driving cars. While many

approaches exist, motion planning algorithms based on op-

timization methods are popular for the ease with which

they can represent a wide variety of objectives, constraints,

and dynamic models. This approach relies on transcription

methods such as direct multiple shooting [1] and direct

collocation [2] which approximate a continuous-time optimal

control problem as a discrete-time optimal control problem

suitable to nonlinear programming (NLP) solvers.

Most NLP solvers utilize gradient and Hessian informa-

tion and require that the objective and constraints imposed

be twice continuously differentiable (i.e. belonging to the

class of C2 functions) to guarantee convergence to a local

minima. This presents a challenge for representing collision

avoidance constraints between a vehicle occupying space V
and an obstacle O as we generally lack smooth, closed-form

representations of the condition V ∩ O = ∅.

One notable exception is when we can represent the

indicator function of the Minkowski sum V ⊕ (−O) as a

differentiable, closed-form expression. As V ∩ O = ∅ ⇐⇒
0 6∈ V ⊕ (−O), the latter provides a suitable constraint for

ensuring collision avoidance. This is possible when both

V and O are ellipsoids [3]. Alternatively, it is sometimes

possible to closely approximate the Minkowski sum in

closed-form using sum-of-squares optimization [4]. When

available, closed-form Minkowski sums are appealing as they

can be used to ensure collision avoidance without requiring

additional variables be introduced into the problem.
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A series of works have shown how collision avoidance

conditions can be suitably represented within an NLP prob-

lem by introducing a set of differentiable conditions and

auxiliary variables that collectively ensure V ∩ O = ∅. All

of these methods focus on specific classes of convex sets

and then leverage various results from convex analysis which

provide certificates that two sets do not intersect. In [5] the

authors utilize a polar set representation of polyhedrons to

establish differentiable conditions for ensuring a point mass

vehicle does not make contact with a polyhedral obstacle.

In [6] the authors leveraged Farkas’ Lemma to arrive at

conditions ensuring collision avoidance between a polyhedral

robot and polyhedral obstacle. In [7] the authors utilized

the dual formulation of distance calculations as given in

[8] to ensure a minimum signed distance (a generalization

of collision avoidance) between convex objects modeled as

the intersection of linear and second-order cone constraints.

All of these works require introducing additional variables

and constraints into the problem. Generally the number of

variables is proportional to the complexity of the geometry

being represented. The resulting growth in problem size can

quickly become burdensome.

Beyond the challenge of computational complexity, all of

these methods only address collision avoidance at discrete

time instances arising from the transcription method utilized.

The solver may exploit this discrete approximation of a

continuous-time problem and return solutions which cut

corners or pass through thin walls in an attempt to minimize

the objective. In computational geometry this is a well-

studied problem known as “tunneling” as it can occur when

a fast-moving bullet in a video game passes through thin

walls. Continuous collision detection refers to the class of

algorithms in computational geometry which ensure robust

collision checking at all time instances, not just discrete time

points (e.g. between frame updates in a video game). These

methods often rely on various approximations of the swept

volume [9].

Ensuring continuous collision detection within

optimization-based motion planners is an open issue.

In [10], the authors present an exact approach for a specific

class of dynamic models controlling point-mass vehicles

navigating circles and cylinders. In [11] the authors develop

a trajectory optimization algorithm that approximately

ensures continuous collision detection for polyhedral robots

navigating polyhedral obstacles. The method utilizes a linear

approximation of the non-differentiable signed distance

function. At points of non-differentiability, the resulting

gradient information is inaccurate making the method
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ill-suited for use with standard NLP solvers which expect

exact gradients. Instead the authors provide a custom

solver based on sequential convex optimization. Beyond

this, to the author’s knowledge, no other methods exist

for rigorously addressing continuous collision avoidance

within optimization-based motion planners. Instead, various

heuristic fixes are generally utilized. The most common

is to inflate obstacles along with introducing velocity

constraints on the vehicle to prevent it from passing through

an obstacle in one time step [12]. However, this artificially

reduces the configuration space of the problem, making tight

maneuvering infeasible. Additionally it typically requires

a smaller time step, leading to more decision variables

in the transcription method and therefore larger (slower)

optimization problems.

A. Contributions

In this work, we propose a novel formulation of signed

distance constraints for collision avoidance by deriving

necessary and sufficient conditions related to the support

function representation of convex sets. These conditions are

continuously differentiable and can be utilized within stan-

dard optimization-based motion planning algorithms based

on nonlinear programming. Compared to existing approaches

[5]–[7], our method introduces fewer variables and con-

straints leading to smaller nonlinear programs. Additionally

our formulation allows us to represent sets given by the

convex hull of other sets. We utilize this capability to de-

velop sufficient conditions for ensuring continuous collision

avoidance within an optimization-based motion planning

algorithm. To our knowledge, this is the first method for

rigorously ensuring continuous collision avoidance within

optimization-based motion planners for arbitrary vehicle

dynamics and full-dimensional (vice point mass) geometries.

We demonstrate its use on an autonomous vehicle model

performing tight maneuvering around obstacles in which a

discrete collision avoidance approach fails.

II. BACKGROUND

A. Notation

Let [n] := {1, 2, . . . , n}. Let Sn++ denote the set of n ×
n positive definite matrices. Let SO(n) denote the special-

orthogonal group in dimension n. Let ‖c‖ := ‖c‖2, denote

the Euclidean norm of c ∈ R
n. Let Br := {x | ‖x‖2 ≤ r}.

Given A ⊂ R
n, R ∈ R

n×n, and v ∈ R
n, let RA + v :=

{Rx+ v |x ∈ A}.

B. Signed Distance

Let V ,O ⊂ R
n be compact sets. The distance between the

two objects is

dist(V ,O) := min
v
{‖v‖ | (V + v) ∩O 6= ∅}. (1)

If both V and O are convex, the distance can be calculated

using convex optimization. The penetration depth is

pen(V ,O) := min
v
{‖v‖ | (V + v) ∩ (O \ ∂O) = ∅}. (2)

The penetration depth is the minimum translation needed for

V to not touch the interior of O. Unlike distance calculations

involving convex sets, calculating the penetration depth of

two convex sets is a non-convex optimization problem with

possibly multiple local minima. The signed distance com-

bines the notions of distance and penetration and is given

by

sd(V ,O) := dist(V ,O)− pen(V ,O). (3)

A positive signed distance indicates two objects are sepa-

rated, a negative signed distance indicates they overlap, and

a signed distance of zero indicates their boundaries touch.

C. Support and Cost Functions

Let S ⊆ R
n and c ∈ R

n \ 0. The support function of S is

σS(c) := sup
x∈S

cTx (4)

We will find it convenient to define the following function,

which we refer to as the cost function of S:

µS(c) := inf
x∈S

cTx (5)

These are related by µS(c) = −σS(−c).
Proposition 1. Let A,B ⊂ R

n be convex sets. Let t, c ∈
R

n, R ∈ R
m×n, k ∈ R≥0. The support and cost functions

satisfy the following properties [13]:

• Scaling:

σkA(c) = kσA(c), µkA(c) = kµA(c)

• Linear Transformation:

σRA(c) = σA(R
T c), µRA(c) = µA(R

T c)

• Translation:

σA+v(c) = σA(c) + cT v

µA+v(c) = µA(c) + cT v

• Minkowski Sum:

σA⊕B(c) = σA(c) + σB(c)

µA⊕B(c) = µA(c) + µB(c)

• Convex Hull:

σco({A,B})(c) = sup{σA(c), σB(c)}
µco({A,B})(c) = inf{µA(c), µB(c)}.

The following lemmas will prove useful in relating the

signed distance between two sets to their respective support

and cost functions.

Lemma 1. Let α, β ∈ R and c ∈ R
n, ‖c‖ = 1. Given

halfspaces H+ = {x | cTx ≥ α}, H− = {x | cTx ≤ β},

then

sd(H+,H−) = α− β. (6)

Lemma 2. Given V ⊆ V+ ⊆ R
n, O ⊆ O+ ⊆ R

n, then

sd(V ,O) ≥ sd(V+,O+). (7)



III. PROBLEM DESCRIPTION

A. Vehicle Dynamics

Consider a continuous-time model of a vehicle with state

x ∈ R
nx , control input u ∈ R

nu , and dynamics f : Rnx ×
R

nu → R
nx satisfying

ẋ = f(x, u). (8)

In numerical optimal control, it is common to approximate

continuous-time dynamics with a discrete-time model. The

discrete model is obtained by applying a numerical inte-

gration method (e.g. Euler, Runge-Kutta) to the continuous-

time dynamics over a fixed time interval ∆T . The state and

control values are then represented at indices k ∈ Z+ corre-

sponding to their values in continuous time at tk = k∆T . Let

xk and uk denote the state and control respectively at time

tk. The value uk represents a constant control input applied

for t ∈ [tk, tk+1). Let φ(xi, ū, ti, t) := xi +
∫ t

ti
f(x(s), ū)ds

denote the solution of (8) at time t ≥ ti with initial state xi
and constant control input u = ū. The resulting discrete-time

model is given by1

xk+1 = φ(xk, uk, tk, tk +∆T )

: = f∆T (xk, uk).
(9)

We refer to f∆T : Rnx × R
nu → R

nx as the discrete-time

model of (8) with step-size ∆T .

B. Vehicle Geometry

Let A ⊂ R
n be a compact convex set describing the shape

of the vehicle with dynamics (8). Let

V(x) := R(x)A + p(x) (10)

denote the space occupied by the vehicle where R : Rnx →
SO(n), p : Rnx → R

n define the rotation and translation

respectively. We refer to V(x) as the state-dependent ge-

ometry of the vehicle. The swept volume is defined as the

total space occupied (temporarily) by the vehicle over a time

interval [ti, tf ]:

svV,f (xi, ū, ti, tf ) :=
⋃

t∈[ti,tf ]

V(φ(xi, ū, ti, t)). (11)

If the vehicle only undergoes linear translation the swept

volume is the convex hull of the start and end poses.

Lemma 3. Let the vehicle have continuous-time dynamics

(8) with associated geometry (10). Given initial state xi and

control input ū, let x(t) := φ(xi, ū, ti, t) denote the resulting

state trajectory for t ∈ [ti, tf ]. Let xf := φ(xi, ū, ti, tf ).
Assume R(x(t)) = R(xi)∀ t ∈ [ti, tf ]. Assume p(x(t)) =
(1− ξ(t))p(xi) + ξ(t)p(xf )∀ t ∈ [ti, tf ] where ξ : [ti, tf ] →
[0, 1] is a continuous function with ξ(ti) = 0, ξ(tf ) = 1.

Then

svV,f(xi, ū, ti, tf ) = co({V(xi),V(xf )}). (12)

1Throughout this work, we assume this relation holds exactly such that
the discrete-time model has no integration error.
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Fig. 1. Swept volume of vehicle. As the vehicle turns more, the swept
volume deviates more from the convex hull of the start and end poses.

If the vehicle undergoes rotation or nonlinear translation,

the resulting swept volume is, in general, non-convex. Fur-

ther, we cannot determine the swept volume solely from the

start and end poses. This presents a challenge for represent-

ing the swept volume within a numerical optimal control

problem which only models the vehicle pose at discrete time

steps. We assume the existence of a function that allows us

to outer approximate the swept volume given the start and

end poses and control input applied.

Assumption 1 (Swept Volume of Vehicle). Let the vehicle

have continuous-time dynamics (8), discrete-time dynamics

(9) and associated geometry (10). Let the swept volume be

given by (11). Assume there exists a C2 function r : Rnx ×
R

nu → R≥0 satisfying

svV,f(xk, uk, tk, tk+1) ⊆ co({V(xk),V(xk+1)})⊕Br(xk,uk)

(13)

where

Br(xk,uk) := {y ∈ R
n | ‖y‖ ≤ r(xk, uk)}. (14)

Figure 1 visualizes this outer approximation. The ball

Br(xk,uk) accounts for the amount by which the convex hull

underapproximates the true swept volume. By making the

ball’s radius a function of the vehicle state and input, we

can minimize the extent to which we overapproximate the

swept volume. For example, when the vehicle is moving in

a straight line, ideally we would have r(xk, uk) = 0.

C. Obstacle Geometry

Let B ⊂ R
n be a closed convex set describing the shape

of an obstacle. Let

O(t) := S(t)B + d(t) (15)

denote the space occupied by the obstacle at time t where

S : R → SO(n), d : R → R
n define the rotation and

translation respectively.2 We refer to O(t) as the time-

dependent geometry of the obstacle. The swept volume of

2Our notation is chosen to support moving obstacles. For stationary
objects we replace S(t) and d(t) with constants.



the obstacle is defined as the total space occupied over a

time interval [ti, tf ]:

svO(ti, tf ) :=
⋃

t∈[ti,tf ]

O(t). (16)

In our setting, we are only given the obstacle’s pose at

tk := k∆T, k ∈ Z+, where ∆T is the time step-size. For

convenience, let Sk := S(tk), dk := d(tk) and Ok := O(tk)
such that the obstacle’s pose at time index k is

Ok = SkB + dk. (17)

We assume that the obstacle’s swept volume belongs to the

convex hull of the start and end poses inflated by ball Bwk
.

Assumption 2 (Swept Volume of Obstacle). Let the obstacle

have continuous-time geometry (15) and discrete-time ge-

ometry (17). Let the swept volume be given by (16). Let

wk ∈ R≥0 satisfy

svO(tk, tk+1) ⊆ co({Ok,Ok+1})⊕Bwk
. (18)

D. Optimization-Based Motion Planning

Consider generating a motion plan over a time horizon

t ∈ [0, Tf ] for a vehicle with continuous dynamics and

geometry given by (8) and (10) respectively. We use a

discrete representation of the dynamics as given by (9) with

N∆T = Tf and k ∈ {0, . . . , N} for some N ∈ Z+.

The vehicle starts at state xS and ends at final state xF .

The vehicle must maintain a minimum signed distance of

γ to an obstacle with geometry given by (15).3 Let X :=
[xT0 , . . . , x

T
N ]T and U := [uT0 , . . . , uN−1]

T denote the vector

of all states and controls respectively. We seek to minimize

an objective l(X,U) where l : X × U → R. The vehicle is

subject to constraints h(X,U) ≤ 0 where h : X×U → R
nh

and the inequality is interpreted element-wise. We assume

that l(X,U) and h(X,U) are C2 functions. The resulting

optimization problem is given by

min
X,U

l(X,U)

s.t.

x0 = xS , xN = xF ,

xk+1 = f∆T (xk, uk), k = 0, . . . , N − 1,

h(X,U) ≤ 0,

sd(V ,O) ≥ γ.

(19)

The signed distance function is in general, non-smooth and

lacks a closed-form representation. We focus on establishing

C2 conditions that can equivalently represent the signed

distance constraints. We first address the case in which the

signed distance constraint is imposed at discrete time steps.

Problem 1 (Discrete Collision Avoidance). Consider the

motion planning problem given by (19). Find a set of C2

constraints that ensure a minimum signed distance of γ at

3We consider a single obstacle to minimize notational clutter. This is
without loss of generality as the conditions developed can be repeatedly
applied to address the case of multiple obstacles.

discrete time step tk using the vehicle state xk and additional

variables y ∈ R
ny :

sd(V(xk),Ok) ≥ γ ⇐⇒ ∃xk, y |h(xk, y) ≤ 0 (20)

where h : R
nx × R

ny → R
nc is C2 and the inequality

constraint is interpreted element-wise.

Problem 1 only ensures the signed distance constraint is

satisfied at time tk. To ensure the continuous-time trajectory

satisfies the signed distance constraint, we evaluate the

signed distance using the swept volumes of the vehicle and

obstacle over the interval t ∈ [tk, tk+1].

Problem 2 (Continuous Collision Avoidance). Consider the

motion planning problem given by (19). Let the vehicle and

obstacle swept volumes satisfy Assumptions 1 and 2. Find a

set of C2 constraints that ensure a minimum signed distance

of γ for t ∈ [tk, tk+1] using the vehicle state xk, input uk
and additional variables y ∈ R

ny :

sd(svV,f(xk, uk, tk, tk+1), svO(tk, tk+1)) ≥ γ

⇐ ∃xk, uk, y |h(xk, uk, y) ≤ 0
(21)

where h : Rnx ×R
nu ×R

ny → R
nc is C2 and the inequality

constraint is interpreted element-wise.

IV. A DIFFERENTIABLE SIGNED DISTANCE

REPRESENTATION

We now develop differentiable representations of the

signed distance constraints. We focus on establishing this

representation for one time step tk or time interval [tk, tk+1].
This is without loss of generality as these conditions can be

repeatedly applied to address multiple time steps or intervals.

A. Discrete Collision Avoidance

The following lemmas relate the signed distance between

two convex sets C and D to their cost and support function

respectively evaluated for a given vector c.

Lemma 4. Given C,D ⊆ R
n, c ∈ R

n, ‖c‖ = 1 then

sd(C,D) ≥ µC(c)− σD(c). (22)

Lemma 5. Let C,D ⊆ R
n be closed convex sets. Let C

and/or D be bounded. Then there exists c ∈ R
n, ‖c‖ = 1

such that

sd(C,D) = µC(c)− σD(c). (23)

Lemma 4 suggests a simple method for representing

signed distance constraints within a nonlinear program.

We introduce a decision variable c ∈ R
n, ‖c‖ = 1

along with constraints that make c define a certificate that

sd(V(xk),Ok) ≥ γ. Lemma 5 guarantees that such a

certificate exists.

We will find it convenient to rewrite the cost and support

of V(xk) and Ok in terms of the base shape A and B. Using

the properties listed in Proposition 1 yields

µV(xk)(c)− σOk
(c)

= µR(xk)A+p(xk)(c)− σSkB+dk
(c)

= (µR(xk)A(c) + cT p(xk))− (σSkB(c) + cTdk)

= µA(R(xk)
T c)− σB(S

T
k c) + cT (p(xk)− dk).

(24)



Lemma 6. Let the vehicle geometry V(xk) be given by

(10). Let the obstacle geometry Ok be given by (17). Then

sd(V(xk),Ok) ≥ γ if and only if there exists c ∈ R
n

satisfying:

γ ≤ µA(R(xk)
T c)− σB(S

T
k c) + cT (p(xk)− dk), (25)

1 = ‖c‖. (26)

Proof. ⇐: From Lemma 4, µV(xk)(c) − σOk
(c) ≥ γ =⇒

sd(V(xk),Ok) ≥ γ. ⇒: Let sd(V(xk),Ok) = η where η ≥
γ. From Lemma 5, there exists c ∈ R

n, ‖c‖ = 1 such that

µV(xk)(c)− σOk
(c) = η.

Remark. If γ > 0 we can relax (26) to the convex constraint

‖c‖ ≤ 1. To see this, first note that c = 0 cannot satisfy (25)

for γ > 0 as the right-hand side will evaluate to zero. Now

consider a solution c in which 0 < ‖c‖ < 1. Multiplying

(25) by 1
‖c‖ we obtain

1

‖c‖γ ≤ 1

‖c‖(µA(R(xk)
T c)− σB(S

T
k c) + cT (p(xk)− dk)

= µA(R(xk)
T c

‖c‖)− σB(S
T
k

c

‖c‖) +
cT

‖c‖(p(xk)−dk).

Let c̃ = c
‖c‖ . From Lemma 4, c̃ provides a certificate that

sd(V(xk),Ok) ≥ 1
‖c‖γ > γ.

Lemma 6 provides a differentiable representation of signed

distance constraints in the case that µA(c), σB(c) are given

by C2 functions. Points and ellipsoids satisfy this condition.

We now leverage the convex hull property of the cost and

support functions to represent shapes defined by the convex

hull of multiple convex sets.

Theorem 1. Let the vehicle geometry V(xk) be given by

(10). Let the obstacle geometry Ok be given by (17). Let

A = co({A(i), i ∈ [nA]}) and B = co({B(j), j ∈ [nB]})
where each A(i),B(j) is a convex set. Then sd(V(xk),Ok) ≥
γ if and only if there exists c ∈ R

n, α, β ∈ R satisfying

α ≤ µA(i)(R(xk)
T c), i ∈ [nA],

β ≥ σB(j)(ST
k c), j ∈ [nB],

γ ≤ α− β + cT (p(xk)− dk),

1 = ‖c‖.

Proof. Note that α ≤ µA(i)(R(xk)
T c), i ∈ [nA] =⇒

α ≤ µA(R(xk)
T c) by the convex hull property of the

cost function. Similarly, β ≥ σB(j) (ST
k c), j ∈ [nB] =⇒

β ≥ σB(S
T
k c). The remainder of the proof follows the same

arguments as Lemma 6.

Remark. If nA = 1 in Theorem 1 then we can set α =
µA(R(xk)

T c) without loss of generality. The variable α can

be eliminated (replaced with µA(R(xk)
T c)). Similarly, if

nB = 1 we can eliminate the variable β. If nA = 1 and

nB = 1, Theorem 1 reduces to Lemma 6.

B. Examples

We now apply Theorem 1 to obtain collision avoidance

conditions for polyhedral and ellipsoidal shapes. In doing

so, we will see that this formulation introduces fewer vari-

ables and constraints than the duality-based formulation of

[7]. This can be beneficial for reducing the computational

complexity of the nonlinear program. Although our examples

are limited to cases in which the vehicle and obstacle shape

are of the same class, it is straight-forward to extend these

results to cases in which different classes are present (e.g.

polyhedral vehicle and ellipsoidal obstacle).

1) Polyhedrons: Consider the case in which both the

vehicle shape and obstacle shape are convex, compact poly-

hedrons in R
n with nA and nB vertices respectively:

A = co({ai ∈ R
n, i ∈ [nA]}),

B = co({bj ∈ R
n, j ∈ [nB]}).

Note that for a single point q ∈ R
n we have µq(c) = σq(c) =

cT q. Using Theorem 1 we obtain conditions to ensure a

minimum signed distance of γ between two polyhedrons:

α ≤ cTR(xk)ai, i ∈ [nA]

β ≥ cTSkbj , j ∈ [nB]

γ ≤ α− β + cT (p(xk)− dk),

1 = ‖c‖

Remark. We contrast this with the method of [7] which

assumes a halfspace-representation (vice vertex representa-

tion) of a compact polyhedron. Let mA,mB be the number

of linear constraints necessary to describe A,B respectively.

The dual approach introduces (mA + mB) variables and

(2 + n + mA + mB) constraints to represent the signed

distance constraint. Note we must have mA,mB ≥ n+1 for

A,B to be compact with non-empty interior. Our formulation

introduces (2 + n) variables and (2+ nA + nB) constraints.

For the case in which nA = mA, nB = mB , our method

introduces fewer variables and fewer constraints.4

2) Ellipsoids: Let the vehicle shape and obstacle shape

be ellipsoids given by matrices P,Q ∈ S
n
++:

A = {x ∈ R
n |xTP−1x ≤ 1},

B = {x ∈ R
n |xTQ−1x ≤ 1}.

Recall that ellipsoids have a closed-form cost and support

function given by µA(c) = −
√
cTPc and σB(c) =

√

cTQc.

As nA = 1 and nB = 1, Theorem 1 reduces to Lemma 6

yielding:

γ ≤ −
√

cTR(xk)PR(xk)T c−
√

cTSkQS
T
k c

+ cT (p(xk)− dk),

1 = ‖c‖.

4A similar remark applies to the method of [6] which uses Farkas’
Lemma. This requires introducing (mA + mB) variables and (2(mA +
mB) + 1) constraints.



Remark. The dual formulation in [7] uses second-order cone

constraints to represent ellipsoids. Each second-order cone

constraint introduces a dual variable pair λ ∈ R, u ∈ R
n

and the constraint λ ≥ ‖u‖. In total the dual formulation

introduces 2(n + 1) variables and (4 + n) constraints. Our

formulation introduces n variables and two constraints.

Remark. The support function of an ellipsoid involves the

square root, which is not differentiable at the origin. Given

P ≻ 0, the argument only evaluates to zero for c = 0 which

cannot be a solution. However, we may experience issues if

the solver is initialized with c = 0. We can add a small

smoothing term ǫ > 0 to address this case. Noting that

−
√
cTPc+ ǫ < −

√
cTPc it is seen that this modification

is conservative in that satisfying the conditions of Lemma

6 means µV(xk)(c) − σOk
(c) > γ. The signed distance

constraint is then strictly satisfied.

C. Continuous Collision Avoidance

Theorem 1 provides differentiable conditions for repre-

senting signed distance constraints between a vehicle and

obstacle at discrete time steps tk, k ∈ Z+. As the vehicle and

obstacle transition between these discrete poses, the signed

distance constraint may not be satisfied. This can be resolved

by enforcing signed distance constraints with respect to the

swept volume of the vehicle and obstacle over the time

interval t ∈ [tk, tk+1].

Assumptions 1 and 2 define outer approximations of the

swept volume of the vehicle and obstacle respectively. These

approximations utilize the convex hull and Minkowski sum

operators. To account for the Minkowski sum operator we

will make use of the following lemma.

Lemma 7. Let C,D ⊂ R
n be closed convex sets. Let C

and/or D be bounded. Let rC , rD ∈ R≥0. Then

sd(C ⊕BrC ,D ⊕BrD) = sd(C,D)− rC − rD. (27)

The following relation results from applying Lemma 2

with Assumptions 1 and 2 followed by Lemma 7:

sd(svV,f(xk, uk, tk, tk+1),

svO(tk, tk+1)) ≥ γ

⇐ sd(co({V(xk),V(xk+1)})⊕Br(xk,uk),

co({Ok,Ok+1})⊕Bwk
) = γ

⇐⇒ sd(co({V(xk),V(xk+1)}),
co({Ok,Ok+1})) = γ + r(xk, uk) + wk.

(28)

From this relation, we can extend Theorem 1 to obtain

sufficient conditions for continuous collision avoidance.

Theorem 2. Let the vehicle dynamics and geometry sat-

isfy Assumption 1. Let the obstacle geometry satisfy As-

sumption 2. Let A = co({A(i), i ∈ [nA]}) and B =
co({B(j), j ∈ [nB]}) where each A(i),B(j) is a convex set.

Then sd(svV,f(xk, uk, tk, tk+1), svO(tk, tk+1)) ≥ γ if there

exists c ∈ R
n, α, β ∈ R satisfying

α ≤ µA(i)(R(xk)
T c), i ∈ [nA]

α ≤ µA(i)(R(xk+1)
T c) + cT (p(xk+1)− p(xk)), i ∈ [nA]

β ≥ σB(j)(ST
k c), j ∈ [nB]

β ≥ σB(j)(ST
k+1c) + cT (dk+1 − dk), j ∈ [nB]

γ ≤ α− β + cT (p(xk)− dk)− r(xk, uk)− wk

1 = ‖c‖.
Proof. The stated conditions arise from applying the nec-

essary and sufficient conditions of Theorem 1 to ensure a

signed distance of γ + r(xk , uk) + wk between the sets

co({V(xk),V(xk+1)}) and co({Ok,Ok+1}). From (28), this

is sufficient for ensuring a signed distance of γ between

svV,f(xk, uk, tk, tk+1) and svO(tk, tk+1).

Remark. Theorem 2 is only sufficient because we are

outer-approximating non-convex swept volumes with convex

sets. For example, in Figure 1, the right subplot shows an

aggressive turn in which our outer approximation introduces

noticeable conservatism. Here we are intentionally using

a large integration step size (∆T = 0.77s) to highlight

this aspect. In practical applications, one can reduce the

integration step size until this conservatism is acceptable.

V. EXAMPLES

We demonstrate our method using a car model navigating

in R
2. The vehicle state consists of positions (px, py), orien-

tation (ψ), velocity (v), and steering angle (δ). The inputs are

acceleration (a) and steering rate (s). The parameter L = 2.7
is the wheelbase. The continuous-time dynamics are:

ṗx = v cosψ

ṗy = v sinψ

ψ̇ = v
tan δ

L
v̇ = a

δ̇ = s

(29)

The vehicle’s shape is a polyhedron A = co({(±2.5,±1)}).
The space occupied by the vehicle is given by

V(x) = R(x)A+ p(x) (30)

where

p(x) =

[

px
py

]

, R(x) =

[

cosψ − sinψ
sinψ cosψ

]

. (31)

We pose an optimal control problem in which the vehicle

begins at (px = 0, py = 25, ψ = 0) and must end at

(px = 100, py = 25, ψ = 0) while minimizing the squared-

norm of the control effort l(X,U) = ‖U‖22. We set the time

horizon to 10s and use N = 13 steps, giving a discrete-time

step of ∆T = 10
13 . We use a 4th-order Runge-Kutta method

to obtain the discrete dynamic model xk+1 = f∆T (xk, uk).
We place a polyhedral obstacle O in the environment and

solve (19) using both the discrete collision avoidance con-

ditions (Theorem 1) and the continuous collision avoidance

conditions (Theorem 2).



A. Swept Volume Approximation Model

The continuous collision avoidance conditions require a

C2 function r : Rnx ×R
nu → R≥0 satisfying Assumption 1.

Although finding this function is not the focus of this work,

we briefly sketch out a practical method for doing so. We

first simulate the continuous dynamics over a time interval

t ∈ [0,∆T ] where ∆T is the discrete time step used in

the optimal control problem. We do this for various initial

states x
(i)
k and control inputs u

(i)
k within expected ranges.

For each sample (x
(i)
k , u

(i)
k ) we compute the convex hull of

the resulting swept volume. We then compute the minimum

radius r(i) such that co({V(x(i)k ),V(x(i)k+1)}) ⊕ Br(i) ⊇
co(svV,f (xk, uk, 0,∆T )). Finally we fit a non-negative func-

tion to the resulting data samples {x(i)k , u
(i)
k , r(i)}. This

can be done using sum-of-squares (SOS) optimization [14].

In our examples we utilized an 8th-order SOS polynomial

r(vk, δk) to represent the ball radius as a function of vehicle

velocity and steering angle.

B. Results

1) Thin Wall: We first consider a thin wall and require

sd(V(x),O) ≥ 0. When solving with the discrete collision

avoidance conditions, the trajectory passes through the wall

in order to minimize the control effort. We note that other

methods for optimization-based collision avoidance such as

[7] are susceptible to this behavior. This can occur even if the

solver is initialized with a collision-free trajectory which nav-

igates around obstacles. By utilizing the continuous collision

avoidance conditions, the solver is prevented from exploiting

the discrete approximation and returns a trajectory which

successfully avoids the wall. Figure 2 shows the results in

the upper subplots. We note that the outer approximation of

the swept volume is only slightly conservative compared to

the true swept volume as shown by the blue borders.

2) Corner Cutting: Another issue commonly faced by

optimization-based motion planners is corner cutting. To

demonstrate this, we replace the thin obstacle with a wide

obstacle. Due to the velocity constraints on the vehicle,

it is not possible for the discrete-time trajectory to “jump

over” the obstacle. Instead, the discrete collision avoidance

constraints yield a trajectory that turns to avoid the obstacle.

However, it cuts the corner at (40, 40) to minimize the

necessary maneuvering. The continuous collision avoidance

conditions again prevent this from happening. Figure 2 shows

the results in the lower subplots.

C. Implementation Details

All examples were solved on a MacBook Pro with a

2.6 GHz 6-Core Intel Core i7 CPU. IPOPT [15] with

the MA27 linear solver was used to solve the nonlinear

optimization problems with exact gradients and Hessians

supplied by CasADi [16]. Supporting code is available at

https://github.com/guthriejd1/cca.

VI. CONCLUSION

A novel formulation of collision avoidance based on

signed distance constraints was proposed for convex-shaped

vehicles navigating convex obstacles. This formulation is

continuously differentiable and therefore suitable for incor-

poration within optimization-based motion planning algo-

rithms. For the important case of polyhedral and ellipsoidal

shapes, this representation is more compact than existing

formulations as it introduces fewer additional variables and

constraints. Additionally, this formulation can be used to

ensure the continuous-time trajectory satisfies the collision

avoidance constraints despite being planned in a discrete

setting. This provides a rigorous means of preventing “tun-

neling” and corner-cutting which can occur when collision

avoidance is only enforced at discrete time steps.

In future work we will document additional classes of

convex sets that can be represented within this framework.

We also will evaluate the numerical performance of this

method against competing formulations for the discrete colli-

sion avoidance case. Lastly, we plan to explore more refined

outer approximations of the swept volume to minimize

conservatism.

APPENDIX

A. Proof of Lemma 1

Proof. We prove this for the α < β case. The α > β and

α = β cases can be shown using similar arguments. Let t =
(β−α)c and x ∈ H+ =⇒ cT (x+t) ≥ α+(β−α) = β =⇒
x + t 6∈ (H− \ ∂H−) =⇒ pen(H+,H−) ≤ (β − α) =⇒
sd(H+,H−) ≥ (α−β). Assume sd(H+,H−) > α−β =⇒
pen(H+,H−) < β − α =⇒ ∃ t ∈ R

n, ‖t‖ < β − α such

that (H+ + t) ∩ (H− \ ∂H−) = ∅. Let x ∈ H+ satisfy

cTx = α =⇒ cT (x + t) = α + cT t ≤ α + ‖c‖‖t‖ <

β =⇒ x + t ∈ (H− \ ∂H−) a contradiction. Therefore

sd(H+,H−) = α− β.

B. Proof of Lemma 2

Let sd(V+,O+) = −a ≤ 0 =⇒ pen(V+,O+) = a =⇒
∃ t ∈ R

n, ‖t‖ = a such that (V+ + t) ∩ (O+ \ ∂O+) =
∅ =⇒ (V + t) ∩ (O \ ∂O) = ∅ =⇒ pen(V ,O) ≤ a =⇒
sd(V ,O) ≥ −a. The sd(V+,O+) > 0 case can be shown

using similar arguments.

C. Proof of Lemma 3

Proof. Note that any V(x(t)) ∈ svV,f(xi, ū, ti, tf ) satisfies

V(x(t)) = R(xi)A + (1− ξ(t))p(xi) + ξ(t)p(xf )

= (1 − ξ(t))V(xi) + ξ(t)V(xf ).
(32)

Given ξ(t) is continuous with ξ(ti) = 0, ξ(tf ) = 1 =⇒
∀λ ∈ [0, 1] ∃ t ∈ [ti, tf ] | ξ(t) = λ. It follows that

svV,f(xi, ū, ti, tf ) = co({V(xi),V(xf )}). (33)
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Fig. 2. Autonomous car navigating obstacles. Discrete collision avoidance incorrectly passes through walls (upper left) and cuts corners (lower left).
Continuous collision avoidance prevents these erroneous behaviors by checking collision with respect to an outer approximation of the swept volume.

D. Proof of Lemma 4

Proof. Define the following halfspaces:

H+ = {x | cTx ≥ µC(c)} (34)

H− = {x | cTx ≤ σD(c)} (35)

From Lemma 1 sd(H+,H−) = µC(c)− σD(c). Noting that

C ⊂ H+ and D ⊂ H− yields the stated inequality.

E. Proof of Lemma 5

We prove this for the case in which sd(C,D) < 0. The

sd(C,D) ≥ 0 case can be shown using similar arguments.

sd(C,D) = γ < 0 =⇒ pen(C,D) = |γ| =⇒ ∃ t ∈
R

n, ‖t‖ = |γ| such that (C + t) ∩ (D \ ∂D) = ∅. As these

are disjoint convex sets there exists a separating hyperplane

µC(c) ≥ σD\∂D(c) for some c ∈ R
n \ 0. By the scaling

properties of the cost and support function we can take

‖c‖ = 1 w.l.o.g. Noting that σD\∂D(c) = σD(c) we obtain

µC(c) + cT t ≥ σD(c) for some ‖c‖ = 1. Assume c 6=
t

‖t‖ =⇒ cT t < ‖t‖. Let κ = (cT t) =⇒ µC(c)+ cT (κc) ≥
σD(c) =⇒ µC+κc(c) ≥ σD(c) =⇒ (C+κc)∩ (D\∂D) =
∅ =⇒ pen(C,D) ≤ κ < ‖t‖ = |γ| a contradiction. Thus

c = t
‖t‖ . Assume µC(c) + cT t > σD(c) =⇒ µC(c) + |γ| >

σD(c) =⇒ sd(C,D) > −|γ| by Lemma 4 a contradiction.

Thus µC(c) + cT t = σD(c) for some ‖c‖ = t
‖t‖ where

(C + t) ∩ (D \ ∂D) = ∅.

F. Proof of Lemma 7

Proof. From Lemma 5 there exists c ∈ R
n, ‖c‖ = 1 such

that µC(c) − σD(c) = sd(C,D) =⇒ µC(c) − rC
√
cT c −

σD(c)− rD
√
cT c = sd(C,D)− rC − rD =⇒ µC⊕BrC

(c)−
σD⊕BrD

(c) = sd(C,D) − rC − rD . From Lemma 4, this

implies sd(C⊕BrC ,D⊕BrD) ≥ sd(C,D)−rC−rD. Assume

sd(C ⊕ BrC ,D ⊕ BrD) > sd(C,D) − rC − rD =⇒ ∃ c ∈
R

n, ‖c‖ = 1 such that µC⊕BrC
(c)−σD⊕BrD

(c) > sd(C,D)−
rC − rD =⇒ µC(c) − rC

√
cT c − σD(c) − rD

√
cT c >

sd(C,D) − rC − rD =⇒ µC(c) − σD(c) > sd(C,D) =⇒
sd(C,D) > sd(C,D) a contradiction. Thus sd(C ⊕BrC ,D⊕
BrD ) = sd(C,D)− rC − rD .
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[6] M. Gerdts, R. Henrion, D. Hömberg, and C. Landry, “Path planning

and collision avoidance for robots,” Numerical Algebra, Control and

Optimization, vol. 2, no. 3, pp. 437–463, 2012.
[7] X. Zhang, A. Liniger, and F. Borrelli, “Optimization-based colli-

sion avoidance,” IEEE Transactions on Control Systems Technology,
vol. 29, no. 3, pp. 972–983, 2021.

[8] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, March 2004.

[9] Y.-K. Choi, J.-W. Chang, W. Wang, M.-S. Kim, and G. Elber,
“Continuous collision detection for ellipsoids,” IEEE Transactions on

Visualization and Computer Graphics, vol. 15, no. 2, pp. 311–325,
2009.

[10] D. Dueri, Y. Mao, Z. Mian, J. Ding, and B. Açikmeşe, “Trajectory
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