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Abstract

This paper proposes a rapidly-exploring random trees (RRT) algo-
rithm to solve the motion planning problem for hybrid systems. At
each iteration, the proposed algorithm, called HyRRT, randomly picks
a state sample and extends the search tree by flow or jump, which is
also chosen randomly when both regimes are possible. Through a def-
inition of concatenation of functions defined on hybrid time domains,
we show that HyRRT is probabilistically complete, namely, the proba-
bility of failing to find a motion plan approaches zero as the number of
iterations of the algorithm increases. This property is guaranteed un-
der mild conditions on the data defining the motion plan, which include
a relaxation of the usual positive clearance assumption imposed in the
literature of classical systems. The motion plan is computed through
the solution of two optimization problems, one associated with the
flow and the other with the jumps of the system. The proposed algo-
rithm is applied to a walking robot so as to highlight its generality and
computational features.

1 Introduction

Motion planning consists of finding a state trajectory and associated inputs,
connecting the initial and final state while satisfying the dynamics of the
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system as well as a given safety criterion. Motion planning problems for
purely continuous-time systems and purely discrete-time systems have been
well studied in the literature; see, e.g., [1]. In recent years, various planning
algorithms have been developed to solve motion planning problems, from
graph search algorithms [2] to artificial potential field methods [3]. A main
drawback of graph search algorithms is that the number of vertices grows
exponentially as the dimension of states grows, which makes computing
motion plans inefficient for high-dimensional systems. The artificial poten-
tial field method suffers from getting stuck at local minimum. Arguably,
the most successful algorithm to solve motion planning problems for purely
continuous-time systems and purely discrete-time systems is the sampling-
based RRT algorithm [4]. This algorithm incrementally constructs a tree
of state trajectories toward random samples in the state space. Similar to
graph search algorithms, RRT suffers from the curse of dimensionality, but,
in practice, achieves rapid exploration in solving high-dimensional motion
planning problems [5]. Compared with the artificial potential field method,
RRT is probabilistically complete [6], which means that the probability of
failing to find a motion plan converges to zero, as the number of samples
approaches infinity.

While RRT algorithms have been used to solve motion planning problems
for purely continuous-time systems [6] and purely discrete-time systems [7],
fewer efforts have been devoted to applying RRT-type algorithms to solve
motion planning problems for systems with combined continuous and dis-
crete behavior. In [8], a hybrid RRT algorithm is proposed for motion
planning problems for a special class of hybrid systems, which follows the
classical RRT scheme but does not establish key properties of the algorithm,
such as probabilistic completeness.

This paper focuses on motion planning problems for hybrid systems mod-
eled as hybrid equations [9]. In this modeling framework, differential and
difference equations with constraints are used to describe the continuous
and discrete behavior of the hybrid system, respectively. This general hy-
brid system framework can capture most hybrid systems emerging in robotic
applications, not only the class of hybrid systems considered in [8], but also
systems with memory states, timers, impulses, and constraints. For this
broad class of hybrid systems, a motion planning algorithm is proposed in
this paper. Following [6], the proposed algorithm, called HyRRT, incre-
mentally constructs search trees, rooted in the initial state set and toward
the random samples. At first, HyRRT draws samples from the state space.
Then, it selects the vertex such that the state associated with this vertex
has minimal distance to the sample. Next, HyRRT propagates the state tra-
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jectory from the state associated with the selected vertex. Following [10], it
is established that, under certain assumptions, HyRRT is probabilistically
complete. To the authors’ best knowledge, HyRRT is the first RRT-type
algorithm for systems with hybrid dynamics that is probabilistically com-
plete. The proposed algorithm is applied to a walking robot example so as
to assess its capabilities.

The remainder of the paper is structured as follows. Section 2 presents
notation and preliminaries. Section 3 presents the problem statement and
introduction of application. Section 4 presents the HyRRT algorithm. Sec-
tion 5 presents the analysis of the probabilistic completeness of HyRRT
algorithm. Section 6 presents the illustration of HyRRT in the example.
Due to space constraints, proofs will be published elsewhere.

2 Notation and Preliminaries

2.1 Notation

The real numbers are denoted as R and its nonnegative subset is denoted
as R≥0. The set of nonnegative integers is denoted as N. The notation int I
denotes the interior of the interval I. The notation S denotes the closure of
the set S. The notation ∂S denotes the boundary of the set S. Given sets
P ⊂ Rn and Q ⊂ Rn, the Minkowski sum of P and Q, denoted as P + Q,
is the set {p + q : p ∈ P, q ∈ Q}. The notation | · | denotes the Euclidean
norm. The notation rge f denotes the range of the function f . Given a
point x ∈ Rn and a subset S ⊂ Rn, the distance between x and S is denoted
dist(x, S) := infs∈S |x − s|. The notation B denotes the closed unit ball of
appropriate dimension in the Euclidean norm.

2.2 Preliminaries

A hybrid system H with inputs is modeled as [9]

H :

{
ẋ = f(x, u) (x, u) ∈ C
x+ = g(x, u) (x, u) ∈ D

(1)

where x ∈ Rn is the state, u ∈ Rm is the input, C ⊂ Rn × Rm represents
the flow set, f : Rn × Rm → Rn represents the flow map, D ⊂ Rn × Rm
represents the jump set, and g : Rn × Rm → Rn represents the jump map,
respectively. The continuous evolution of x is captured by the flow map f .
The discrete evolution of x is captured by the jump map g. The flow set C
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collects the points where the state can evolve continuously. The jump set D
collects the points where jumps can occur.

Given a flow set C, the set UC := {u ∈ Rm : ∃x ∈ Rn such that (x, u) ∈
C} includes all possible input values that can be applied during flows. Simi-
larly, given a jump setD, the set UD := {u ∈ Rm : ∃x ∈ Rn such that (x, u) ∈
D} includes all possible input values that can be applied at jumps. These
sets satisfy C ⊂ Rn × UC and D ⊂ Rn × UD. Given a set K ⊂ Rn × U?,
where ? is either C or D, we define Π?(K) := {x : ∃u ∈ U? s.t. (x, u) ∈ K}
as the projection of K onto Rn, and define C ′ := ΠC(C) and D′ := ΠD(D).

In addition to ordinary time t ∈ R≥0, we employ j ∈ N to denote the
number of jumps of the evolution of x and u for H in (1), leading to hybrid
time (t, j) for the parameterization of its solutions and inputs. The domain
of a solution to H is given by a hybrid time domain. A hybrid time domain
is defined as a subset E of R≥0 × N that, for each (T, J) ∈ E, E ∩ ([0, T ]×
{0, 1, ..., J}) can be written as ∪Jj=0([tj , tj+1], j) for some finite sequence of
times 0 = t0 ≤ t1 ≤ t2 ≤ ... ≤ tJ+1 = T . A hybrid arc φ : domφ → Rn
is a function on a hybrid time domain that, for each j ∈ N, t 7→ φ(t, j)
is locally absolutely continuous on each interval Ij := {t : (t, j) ∈ domφ}
with nonempty interior. The definition of solution pair to a hybrid system
is given as follows. For more details, see [9].

Definition 2.1. (Solution pair to a hybrid system) Given a pair of functions
φ : domφ → Rn and u : domu → Rm, (φ, u) is a solution pair to (1) if
dom(φ, u) := domφ = domu is a hybrid time domain, (φ(0, 0), u(0, 0)) ∈
C ∪D, and the following hold:

1) For all j ∈ N such that Ij has nonempty interior,

a) the function t 7→ φ(t, j) is locally absolutely continuous,

b) (φ(t, j), u(t, j)) ∈ C for all t ∈ int Ij,

c) the function t 7→ u(t, j) is Lebesgue measurable and locally bounded,

d) for almost all t ∈ Ij, φ̇(t, j) = f(φ(t, j), u(t, j)).

2) For all (t, j) ∈ dom(φ, u) such that (t, j + 1) ∈ dom(φ, u),

(φ(t, j), u(t, j)) ∈ D φ(t, j + 1) = g(φ(t, j), u(t, j)).

HyRRT requires concatenating solution pairs. The concatenation oper-
ation of solution pairs is defined next.
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Definition 2.2. (Concatenation operation) Given two functions φ1 : domφ1 →
Rn and φ2 : domφ2 → Rn, where domφ1 and domφ2 are hybrid time do-
mains, φ2 can be concatenated to φ1 if φ1 is compact and φ : domφ → Rn
is the concatenation of φ2 to φ1, denoted φ = φ1|φ2, namely,

1) domφ = domφ1 ∪ (domφ2 + {(T, J)}), where (T, J) = max domφ1
and the plus sign denotes Minkowski addition;

2) φ(t, j) = φ1(t, j) for all (t, j) ∈ domφ1\{(T, J)} and φ(t, j) = φ2(t −
T, j − J) for all (t, j) ∈ domφ2 + {(T, J)}.

In the main result of this paper, the following definition of closeness
between hybrid arcs is used; see [9].

Definition 2.3. ((τ, ε)-closeness of hybrid arcs) Given τ, ε > 0, two hybrid
arcs φ1 and φ2 are (τ, ε)-close if

1. for all (t, j) ∈ domφ1 with t + j ≤ τ , there exists s such that (s, j) ∈
domφ2, |t− s| < ε, and |φ1(t, j)− φ2(s, j)| < ε;

2. for all (t, j) ∈ domφ2 with t + j ≤ τ , there exists s such that (s, j) ∈
domφ1, |t− s| < ε, and |φ2(t, j)− φ1(s, j)| < ε.

3 Problem Statement and Applications

The motion planning problem for hybrid systems studied in this paper is
formulated as follows.

Problem 1. Given a hybrid system H with input u ∈ Rm and state x ∈ Rn,
the initial state set X0 ⊂ Rn, the final state set Xf ⊂ Rn, and the unsafe
set Xu ⊂ Rn × Rm, find a pair (φ, u) : dom(φ, u) → Rn × Rm, namely, a
motion plan, such that for some (T, J) ∈ dom(φ, u), the following hold:

1) φ(0, 0) ∈ X0, namely, the initial state of the solution belongs to the
given initial state set X0;

2) (φ, u) is a solution pair to H as defined in Definition 2.1;

3) (T, J) is such that φ(T, J) ∈ Xf , namely, the solution belongs to the
final state set at hybrid time (T, J);

4) (φ(t, j), u(t, j)) /∈ Xu for each (t, j) ∈ dom(φ, u) such that t+j ≤ T+J ,
namely, the solution pair does not intersect with the unsafe set before
its state trajectory reaches the final state set.
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Therefore, given sets X0, Xf and Xu, and a hybrid system H with data
(C, f,D, g), a motion planning problem P is formulated as P = (X0, Xf , Xu, (C, f,D, g)).

There are some interesting special cases of Problem 1. For example,
when D = ∅ (C = ∅) and C (D) is nonempty, then P denotes the motion
planning problem for purely continuous-time (discrete-time, respectively)
systems under constraints. Therefore, Problem 1 covers the motion planning
problems for purely continuous-time and purely discrete-time system studied
in [6] and [1]. Moreover, note that the unsafe set Xu can be used to constrain
both states and inputs.

Problem 1 is illustrated in the following example.

Example 3.1. (Walking robot) The state x of the compass model of a walk-
ing robot is composed of the angle vector θ and the velocity vector ω [11].
The angle vector θ contains the planted leg angle θp, the swing leg angle θs,
and the torso angle θt. The velocity vector ω contains the planted leg an-
gular velocity ωp, the swing leg angular velocity ωs, and the torso angular
velocity ωt. The input u is the input torque, where up is the torque applied
on the planted leg from the ankle, us is the torque applied on the swing leg
from the hip, and ut is the torque applied on the torso from the hip. The
continuous dynamics of x = (θ, ω) comes from the Lagrangian method and
is given by θ̇ = ω, ω̇ = Df (θ)−1(−Cf (θ, ω)ω−Gf (θ) +Bu) =: α(x, u) where
Df and Cf are the inertial and Coriolis matrices, respectively, and B is the
actuator relationship matrix. In [12], the input torques that produce an
acceleration a for a special state x are determined by a function µ, defined
as µ(x, a) := B−1(Df (θ)a+Cf (θ, ω)ω +Gf (θ)). By applying u = µ(x, a) to
ω̇ = α(x, u), we obtain ω̇ = a. Then, the flow map f is defined as

f(x, a) :=

[
ω
a

]
∀(x, a) ∈ C.

Flow is allowed when only one leg is in contact with the ground. To
determine if the biped has reached the end of a step, a function h is defined as
h(x) := φs−θp for all x ∈ R6 where φs denotes the step angle. The condition
h(x) ≥ 0 indicates that only one leg is in contact with the ground. Thus, the
flow set is given as C := {(x, a) ∈ R6 ×R3 : h(x) ≥ 0}. Furthermore, a step
occurs when the change of h is such that θp is approaching φs, and h equals
zero. Thus, the jump set D is defined as D := {(x, a) ∈ R6 × R3 : h(x) =
0, ωp ≥ 0}.

Following [11], when a step occurs, the swing leg becomes the planted leg,
and the planted leg becomes the swing leg. The function Γ is defined to swap
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angles and velocity variables as θ+ = Γ(θ). The angular velocities after a step
are determined by a contact model denoted as Ω(x) := (Ωp(x),Ωs(x),Ωt(x)),
where Ωp, Ωs, and Ωt are the angular velocity of the planted leg, swing leg,
and torso, respectively. Then, the jump map g is defined as

g(x, a) :=

[
Γ(θ)
Ω(x)

]
∀(x, a) ∈ D. (2)

A particular motion planning problem for the walking robot is to generate
a walking gait. The final state set is defined as Xf = {(φs,−φs, 0, 0.1, 0.1, 0)}
so that after the impact, the walking robot starts the next walking cycle. The
initial state set is chosen as X0 = {x0 ∈ R6 : x0 = g(xf , 0), xf ∈ Xf}. In
setting X0, the input argument of g can be set arbitrarily because input does
not affect the value of g; see (2). In practice, there are constraints on the
acceleration of the planted leg, swinging leg, and the torso, respectively. To
capture these, the unsafe set is defined as Xu = {(x, a) ∈ R6 × R3 : a1 /∈
[amin

1 , amax
1 ] or a2 /∈ [amin

2 , amax
2 ] or a3 /∈ [amin

3 , amax
3 ] or (x, a) ∈ D}, where

amin
1 , amin

2 , and amin
3 are the lower bounds of a1, a2, and a3, respectively, and

amax
1 , amax

2 , and amax
3 are the upper bounds of a1, a2, and a3, respectively.

In the forthcoming Example 6.1, we employ HyRRT to solve this motion
planning problem formulated in Example 3.1.

4 HyRRT: A Motion Planning Algorithm for Hy-
brid Systems

4.1 Overview

HyRRT searches for a motion plan by incrementally constructing a search
tree. The search tree is modeled by a directed tree. A directed tree T is a
pair T = (V,E), where V is a set whose elements are called vertices and E
is a set of paired vertices whose elements are called edges. The edges in the
directed tree are directed, which means the pairs of vertices that represent
edges are ordered. The set of edges E is defined as E ⊆ {(v1, v2) : v1 ∈
V, v2 ∈ V, v1 6= v2}. The edge e = (v1, v2) ∈ E represents an edge from v1 to
v2. A path in T = (V,E) is a sequence of vertices p = (v1, v2, ..., vk) such
that (vi, vi+1) ∈ E for all i = 1, 2, ..., k − 1.

Each vertex in the search tree T is associated with a state value of H.
Each edge in the search tree is associated with a solution pair to H that
connects the state values associated with their endpoint vertices. The state
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X0

xvcur
xnew Xf

Xu

xv1 xv2 xv3

ψnew

xrand

ψe1 ψe2 ψe3
(a) States and solution pairs.

X0 Xf
vcur vnewv1 v2

e1 e2 e3 e4

v3

(b) Search tree associated with the states and solution pairs in
Figure 1(a).

Figure 1: The association between states/solution pairs and the ver-
tices/edges in the search tree. The blue region denotes X0, the green re-
gion denotes Xf , and the black region denotes Xu. The dots and lines be-
tween dots in Figure 1(b) denote the vertices and edges associated with the
states and solution pairs in Figure 1(a). The path p = (v1, v2, v3, vcur, vnew)
in the search graph in Figure 1(b) represents the solution pair ψ̃p =
ψe1 |ψe2 |ψe3 |ψnew in Figure 1(a).
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value associated with vertex v ∈ V is denoted as xv and the solution pair
associated with edge e ∈ E is denoted as ψe, as shown in Figure 1. The
solution pair that the path p = (v1, v2, ..., vk) represents is the concatenation
of all those solutions associated with the edges therein, namely,

ψ̃p := ψ(v1,v2)|ψ(v2,v3)| ... |ψ(vk−1,vk)
(3)

where ψ̃p denotes the solution pair associated with the path p. For the
notion of concatenation, see Definition 2.2. An example of the path p and
its associated solution pair ψ̃p is shown in Figure 1.

The proposed HyRRT algorithm requires a library of possible inputs.
The input library (UC ,UD) includes the input signals that can be applied
during flows (collected in UC) and the input values that can be applied at
jumps (collected in UD).

Next, we introduce the main steps executed by HyRRT. Given the mo-
tion planning problem P = (X0, Xf , Xu, (C, f,D, g)) and the input library
(UC ,UD), HyRRT performs the following steps:

Step 1: Sample a finite number of points from X0 and initialize a search
tree T = (V,E) by adding vertices associated with each sampling
point.

Step 2: Randomly select one regime among flow regime and jump regime
for the evolution of H.

Step 3: Randomly select a point xrand from C ′ (D′) if the flow (jump,
respectively) regime is selected in Step 2.

Step 4: Find the vertex associated with the state value that has minimal
Euclidean distance to xrand, denoted vcur, as is shown in Figure
1(b).

Step 5: Randomly select an input signal (value) from UC (UD) if the flow
(jump, respectively) regime is selected. Then, compute a solution
pair starting from xvcur with the selected input applied, denoted
ψnew = (φnew, unew). Denote the final state of φnew as xnew, as
is shown in Figure 1(a). If ψnew does not intersect with Xu, add
a vertex vnew associated with xnew to V and an edge (vcur, vnew)
associated with ψnew to E. Then, go to Step 2.
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4.2 HyRRT Algorithm

Following the overview in Section 4.1, the proposed algorithm is given in Al-
gorithm 1. The inputs of Algorithm 1 are the problem P = (X0, Xf , Xu, (C, f,D, g)),
the input library (UC ,UD), a parameter pn ∈ (0, 1), which tunes the prob-
ability of proceeding with the flow regime or the jump regime, an upper
bound K ∈ N>0 for the number of iterations to execute, and two tunable
sets Xc ⊃ C ′ and Xd ⊃ D′, which act as constraints in finding a closest
vertex to xrand. Each function in Algorithm 1 is defined next.

4.2.1 T .init(X0)

The function call T .init is used to initialize a search tree T = (V,E). It
randomly selects a finite number of points from X0. For each sampling point
x0, a vertex v0 associated with x0 is added to V . At this step, no edge is
added to E.

4.2.2 xrand←random state(S)

The function call random state randomly selects a point from the set S ⊂
Rn. It is designed to select from C ′ and D′ separately depending on the value
of r rather than to select from C ′∪D′. The reason is that if C ′ (D′) has zero
measure while D′ (C ′) does not, the probability that the point selected from
C ′∪D′ lies in C ′ (D′, respectively) is zero, which would prevent establishing
probabilistic completeness.

4.2.3 vcur←nearest neighbor(xrand,T ,H, f lag)

The function call nearest neighbor searches for a vertex vcur in the search
tree T = (V,E) such that its associated state value has minimal distance to
xrand. This function is implemented as follows.

• When flag = flow, the following optimization problem is solved over
Xc.

Problem 2. Given a hybrid system H = (C, f,D, g), xrand ∈ C ′, and
a search tree T = (V,E), solve

arg min
v∈V

|xv − xrand|

s.t. xv ∈ Xc.
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• When flag = jump, the following optimization problem is solved over
Xd.

Problem 3. Given a hybrid system H = (C, f,D, g), xrand ∈ D′, and
a search tree T = (V,E), solve

arg min
v∈V

|xv − xrand|

s.t. xv ∈ Xd.

The data of Problem 2 and Problem 3 comes from the arguments of the
nearest neighbor function call. This optimization problem can be solved
by traversing all the vertices in T = (V,E).

4.2.4 return← new state(xrand, vcur, (UC ,UD),H, Xu,
xnew, ψnew)

If xvcur ∈ C ′\D′ (xvcur∈D′\C ′), the function call new state generates a new
solution pair ψnew to hybrid system H starting from xvcur by applying a
input signal ũ (an input value uD) randomly selected from UC (UD, respec-
tively). If xvcur∈ C ′ ∩ D′, then this function generates ψnew by randomly
selecting flows or jump. The final state of ψnew is denoted as xnew.

Note that the choices of inputs are random. Some RRT variants choose
the optimal input that drives xnew closest to xrand. However, [13] proves
that such a choice makes the RRT algorithm probabilistically incomplete.
After ψnew and xnew are generated, the function new state checks if there
exists (t, j) ∈ domψnew such that ψnew(t, j) ∈ Xu. If so, then ψnew intersects
with the unsafe set and new state returns false. Otherwise, this function
returns true.

4.2.5 vnew←T .add vertex(xnew) and T .add edge(vcur, vnew, ψnew)

The function call T .add vertex(xnew) adds a new vertex vnew associated
with xnew to T and returns vnew. The function call T .add edge(vcur, vnew, ψnew)
adds a new edge enew = (vcur, vnew) associated with ψnew to T .

4.3 Solution Checking during HyRRT Construction

When the function call extend returns Reached or Advanced, a solution
checking function is employed to check if a path in T can be used to construct
a motion plan to the given motion planning problem. If this function finds a
path p = ((v0, v1), (v1, v2), ..., (vn−1, vn)) =: (e0, e1, ..., en−1) in T such that
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1) xv0 ∈ X0 and 2) xvn ∈ Xf , then the solution pair ψ̃p is a motion plan to
the given motion planning problem. In practice, item 2) is too restrictive.
Given ε > 0 representing the tolerance with this condition, we implement
item 2) as dist(xvn , Xf ) ≤ ε.

Algorithm 1 HyRRT algorithm

Input: X0, Xf , Xu,H = (C, f,D, g), (UC ,UD), pn ∈ (0, 1), K ∈ N>0

1: T .init(X0);
2: for k = 1 to K do
3: randomly select a real number r from [0, 1];
4: if r ≤ pn then
5: xrand ← random state(C ′);
6: extend(T , xrand, (UC ,UD),H, Xu, f low);
7: else
8: xrand ← random state(D′);
9: extend(T , xrand, (UC ,UD),H, Xu, jump);

10: end if
11: end for
12: return T ;

extend(T , x, (UC ,UD),H, Xu, f lag)

1: vcur ← nearest neighbor(x, T ,H, f lag);
2: if new state(x, vcur, (UC ,UD),H, Xu, xnew, ψnew) then
3: vnew ← T .add vertex(xnew);
4: T .add edge(vcur, vnew, ψnew);
5: if xnew == x then
6: return Reached;
7: else
8: return Advanced;
9: end if

10: end if
11: return Trapped;

5 Probabilistic Completeness Analysis

This section analyzes the probabilistic completeness property of HyRRT
algorithm. Probabilistic completeness means that the probability that the
planner fails to return a motion plan, if it exists, approaches zero as the
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number of samples approaches infinity. Section 5.1 presents the preliminaries
to establish the probabilistic completeness. Section 5.2 presents our main
result showing that the HyRRT algorithm is probabilistically complete under
certain assumptions.

5.1 Preliminaries about Probabilistic Completeness

The following defines the clearance of a motion plan.

Definition 5.1. (clearance of a solution pair) Given a motion plan ψ =
(φ, u) to the motion planning problem P = (X0, Xf , Xu, (C, f,D, g)), the
clearance of ψ = (φ, u) is equal to the maximal δclear > 0 if the following
hold:

1) For all (t, j) ∈ domψ such that Ij has nonempty interior, (φ(t, j) +
δclearB, u(t, j) + δclearB) ⊂ C;

2) For all (t, j) ∈ domψ such that (t, j+1) ∈ domψ, (φ(t, j)+δclearB, u(t, j)+
δclearB) ⊂ D;

3) For all (t, j) ∈ domψ, (φ(t, j) + δclearB, u(t, j) + δclearB) ∩Xu = ∅.

The following assumption is imposed on the input library.

Assumption 5.2. The input library (UC ,UD) is such that

1) Each input signal in UC is constant and UC includes all possible in-
put signals such that their time domains are subsets of the interval
[0, Tm] for some Tm > 0 and their images belong to UC . In other
words, there exists Tm > 0 such that UC = {ũ : dom ũ = [0, T ] ⊂
[0, Tm], ũ is constant and rge ũ ∈ UC};

2) UD = UD.

The following assumption is imposed on the random selection in HyRRT.

Assumption 5.3. The probability distributions of the random selection in
the function calls T.init, random state, and new state are the uniform dis-
tribution.

The following assumptions are imposed on the flow map f and the jump
map g of the hybrid system H in (1).
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Assumption 5.4. The flow map f is Lipschitz continuous. In particu-
lar, there exist Kf

x ,K
f
u ∈ R>0 such that, for all (x0, x1, u0, u1) such that

(x0, u0) ∈ C, (x0, u1) ∈ C, and (x1, u0) ∈ C,

|f(x0, u0)− f(x1, u0)| ≤ Kf
x |x0 − x1|

|f(x0, u0)− f(x0, u1)| ≤ Kf
u |u0 − u1|.

Assumption 5.5. The jump map g is such that there exist Kg
x ∈ R>0 and

Kg
u ∈ R>0 such that, for all (x0, u0) ∈ D and (x1, u1) ∈ D,

|g(x0, u0)− g(x1, u1)| ≤ Kg
x|x0 − x1|+Kg

u|u0 − u1|.

The following assumption assumes that the existing motion plan is away
from the boundary of initial state set, final state set, and unsafe set, and
uses a piecewise-constant input during flows.

Assumption 5.6. Given a motion planning problem P = (X0, Xf , Xu, (C, f,D, g)),
there exists a motion plan ψ = (φ, u) to P such that for some δ′ > 0

1. φ(0, 0) + δ′B ⊂ X0;

2. φ(T, J) + δ′B ⊂ Xf , where (T, J) = max domψ;

3. for all (t, j) ∈ domψ, (φ(t, j) + δ′B, u(t, j) + δ′B) ∩Xu = ∅;

4. for all j ∈ N such that Ij has nonempty interior, t 7→ u(t, j) is piece-
wise constant with resolution ∆t.

5.2 Inflated Hybrid System and Main Result

In the probabilistic completeness result in [10, Theorem 2], a motion plan
with positive clearance is assumed to exist. However, such assumption is re-
strictive for hybrid systems. Indeed, if the motion plan reaches the boundary
of the flow set or of the jump set, then the motion plan has no clearance. To
overcome this issue and to assure that HyRRT is probabilistically complete,
the hybrid system H = (C, f,D, g) is modified as follows.

Definition 5.7. (δ-inflation of hybrid system) Given a hybrid system H =
(C, f,D, g) and δ > 0, the δ-inflation of the hybrid system H, denoted Hδ,
is given by

Hδ :

{
ẋ = fδ(x, u) (x, u) ∈ Cδ
x+ = gδ(x, u) (x, u) ∈ Dδ

(4)

where
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1) Cδ := {(x, u) ∈ Rn × Rm : ∃(y, v) ∈ C such that x ∈ y + δB, u ∈
v + δB},

2) fδ(x, u) := f(x, u) ∀(x, u) ∈ Cδ,

3) Dδ := {(x, u) ∈ Rn × Rm : ∃(y, v) ∈ D such that x ∈ y + δB, u ∈
v + δB},

4) gδ(x, u) := g(x, u) ∀(x, u) ∈ Dδ.

Note that any solution to H in (1) is a solution to its inflation in (4).
The clearance property in Definition 5.1 is satisfied for free since items 1)
and 2) therein are satisfied by constructing Cδ and Dδ, and item 3) therein
is satisfied by item 3) in Assumption 5.6. Next, we state our main result.

Theorem 5.8. Given a motion planning problem P = (X0, Xf , Xu, (C, f,D, g)),
suppose that Assumptions 5.2, 5.3, 5.4, and 5.5 are satisfied and that there
exists a motion plan (φ, u) to P satisfying Assumption 5.6 for some δ′ > 0.
When HyRRT is used to solve the problem Pδ = (X0, Xf , Xu, (Cδ, fδ, Dδ, gδ)),
where, for some δ > 0, (Cδ, fδ, Dδ, gδ) denotes the δ-inflation of (C, f,D, g)
in (4), the probability that HyRRT fails to find a motion plan ψ′ = (φ′, u′)
to Pδ such that φ′ is (τ̃ , δ̃)-close to φ after k iterations is at most a exp(−bk),
for some constant a, b ∈ R>0, where (T, J) = max domψ, (T ′, J ′) = max domψ′,
τ̃ = max{T + J, T ′ + J ′}, and δ̃ = min{δ, δ′}.

6 HyRRT Software Tool for Motion Planning for
Hybrid Systems and Examples

Algorithm 1 leads to a software tool1 to solve the motion planning prob-
lems for hybrid systems. This software only requires the motion planning
problem data (X0, Xf , Xu, (C, f,D, g)), an input library (UC ,UD), a tunable
parameter pn ∈ (0, 1), an upper bound K over the iteration number and two
constraint sets Xc and Xd. The tool is illustrated in Example 3.1. We have
successfully applied HyRRT to other hybrid systems, including the actuated
bouncing ball and a point-mass robotics manipulator.

Example 6.1. (Walking robot system in Example 3.1, revisited) The sim-
ulation result in Figure 2 with tolerance ε set to 0.3 shows that HyRRT is
able to solve the instance of motion planning problem for the walking robot.

1Code at https://github.com/HybridSystemsLab/hybridRRT.
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In this simulation, the constraint set Xc is chosen as {(x, a) ∈ R6 × R3 :
h(x) ≥ −s} and Xd as {(x, a) ∈ R6×R3 : h(x) = 0, ωp ≥ −s} with a tunable
parameter s set to 0, 0.3, 0.5, 1, and 2, such that C = Xc|s=0 ( Xc|s=0.3 (
Xc|s=0.5 ( Xc|s=1 ( Xc|s=2 and D = Xd|s=0 ( Xd|s=0.3 ( Xd|s=0.5 (
Xd|s=1 ( Xd|s=2.

The simulation is implemented in MATLAB and processed by a 3.5 GHz
Intel Core i5 processor. The simulation takes 71.5/85.3/99.4/167.7/242.8
seconds with s set to 0/0.3/0.5/1.0/2.0, respectively. The simulation takes
at least 71.5 seconds to finish. Compared with the forward/backward propa-
gation algorithm based on breadth-first search which takes 1608.2 seconds to
solve the same problem, the improvement provided by the rapid exploration
is significant: 95.5% computation time improvement. It is also observed
that as the sets Xc and Xd grow, HyRRT considers more vertices in solving
Problems 2 and 3 leading to higher computation time.
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Figure 2: Selected state trajectories of the generated motion plan for the
walking robot system. In each figure above, the green and blue squares
denote the corresponding initial and final state components, respectively.

The software tool also succeeds in finding motion plans for the actuated
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bouncing ball and point-mass robotics manipulator systems.

7 Conclusion and Future Work

In this paper, a HyRRT algorithm is proposed to solve motion planning
problems for hybrid systems. The proposed algorithm is illustrated in the
walking robot example and the results show its capacity to solve the prob-
lem. In addition, this paper provides a result showing HyRRT algorithm is
probabilistically complete under mild assumptions. Future research direc-
tion includes the optimal motion planning.
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