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Data-driven distributionally robust MPC
for systems with uncertain dynamics

Francesco Micheli, Tyler Summers, John Lygeros

Abstract— We present a novel data-driven distributionally
robust Model Predictive Control formulation for unknown
discrete-time linear time-invariant systems affected by unknown
and possibly unbounded additive uncertainties. We use off-line
collected data and an approximate model of the dynamics to
formulate a finite-horizon optimization problem. To account
for both the uncertainty related to the dynamics and the
disturbance acting on the system, we resort to a distributionally
robust formulation that optimizes the cost expectation while
satisfying Conditional Value-at-Risk constraints with respect
to the worst-case probability distributions of the uncertainties
within an ambiguity set defined using the Wasserstein metric.
Using results from the distributionally robust optimization
literature we derive a tractable finite-dimensional convex op-
timization problem with finite-sample guarantees for the class
of convex piecewise affine cost and constraint functions. The
performance of the proposed algorithm is demonstrated in
closed-loop simulation on a simple numerical example.

I. INTRODUCTION

Model Predictive Control (MPC) relies on a model of the
system dynamics to repeatedly solve, at each time-step, a
Finite-Horizon Optimal Control (FHOC) problem subject to
input and state constraints. Control performance is related to
the quality of the open-loop predictions, making MPC sus-
ceptible to uncertainties in the prediction model. Uncertainty
is present in many practically relevant control applications, as
both the dynamics and the disturbance distribution are only
approximately known or must be estimated from data. Hence,
in the last two decades, robust and stochastic MPC have
been developed to cope explicitly with uncertainty whenever
the robustness that might be implicitly provided by feedback
from deterministic MPC is insufficient.

Robust MPC (RMPC) [1] relies on the assumption of
bounded uncertainties to solve a worst-case optimization
problem. Tube-based formulations [2], [3] have been devel-
oped to account for both the uncertainty on the model and
on the disturbance realizations. Since RMPC accounts for
all possible realization of the uncertainties, thus neglecting
any available distributional information, it often results in a
conservative controller.

When distributional information on the model uncertainty
and disturbance is available, Stochastic MPC (SMPC) can
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reduce the conservatism of RMPC by enforcing constraints
to hold in probability [4], [5]. Unfortunately, analytical solu-
tions to SMPC are only available under specific assumptions
on the uncertainties distributions. Alternatively, randomized
methods such as the sample average approximation [6] and
the scenario approach [7] can be employed to reformulate
the stochastic problem into a large, but finite dimensional,
deterministic program. Since randomized methods leverage
sampling, they can handle generic distributions and can be
applied when these are only accessible through sampling.
Applications of the scenario approach for a SMPC with
uncertain dynamics and unbounded stochastic disturbance
are analyzed in [8] and [9], where the scenarios are obtained
by sampling the dynamics and the disturbance distributions.

Crucially, RMPC and SMPC rely on specific assumptions
on the disturbances or, in the case of the randomized meth-
ods, availability of large amount of data is required to provide
tight probabilistic guarantees. In many situations, we might
only have access to an approximate dynamics and limited
amount of data regarding disturbance process, resulting in
uncertainty on the dynamics and on disturbance distribu-
tion. We therefore resort to a Distributionally Robust MPC
(DRMPC) formulation that solves a stochastic optimization
problem with respect to the worst-case probability distribu-
tion within an ambiguity set. This allows to avoid the ex-
cessive conservatism of RMPC while protecting against the
distributional mismatch that can negatively impact SMPC.

Lately, a number of works developed DRMPC formula-
tion to robustify against additive disturbances or uncertain
constraints considering moment-based [10], [11], [12] and
Wasserstein-based [13], [14], [15] uncertainty sets. None of
these approaches directly addresses the issue of uncertainty
in the system dynamics parameters; they instead focus on a
limited uncertainty representation from additive noise only.
This is a fundamental aspect to consider whenever the system
is too complex to be precisely modeled and an approximate
model is obtained from limited data or when the controller
needs to be robust against plant changes resulting from
production variability or system aging.

In this work we propose a data-driven DRMPC formu-
lation that robustifies against both the uncertainty on the
approximate dynamics and the uncertainty on the additive
disturbance acting on the system. Unlike earlier works on
DRMPC, we directly robustify against the distributional
mismatch in the predicted state trajectories. We do so by
defining the ambiguity set as a ball centered on the em-
pirical distribution given by the predictions obtained with
the uncertain dynamics and radius defined with respect to



the Wasserstein metric. This allows us to capture both the
uncertainty in the approximate dynamics and the uncertainty
on the disturbance distributions. Leveraging earlier results
from the distributionally robust literature we derive finite
sample guarantees and present tractable finite-dimensional
convex formulations for the DRMPC problem with worst-
case expectation cost and Conditional Value-at-Risk con-
straints. The derived formulation generalizes previous works
on DRMPC that only address the effect of the additive
disturbance and consider known dynamics. Whenever the
dynamics can be considered exactly known, the formulation
reduces to a DRMPC with only additive uncertainty, high-
lighting the consistency of the approach.

Outline: The remainder of this paper is organized as
follows. In Section II we introduce the problem setting and
formally state the distributionally robust control problem.
In Section III we derive finite sample guarantees for the
DRMPC problem with worst-case expectation cost and Con-
ditional Value-at-Risk constraints. Section IV demonstrates
the effectiveness of the proposed algorithm on a simple
closed-loop example and Section V concludes the paper.

Notation: We denote by δx the Dirac distribution at x. We
denote by ∥ · ∥ := ∥ · ∥2 the standard Euclidean distance, for
matrix norms the same symbol is used to denote the norm
induced by the 2-norm. We define by (·)+ := max{·, 0}.

II. PROBLEM FORMULATION

Consider the discrete-time linear time-invariant (LTI) sys-
tem subject to additive disturbances

xk+1 = Āxk + B̄uk + wk ,

with state xk ∈ Rn, control input uk ∈ Rm and disturbance
wk ∈ Rn distributed according to a unknown probability
distribution Pw over the unknown and possibly unbounded
support set W ⊆ Rn. We assume that the state is measured,
but that we do not have access to the true system dynamics.

We introduce the compact T -step formulation of the
dynamics

y = L̄z + ξ (1)
with

y =


x1

x2

...
xT

 , u =


u0

u1

...
uT−1

 , w =


w0

w1

...
wT−1

 , z =

[
x0

u

]
, ξ =H̄w,

L̄=


Ā B̄ 0n×m · · · 0n×m

Ā2 ĀB̄ B̄
. . .

...
...

...
. . . . . . 0n×m

ĀT ĀT−1B̄ · · · ĀB̄ B̄

, H̄=


In×n 0n×n · · · 0n×n

Ā In×n
. . .

...
...

. . . . . . 0n×n
ĀT−1 · · · Ā In×n

.
The future state sequence y depends on the initial condition
x0, the control input sequence u and the multi-step distur-
bance ξ ∈ Ξ ⊆ RnT distributed according to Pξ. We also
define Py|z as the probability distribution of y resulting from
the dynamics (1) for given initial condition and control input
sequence.

We are interested in designing a receding horizon predic-
tive controller that minimizes a given cost function over a

finite horizon T . At each time τ we would like to solve the
finite horizon optimal control (FHOC) problem

J̄τ := min
z

Ey∼Py|z [h (y, z)]

s.t. z ∈ Zτ

CVaR
y∼Py|z
1−β (g(y, z)) ≤ 0 .

(2)

The set Zτ includes a constraint that sets x0 equal to the
measured value of the state at the time τ when (2) is solved,
and possibly other constraints that we want to impose on
the input trajectory. Since the future states y are uncertain,
we enforce the constraint g (y, z) ≤ 0 with g (y, z) : RnT ×
RnT → R as a Conditional Value-at-Risk (CVaR) constraint.

Definition 1 (Conditional Value-at-Risk). For a random
variable ω ∈ Ω ⊆ Rr with distribution Pω and a function
ϕ : Rr → R, the CVaR of level β is defined as

CVaRω∼Pω

1−β (ϕ(ω)) := inf
t∈R

[
β−1 Eω∼Pω

[
(ϕ(ω) + t)+

]
− t
]
.

A. The sample average approximation

Since L̄ and Pξ are unknown, (2) cannot be solved directly.
We assume the availability of a dataset DN,T comprising
N T -step input-state trajectories {zi,yi}, i = 1, . . . , N ,
collected by applying an input trajectory ui of length T
starting from an initial condition xi

0. We also assume to
have access to an approximate T -step linear predictor L̂,
obtained from a separate identification procedure, and make
the following assumption

Assumption 2. For a given confidence level α ∈ (0, 1), let
γ(α) : (0, 1) → R be a function such that

PID
{∥∥∥L̄− L̂

∥∥∥ ≤ γ(α)
}
≥ 1− α .

With PID the probability related to the identification process.

With this assumption we essentially bound the mis-
match between the approximate and true dynamics. Refer-
ences [16], [17], [18] provide conditions for Assumption 2
to hold, when the prediction model is obtained by linear
regression from historical data. Nonetheless, the resulting
theoretical bounds can be quite conservative in practice [16].

We can use the data in DN,T and L̂ to compute N
approximate T -step residuals

ξ̂i := yi − L̂zi , i = 1, . . . , N . (3)
Given some initial condition x0 and control input trajectory
u, we can use the multi-step predictor L̂ and the multi-step
residuals obtained in (3) to compute approximate multi-step
predictions as

ŷi(z) := L̂z + ξ̂i , i = 1, . . . , N . (4)
In the spirit of the Sample Average Approximation

(SAA) [6], we can approximate the solution of (2) by
ĴSAA := min

z
Ey∼P̂(z) [h (y, z)]

s.t. z ∈ Zτ

CVaRy∼P̂(z)
1−β (g(y, z)) ≤ 0 ,

(5)

with

P̂(z) :=
1

N

N∑
i=1

δŷi(z)

the empirical distribution of ŷi(z), i=1, . . . , N , as in (4).



B. The distributionally robust formulation

While simple to implement, (5) can lead to poor out-of-
sample performance and cannot provide tight probabilistic
guarantees if we only have access to a limited amount of data
or when there is a mismatch between the approximate and
true dynamics. Thus, we resort to a distributionally robust
formulation of (2) to robustify against both the uncertainty
related to the approximate dynamics and the disturbance act-
ing on the system by optimizing the worst-case expectation
within an ambiguity set defined using the Wasserstein metric.
While our work generalizes to the so-called p-Wasserstein
metric with an arbitrary norm, we restrict our attention to
the 1-Wasserstein metric with the Euclidean norm.

Definition 3 (Wasserstein metric [19], [20]). Consider dis-
tributions Q1,Q2 ∈ M(Y), where M(Y) is the set of all
probability distributions Q supported on Y ⊆ RnT such
that E [∥y∥] < ∞. The Wasserstein metric dW : M(Y) ×
M(Y) → R≥0 between the distributions Q1 and Q2 is
defined as

dW (Q1,Q2) := inf

{∫
Y2

∥y1 − y2∥Π(dy1,dy2)

}
, (6)

where Π is the joint distribution of y1 and y2 with marginals
Q1 and Q2.

The distributionally robust (DR) FHOC problem can now
be written as

ĴDR := min
z

sup
Q∈Bε(P̂(z))

Ey∼Q [h (y, z)]

s.t. z ∈ Zτ

sup
Q∈Bε(P̂(z))

CVaRy∼Q
1−β (g(y, z)) ≤ 0 ,

(7)

where the ambiguity set
Bε
(
P̂(z)

)
:=
{
Q ∈ M(Y)

∣∣∣dW (
P̂(z),Q

)
≤ ε
}

is defined as a ball of radius ε with respect to the Wasserstein
metric (6), centered on the empirical distribution P̂(z). Dif-
ferently from other approaches, e.g. [13], [14], we define the
center of the ambiguity set as the empirical distribution of the
T -step predictions ŷi(z), i = 1, . . . , N . As a consequence,
the ambiguity set not only depends on the offline collected
trajectories and on the approximate predictor, but also on
the optimization variable z, i.e., on the initial condition x0

and the control inputs sequence u. Notice that separately
formulating the worst-case in the cost and in the constraints
might introduce some conservatism as the solution robustifies
against two, possibly different, worst-case distributions.

III. MAIN RESULTS/FINITE SAMPLE GUARANTEES

We now want to derive a lower bound on the radius ε that
guarantees, with high probability, that the true distribution
Py|z is contained in the ambiguity set Bε(P̂(z)). This will
allow us to show that if the DR Problem (7) is feasible and
the minimizer z∗ attains an optimal cost ĴDR(z∗), then,
with high confidence, z∗ is a feasible solution to the original
Problem (2) and the resulting cost J̄(z∗) is upper bounded
by ĴDR(z∗).

We require a technical assumption on the distribution of
the multi-step noise ξ = H̄w.

Assumption 4 (Light-tail assumption). For some constants
a > 1 and γ > 0

Ea,b = E
[
eb∥ξ∥

a
]
< +∞ .

This assumption is a condition on the decay rate of the tail
of the probability distribution Pw and it is trivially satisfied
when w ∼ Pw is sub-Gaussian or when W is compact.

To help us in the derivation of the upcoming proofs, we
define the distribution

P̄(z) :=
1

N

N∑
i=1

δȳi(z) ,

where
ȳi(z) :=L̄z + ξ̄i, for i = 1, . . . , N ,

ξ̄i :=yi − L̄zi , for i = 1, . . . , N .

For given initial condition and control input sequence z, the
future state prediction ȳi(z), i = 1, . . . , N , is computed
using the true (unknown) multi-step dynamics L̄ and the true
multi-step residuals ξ̄i, i = 1, . . . , N . Since we employed
here the true dynamics to derive the residuals from the
available data and to compute the prediction, P̄(z) is an
empirical sampled version of the true distribution Py|z . Note
that we introduced these objects for analysis purposes only
and, since L̄ is unknown, we cannot compute them.

To obtain the ambiguity set radius ε, we start by upper
bounding the Wasserstein distance dW (P̂(z),Py|z) between
the empirical distribution obtained with the approximate
dynamics P̂(z) and the true unknown distribution Py|z ,
inspired by [21]. We apply the triangle inequality to obtain

dW

(
P̂(z),Py|z

)
≤ dW

(
P̂(z), P̄(z)

)
+ dW

(
P̄(z),Py|z

)
.

With the following lemmas we upper bound, uniformly in z,
the terms appearing on the right-hand side.

Lemma 5. Under Assumption 2, let α specify a risk level
with α ∈ (0, 1). Then, for each z ∈ Zτ

PID

{
dW

(
P̂(z), P̄(z)

)
≥ γ

(α
2

) 1

N

N∑
i=1

∥∥z − zi
∥∥} ≤ α

2
.

Proof.

dW

(
P̂(z), P̄(z)

)
≤ 1

N

N∑
i=1

∥∥ŷi(z)− ȳi(z)
∥∥

=
1

N

N∑
i=1

∥∥∥(L̂z + ξ̂i
)
−
(
L̄z + ξ̄i

)∥∥∥
=

1

N

N∑
i=1

∥∥∥(L̂z − L̄z
)
+
(
L̄zi − L̂zi

)∥∥∥
≤ 1

N

N∑
i=1

(∥∥∥L̂− L̄
∥∥∥ ∥∥z − zi

∥∥) ,

where the first step follows from the definition of Wasserstein
distance and the last step from the fact that the matrix norm
is consistent with the vector norm that induced it. Therefore,

PID

{
dW

(
P̂(z), P̄(z)

)
≥ γ

(α
2

)( 1

N

N∑
i=1

∥∥z − zi
∥∥)}

≤ PID

{∥∥∥L̂−L̄
∥∥∥ 1

N

N∑
i=1

∥∥z−zi
∥∥ ≥ γ

(α
2

) 1

N

N∑
i=1

∥∥z−zi
∥∥} ≤ α

2
.



The derived bound on the distance dW (P̂(z), P̄(z)) de-
pends on the model mismatch ∥L̂− L̄∥ and on the average
distance between the z and the collected zi, i = 1, . . . , N .

Lemma 6. ([22, Theorem 2]): Under Assumption 4, for
nT > 2, for all κ > 0, N ∈ N, and z ∈ Zτ

PN
{
dW

(
P̄(z),Py|z

)
≥ κ

}
≤

{
c1 exp

(
−c2NκnT

)
if κ ≤ 1

c1 exp (−c2Nκa) if κ > 1
,

where PN is the N -fold distribution of the data generating
process (1). The positive constants c1 and c2 depend on the
dimensions of ξ and on the constants a, b and Ea,b.

We are now in the position to prove a finite sample
guarantee result.
Theorem 7. Under Assumptions 2 and 4, and for a risk level
α ∈ (0, 1), define the radius of the ambiguity set

ε(α,z) := ε1(α)

(
1

N

N∑
i=1

∥∥z − zi
∥∥)+ ε2(α) , (8)

with

ε1(α) :=γ
(α
2

)
, ε2(α) :=



(
log
(
c1

2
α

)
c2N

) 1
nT

ifN≥
log
(
c1

2
α

)
c2N(

log
(
c1

2
α

)
c2N

) 1
a

ifN<
log
(
c1

2
α

)
c2N

.

Let ĴDR (z∗) and z∗ be the optimal value and a feasible
optimizer of the distributionally robust FHOC Problem (7)
with decision-dependent ambiguity set Bε(P̂(z)) of radius
ε = ε(α,z) as defined in (8). Then, P

{
J̄ (z∗) ≤ ĴDR (z∗)

}
≥ 1− α

P
{

CVaR
y∼Py|z∗

1−β (g(y, z∗)) ≤ 0
}
≥ 1− α

,

where P = PID × PN .

Proof. The claim is a direct consequence of Lemma 6 and
Lemma 5. Choosing ε = ε(α,z) as in (8) ensures that

P
{
dW

(
P̂(z),Py|z

)
≥ ε(α,z)

}
≤

≤ PID
{
dW

(
P̂(z), P̄(z)

)
≥ ε1(α)

1

N

N∑
i=1

∥∥z − zi
∥∥} +

+ PN
{
dW

(
P̄(z),Py|z

)
≥ ε2(α)

}
≤ α

2
+

α

2
= α .

The claim follows from the definition of the ambiguity set
Bε(P̂(z)) and of the DR Problem (7).

The radius in (8) is the sum of two components, one
related to limited number of available samples through
Lemma 6 and the other to the error in the system dynamics
through Lemma 5. While the derivation of ε(α,z) helps us
derive theoretical guarantees, it typically leads to conserva-
tive bounds in practice. We investigate a practical data-driven
approach for choosing the radius ε(α,z) in Section IV.

The supremums over probability distributions appearing
in the DR Problem (7) make it an infinite-dimensional
optimization program. In the following theorem, leveraging
recent results in the DR optimization literature, we show that,
for the class of problems with convex piecewise affine cost
and constraint functions, Problem (7) can be reformulated as
a tractable, finite-dimensional convex program.

Theorem 8. Let Assumption 2 and Assumption 4 hold.
Let y ∈ RnT , consider a cost function h (y, z) =
maxj≤Nj hj(y, z), with hj(y, z) = ajy + bjz + cj and
a constraint function g (y, z) = maxk≤Nk

gk(y, z), with
gk(y, z)=dky+ekz+fk. Then, the DR FHOC Problem (7)
can be formulated as

ĴDR = inf
z,si

λ

(
ε1(α)

1

N

N∑
i=1

∥∥z − zi
∥∥+ ε2(α)

)
+

1

N

N∑
i=1

si

s.t. z ∈ ZCV aR

aj

(
L̂z + ξ̂i

)
+ bjz + cj ≤ si

∀ i=1, . . . , N, j=1, . . . , Nj ,

with
ZCVaR =
z∈Zτ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃ t, qi such that

θ

(
ε1(α)

1

N

N∑
i=1

∥∥z − zi
∥∥+ ε2(α)

)
+

1

N

N∑
i=1

qi ≤ tβ(
dk

(
L̂z + ξ̂i

)
+ ekz + fk + t

)
+
≤ qi

∀ i = 1, . . . , N, k = 1, . . . , Nk


,

λ = max
j≤Nj

∥aj∥ , θ = max
k≤Nk

∥dk∥ .

Proof. For a convex piecewise affine cost function h (y, z),
we can apply Corollary 5.1 of [20] to reformulate the
supremum appearing in the worst-case expectation of (7) as

sup
Q∈Bε(P̂(z))

Ey∼Q [h (y, z)] = inf
λ,si

λ ε(α,z) +
1

N

N∑
i=1

si

s.t. aj ŷi(z) + bjz + cj ≤ si

∥aj∥ ≤ λ

∀ i=1, . . . , N, j=1, . . . , Nj .

(9)

From the definition of CVaR, the constraints in Problem (7)
can be written as the set

ZCVaR =

z ∈ Zτ

∣∣∣∣∣∣ sup
Q∈Bε(P̂(z))

CVaRy∼Q
1−β (g(y, z)) ≤ 0


=

z ∈ Zτ

∣∣∣∣∣∣ sup
Q∈Bε(P̂(z))

inf
t∈R

[
Ey∼Q [(g (y, z) + t)+]− tβ

]
≤ 0

 .

For a convex piecewise affine constraint function g (y, z),
following Proposition V.1 of [23], we can reformulate the
supremum appearing in the constraint as

ZCVaR =


z ∈ Zτ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃ t, θ, qi such that

θε(α,z) +
1

N

N∑
i=1

qi ≤ tβ(
dkŷ

i(z) + ekz + fk + t
)
+
≤ qi

∥dk∥ ≤ θ

∀ i = 1, . . . , N, k = 1, . . . ,Kk


. (10)

Substituting (4) in (9) and (10), and taking the infimum
over z results in the finite-dimensional convex program

ĴDR = inf
z,si

λ ε(α,z) +
1

N

N∑
i=1

si

s.t. z ∈ ZCVaR

aj

(
L̂z + ξ̂i

)
+ bjz + cj ≤ si

λ=max
j≤Nj

∥aj∥ ∀ i=1, . . . , N, j=1, . . . , Nj



with

ZCVaR=


z∈Zτ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃ t, qi such that

θε(α,z) +
1

N

N∑
i=1

qi ≤ tβ(
dk

(
L̂z + ξ̂i

)
+ ekz + fk + t

)
+
≤ qi

θ = max
k≤Nk

∥dk∥

∀ i = 1, . . . , N, k = 1, . . . , Nk


.

Since y∈RnT , λ and θ are not optimization variable, leading
to an exact convex reformulation. As the bound on the radius
ε(α,z) holds uniformly in z, the claim follows.

IV. NUMERICAL EXAMPLE

We consider the system

xk+1 =

[
0.9 0.1
0.05 0.9

]
xk +

[
0
1

]
uk +wk,

with additive disturbance wk ∼ N (0, 0.032). We assume that
we have access to a dataset DN,T comprising N trajectories
of length T = 5, collected by applying a random input
sequence ui

k ∼ N (0, 0.52), k = 1, . . . , T , i = 1, . . . , N ,
starting from random initial conditions xi

0 ∼ N (0, 0.52),
i = 1, . . . , N . We consider cost and constraint functions

h (y, z) = ∥y(1) − 1∥1 , (11)

g (y, z) = max{[(y(1) − 1)⊤,y⊤
(2)]

⊤} , (12)
where y(1) and y(2) represent the first and the second entry
of the predicted future states, ∥ · ∥1 is the 1-norm, and 1

is a vector of ones of appropriate dimensions. The cost
function (11) requires the first entry of the state to stay
as close as possible to a constant reference of 1, while the
constraint (12) enforces y(1) to be smaller than 1 and y(2)

to be positive through a CVaR constraint of level β = 0.2.
To guarantee the existence of a feasible solution at each
MPC step, we consider a slack formulation for the CVaR
constraint, with the slack variable linearly weighted in the
cost function with a weight of 106. For all the simulations,
the initial condition is set to x0 = [0.9, 0.9]⊤ and the MPC
horizon is set to 30 steps.

To study the effect of different ambiguity set radius on the
closed-loop cost and violations, we first fix a dataset of size
of N = 10 and a closed-loop noise realization. Instead of
assuming a given L̂, we use the data in DN,T to compute a
T -step linear predictor by solving the following least-squares
minimization problem

L̂ := argmin
L

N∑
i=1

∥∥Lzi − yi
∥∥2 , (13)

under the assumption that the collected data is sufficiently
informative. To improve the quality of the predictor, we
reduce the number of unknowns by enforcing on L̂ the
block triangular causal structure of L̄. With the identi-
fied dynamics L̂ we compute the N T -step residuals as
in (3). We intentionally choose a low signal-to-noise ratio
and a small number of trajectories in the offline-collected
dataset to highlight how limited data availability and model
mismatch (in this case due to the identification process)
can hamper MPC performance. We then proceed to solve
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Fig. 1. Closed-loop cost (left) and violations (right) for different values
of ε1 and ε2.

the DRMPC for all the possible combinations of ε1, ε2 ∈
{10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 100}. The resulting
closed-loop cost and violations for different values of the
ambiguity set radius are shown in Figure 1. For small values
of the radius, the controller experiences a large number of
constraint violations, as the radius of the ambiguity set is
increased, the number of violations is reduced at the expense
of higher closed-loop costs.

As mentioned in [16], the theoretical bound on γ(α)
in Assumption 2 can be quite conservative in practice.
Moreover, the use of the triangle inequality in Theorem 7 can
introduce some extra conservatism, leading to a loose bound
on the radius ε(α,z). Informed by the expression in (8),
we aim to obtain a less conservative ambiguity set radius
by directly exploiting data to approximate the Wasserstein
distance dW (P̂(z),Py|z).

Algorithm 1: Data-driven empirical radius estimate
Input: DN,T .
Output: L̂, ε1, ε2.
1: for ℓ = 1 to N do
2: define DN−1,T

Iℓ
the leave-one-out dataset with indices

Iℓ = {1, . . . , N}\ℓ;
3: compute L̃ℓ from DN−1,T

Iℓ
by least-squares regression as in (13);

4: compute residuals ξ̃iℓ := yi − L̃ℓz
i, i = 1, . . . , N ;

5: compute Vℓ = 1
N−1

∑
i∈Iℓ

∥∥zℓ − zi
∥∥;

6: compute Eℓ = 1
N2−N

∑
i∈Iℓ

∥∥yℓ − ỹi(zℓ)
∥∥ with

ỹi(zℓ) = L̃ℓz
ℓ + ξ̃iℓ;

7: end for
8: return L̂ = 1

N

∑N
ℓ=1 L̃ℓ and {ε1 ≥ 0, ε2 ≥ 0} that minimize∑N

ℓ=1 ∥ε1Vℓ + ε2 − Eℓ∥.

In Algorithm 1 we use a leave-one-out procedure to
obtain an estimate of the dynamics and of the ambiguity
set parameters ε1 and ε2. For each leave-one-out dataset,
Eℓ is the Wasserstein distance dW (P̃i∈Iℓ(z

ℓ), P̃(zℓ)) be-
tween the leave-one-out empirical distribution P̃i∈Iℓ(z

ℓ) :=
1

N−1

∑
i∈Iℓ

δỹi(zℓ) and the one that uses all the samples
P̃(z) := 1

N

∑N
i=1 δỹi(zℓ) in z = zj . The only difference

between the two distributions is that P̃(zℓ) contains one
extra impulse in ỹℓ(zℓ). As the predictions are computed
for z = zℓ, by construction we have ỹℓ(zℓ) = yℓ inde-
pendently of the dynamics, making Eℓ the distributional



mismatch that we can expect from a new independent
observation (zℓ,yℓ) ∼ Py|z=zℓ .

In Figure 2 we compare the closed-loop cost and Closed-
loop violations for the proposed DR approach with data-
driven radius obtained as in Algorithm 1 (DRMPC) and
for SAA approach (5) (SAAMPC) that is obtained by
setting ε(α,z) = 0. We perform simulations for N =
{10, 20, 30, 40}, each repeated for 50 realizations of the
identification dataset and closed-loop noise trajectory. We
can observe that the DRMPC approach can reduce the chance
of closed-loop constraint violations, with only a limited
increase in closed-loop cost. As N increases, the uncertainty
decreases, and we observe a reduction in the performance
difference between DRMPC and SAAMPC for both closed-
loop cost and constraint violations.

V. CONCLUSIONS

We presented a novel data-driven DRMPC formulation
for unknown discrete-time linear time-invariant systems af-
fected by additive uncertainties. We obtained finite sample
probabilistic guarantees on the worst-case expectation and
CVaR constraint in the presence of uncertainty on both the
model of the dynamics and on the disturbance distribution.
We then derived a finite-dimensional tractable reformulation
of the DR problem for convex piecewise affine cost and
constraint functions. Finally, we described a simple data-
driven algorithm to obtain an empirical ambiguity set radius
estimate and tested the proposed DRMPC against the SAA
formulation. The numerical simulations demonstrated the
effectiveness of the proposed DRMPC, that achieved a strong
reduction in the number of closed-loop constraint violations
without substantial increase in the attained closed-loop cost,
even when very limited information regarding the dynamics
and the disturbance is available. Future work focuses on
the analysis of the DRMPC closed-loop properties such as
stability and recursive feasibility.
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Fig. 2. Comparison of Closed-loop cost (left) and Closed-loop violations
(right) for dataset sizes N = {10, 20, 30, 40} between SAAMPC and
DRMPC with radius tuned as in Algorithm 1.
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