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Abstract

In this manuscript, we investigate symbolic abstractions that capture the behavior of piecewise-affine systems under input
constraints and bounded external noise. This is accomplished by considering local affine feedback controllers that are jointly
designed with the symbolic model, which ensures that an alternating simulation relation between the system and the abstraction
holds. The resulting symbolic system is called a state-feedback abstraction and we show that it can be deterministic even
when the original piecewise-affine system is unstable and non-deterministic. One benefit of this approach is the fact that the
input space need not be discretized and the symbolic-input space is reduced to a finite set of controllers. When ellipsoidal
cells and affine controllers are considered, we present necessary and sufficient conditions written as a semi-definite program
for the existence of a transition and a robust upper bound on the transition cost. Two examples illustrate particular aspects of
the theory and its applicability.

I. INTRODUCTION

Over the last years, by leveraging formal verification methods, symbolic control techniques have provided a powerful
framework for the control of complex systems under logic specifications (see the books [1] and [2] for surveys on this topic).
The study of cyber-physical systems under this perspective is motivated by the increasing complexity of such dynamical
systems, which intertwine more and more aspects of digital devices with real-world tasks. Some applications are, for instance,
robotics [3], autonomous vehicles [4], biological systems [5], and temperature regulation [6]. The optimal control problem,
where the feedback controller must be designed while a given cost metric is minimized and user-defined specifications
are respected, is the main interest of the present paper and has also received some previous attention from the research
community.

For instance, in [7], the time-optimal control problem was studied under the symbolic approach leveraging the existence of
an alternating simulation relation between the symbolic and the real systems whereas, in [8], the stronger assumption of the
existence of an approximate bisimulation relation was adopted. Later, in [9], a novel method for more general undiscounted
optimal control problems was presented where the designed controller, which relies only on the symbolic (i.e., quantized)
state information, was shown to converge to the optimal one for the original system when the adopted discretization steps
are arbitrarily small. In the context of optimal control problems, the authors of [10] presented a branch-and-bound approach
for hybrid systems with linear dynamics, which uses Q-learning to improve lower bounds and model-predictive control for
obtaining upper bounds on the optimal cost function. These results were later generalized in [11] for nonlinear systems
under a hierarchical approach with different levels of discretizations that allow obtaining bounds on the objective cost.

One common point between most of these results is the fact that the input space is discretized and a growth bound
on the error between the real and the quantized state (see [12], [13]) is used to take into account the discretization error
when computing transitions of the symbolic system. Although this approach is numerically efficient and was shown to
be precise enough for control purposes, one main drawback is that in the absence of incremental stability, it yields an
over-approximation that increases the level of non-determinism in the symbolic system, as the distance between trajectories
starting close to each other can grow over time. This non-determinism may hinder the performance of optimal path-finding
algorithms such as Dijkstra and A∗ or even preclude the controller design whatsoever.

In this paper, we formalize a novel abstraction-based approach in which the transitions are not labeled by discretized
control inputs but by local memoryless state-feedback controllers that can ensure the determinism of the symbolic system,
even when the concrete system is non-deterministic and not incrementally stable. This allows the robust optimal control
design to be approximately solved as a shortest-path problem in a weighted digraph, instead of a hypergraph. In short, our
contributions are:
• We propose deterministic abstractions with transitions parameterized by local affine state-feedback controllers for non-

deterministic piecewise-affine discrete-time systems, which are shown (in Lemma 1) to be in a simulation relation with
the concrete system.

• We introduce a non-conservative numerical procedure to decide the existence of such state-feedback controllers ensuring
a tight robust upper bound on the transition cost, in the considered template. This technique leverages the power of
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Linear Matrix Inequalities (LMIs) at the local design level and is written as a convex optimization problem given in
Corollary 1.

• We state Theorem 1 that generalizes Theorem 8 in [10]. This allows the computation of an upper bound on the optimal
cost using abstractions with overlapping cells in the state-space.

Even though our design procedure for transitions demands more computational effort than other methods, such as those
based on growth-bound functions [14], the portion of the state-space on which these operations are carried out can be
reduced by leveraging lazy frameworks (such as [11]) to compute the transitions only when and where needed. Moreover,
the state-dependent nature of the symbols in each transition allow the adoption of larger discretization cells while avoiding
the discretization of the input space, which can suit better systems with large state and input spaces.

The approach we present in this paper can be related to previous work in the symbolic control literature. First, the
resulting controller can be regarded as a piecewise-affine state-dependent control function, allowing us to characterize it
as a control-driven discretization method as defined in [3]. However, differently from early abstraction techniques used
mainly in robotics applications such as [15], [16], the local controllers are synthesized prior to the path-planning problem
being solved, which allows planning only over feasible trajectories of the concrete system. Some similar methodologies, but
in slightly different contexts, were presented in [17], where feedback and open-loop controllers were combined to satisfy
specifications in the so-called “motor programs”, and in [18], in which a specific robotic system is similarly controlled, but
while relying on bisimulation relations (which are in general harder to obtain than the alternating simulation relations used
in our paper). More recently, the authors in [19] also use local feedback controllers to ensure the existence of local barrier
functions guaranteeing successful transitions between sets for continuous-time systems, and an algorithm for some robotic
systems is provided.

Also, other methodologies were successful in applying convex optimization-based techniques to synthesize abstractions,
such as [20], [21], [22], [23]. However, our method differs from these previous works as we consider, in general, a more
involved problem where transition costs are minimized in the local-control synthesis step.

Notation: The Minkowski sum is ⊕. By X � 0 (X � 0) we denote that X is a positive (semi-)definite matrix. The
convex hull of v1, . . . , vN is given as co{v1, . . . , vN}.

II. PROBLEM FORMULATION

Consider the nonlinear discrete-time system

x(k + 1) = f
(
x(k), u(k), w(k)

)
, x(0) = x0 (1)

with state x(k) ∈ X ⊆ Rnx , control input u(k) ∈ U ⊆ Rnu and exogenous input w(k) ∈ W ⊆ Rnx defined at instant
k ∈ N. The nonlinear nature of (1) makes the process of designing feedback laws u(k) = κ(x(k)) hard to deal with, in
general. The following assumption allows the derivation of a simple, yet versatile, alternative model.

Assumption 1: The set of exogenous inputs W is compact and the function f : X × U ×W → X is Locally Lipschitz
continuous.

Under Assumption 1, one can leverage the recent [24], [25] or the classical [26], [27] identification/modeling procedures
to write an alternative representation of the system (1) through a non-deterministic piecewise-affine (PWA) system

x(k + 1) ∈ F (x(k), u(k)), x(0) = x0 (2)

with
F (x, u) = {Aψ(x)x+Bψ(x)u+ gψ(x)} ⊕ Ωψ(x) (3)

where ψ : X → Ip = {1, . . . , Np} selects one of the Np subsystems, each of which is associated to a part of X . We define
ψ(x(k)) as the index of the part that contains x(k) at instant k. For each i ∈ Ip, the set of matrices (Ai, Bi, gi) defines a
nominal system within the i-th part whereas the set Ωi ⊂ Rn, with 0 ∈ Ωi, characterizes both the exogenous input w(k)
and the uncertainties generated when representing the nonlinear system (1) by the PWA system (2). As shown, for instance,
in [24, Theorem 4.6], the system (2) can be built in a way that every solution to (1) is also a solution to (2). Moreover, the
methods in [24] and [25] allow the construction of (2) under either data-based or model-based approaches, i.e., when the
non-linear model is unknown but some set of sampled trajectories are available or when the model is known and can be
simulated offline.

In this paper, we tackle an optimal control problem with a set of initial conditions X0 ⊂ X , a set of goal states X∗ ⊂ X
and a set of obstacles O ⊂ X to be avoided. The goal is to design a controller such that, for any trajectory x(k) of the
system (2) starting at a given x0 ∈ X0, a control sequence u(k) ∈ U can be generated such that there exists K ∈ N at
which x(K) enters X ∗ and the cost function

C(x, u,K) =

K−1∑

k=0

J
(
x(k), u(k)

)
(4)



is minimized, with J
(
x(k), u(k)

)
being a given stage cost. This is accomplished approximately by developing a novel

type of abstract model for the PWA system (2) such that designing a controller (fulfilling the design specifications) for the
abstract model immediately provides a controller for the PWA system guaranteeing an upper bound on the cost (4).

To adopt a symbolic control approach, let us define a transition system from (2) by the tuple S := (X ,U , F ) where
 F ⊂ X ×U ×X is the set of non-deterministic transitions defined as  F := {(x, u, x′) ∈ X ×U ×X : x′ ∈ F (x, u)}.
The inclusion (x, u, x′) ∈  F is equivalently denoted in this paper as x u

 F x′ which can be read as: “x′ ∈ X may
be reached from x ∈ X by applying input u ∈ U”. The system S has continuous state and input spaces, which can be
discretized into cells to generate a discrete non-deterministic abstraction (e.g., as in [11], [14]). This approach, however,
is likely to hinder scalability of the control design. The methodology we propose avoids discretizing the input space U by
considering instead a set of local feedback controllers κ(x) that can ensure deterministic transitions between discrete states.

III. STATE-FEEDBACK ABSTRACTIONS

In this section we discuss properties of state-feedback abstractions, which are formalized in the following definition.
Definition 1 (State-feedback abstractions): Consider a transition system given as the tuple S := (X ,U , F ). Consider

also a transition system S̃ := (Xd,K, F̃ ) where Xd is a set of cells ξ ∈ Xd such that ξ ⊂ X and the set K contains
memoryless state-feedback controllers κ : X → U .

The system S̃ is a state-feedback abstraction of S if and only if ξ κ
 F̃ ξ

′ implies that for all x ∈ ξ we have F
(
x, κ(x)

)
⊂ ξ′.

Also, the tuples in the set κ
 F̃ are called state-feedback transitions and S is said to be the corresponding concrete system

of S̃. 4
A state-feedback abstraction can be deterministic or non-deterministic. However, in this work we focus on deterministic

state-feedback abstractions as this attribute allows us to perform a symbolic control synthesis more efficiently in a digraph,
rather than on a hypergraph. Therefore, we can read ξ κ

 F̃ ξ
′ as: “for all x ∈ ξ we reach some x′ ∈ ξ′ if we take u = κ(x)”.

By definition, a controller κ is available at some state ξ ∈ Xd in a state-feedback abstraction only if for some ξ′ ∈ Xd,
when applied to the concrete system S, it maps each x ∈ ξ into some state x′ ∈ ξ′ in one time step.

Before introducing the simulation relation used in this paper, for a given set of transitions  ⊆ X × U × X , we define
the set-valued operators Post(x, , u) := {x′ ∈ X : x

u
 x′} and Available(x, ) := {u ∈ U : ∃x′ ∈ X , x u

 x′}
which enumerate, respectively, the states that may be reached from a state x under input u and the inputs u available at x.

Definition 2 (Alternating simulation relation [2]): Consider transition systems S1 = (X1,U1, 1) and S2 = (X2,U2, 2

). Given a relation R ⊆ X1 × X2, consider the extended relation Re defined by the set of (x1, x2, u1, u2) such that for
every x′2 ∈ Post(x2, 2, u2), there exists x′1 ∈ Post(x1, 1, u1) such that (x′1, x

′
2) ∈ R. If for all (x1, x2) ∈ R, and for

all u1 ∈ Available(x1, 1), there exists u2 ∈ Available(x2, 2) such that (x1, x2, u1, u2) ∈ Re then R is an alternating
simulation relation, Re is its associated extended alternating simulation relation and S2 is an alternating simulation of S1.
We denote that by S2 <AS S1. 4

With the formal definition of an alternating simulation relation stated, let us present a lemma that relates the PWA
system (2) and its state-feedback abstraction.

Lemma 1: Consider a transition system S := (X ,U , F ) and a corresponding state-feedback abstraction S̃ := (Xd,K, F̃

) given as in Definition 1. Then, S is an alternating simulation of S̃ , that is, S <AS S̃. 4
Proof: Consider the inclusion relation R := {(ξ, x) ∈ Xd × X : x ∈ ξ}. The extended relation Re is defined as

Re := {(ξ, x, κ, u) ∈ Xd × X ×K × U : x ∈ ξ, u = κ(x)}. By construction of S̃, for an arbitrary tuple (ξ, x, κ, u) ∈ Re
we have that Post(x, F , u) ⊂ ξ′ where ξ′ is the only element of Post(ξ, F̃ , κ), showing that (ξ′, x′) ∈ R for all
x′ ∈ Post(x, F , u). Finally, notice that for any (ξ, x) ∈ R and for all κ ∈ Available(ξ, F̃ ) we have u = κ(x) ∈
Available(x, F ) and, by definition, (ξ, x, κ, u) ∈ Re, showing that S is an alternating simulation of S̃.

To better illustrate the alternating simulation relation S <AS S̃ we depict in Figure 1 a tuple (ξ, x, κ, u) in the extended
alternating simulation relation Re. The shaded blue area denotes Post(x, F , u) and the shaded red area is the image of
ξ under the controller u = κ(x). As expected, for all x′ ∈ Post(x, F , u) we have x′ ∈ ξ′. Furthermore, for any pair
(ξ, x) ∈ R (i.e., that satisfies the relation x ∈ ξ) this property holds for every available controller κ ∈ Available(ξ, F̃ )
and some u ∈ U (e.g., u = κ(x)).

Finally, let us present a final result that allows us to ensure that an upper bound on the cost of a trajectory of system S
can be derived from its state-feedback abstraction. The following definition is in order.

Definition 3: A value function v : X → R is a Lyapunov-like function with stage cost J (x, u) for a symbolic system
S = (X ,U , ) in a domain Xv ⊆ X if v(x) is bounded from below within Xv and for all x ∈ Xv there exists u ∈
Available(x, ) fulfilling the Bellman inequality

v(x) ≥ J (x, u) + max
x′∈Post(x, ,u)

v(x′). (5)

Moreover, if v(x) satisfies the non-strict inequality (5) at the equality, its said to be the optimal cost-to-go function. 4



ξ ξ′

x u

κ

Fig. 1. For a transition system S and state-feedback abstraction S̃, we represent (ξ, x, κ, u) ∈ Re, i.e., the extended alternating simulation relation given
in the proof of Lemma 1.

The following theorem generalizes Theorem 8 in [10] to derive a Lyapunov-like function for an alternating simulation
based on another Lyapunov-like function of its simulated system.

Theorem 1 (Generalized from [10]): Consider transition systems S1 = (X1,U1, 1) and S2 = (X2,U2, 2) such that
S2 is an alternating simulation for S1, as given in Definition 2. Let R(x2) ⊆ X1 be the set of all x1 ∈ X1 such that (x1, x2)
are in the alternating simulation relation R. If v1 : X1 → R is a Lyapunov-like function for system S1 with cost function
J1(x1, u1) then

v2(x2) = min
x1∈R(x2)

v1(x1) (6)

is a Lyapunov-like function for S2 with any cost function J2(x2, u2) that verifies

J1(x1, u1) ≥ J2(x2, u2), ∀(x1, x2, u1, u2) ∈ Re. (7)
Proof: From the definition of v2(x2), for any x2 ∈ X2 we have v2(x2) = v1(x1) for all x1 ∈ R∗(x2) :=

arg minx1∈R(x2) v1(x1).
As v1(x1) is a Lyapunov-like function, it satisfies the Bellman inequality (5) for all x1 ∈ R∗(x2) and some input

u1 ∈ Available(x1, 1). Therefore,

J1(x1, u1) + max
x′
1∈Post(x1, 1,u1)

v1(x′1) ≤ v1(x1)

= v2(x2) (8)

Also because x1 ∈ R∗(x2) we have that x1 and x2 are in alternating simulation relation and, thus, for any u1 ∈
Available(x1, 1) (for instance, one satisfying the Bellman inequality) there exists an u2 ∈ Available(x2, 2) such that
(x1, x2, u1, u2) ∈ Re. As a consequence, we can use (7) and (8) to obtain

v2(x2) ≥ J2(x2, u2) + max
x′
1∈Post(x1, 1,u1)

v1(x′1). (9)

By the definition of the extended alternating simulation relation Re we have that (x1, x2, u1, u2) ∈ Re implies that for
any x′2 ∈ Post2(x2, 2, u2) the set Post(x1, 1, u1) ∩R(x′2) is not empty, showing that

v2(x′2) = min
x′
1∈R(x′

2)
v1(x′1)

≤ min
x′
1∈Post1(x1, 1,u1)∩R(x′

2)
v1(x′1)

≤ max
x′
1∈Post1(x1, 1,u1)∩R(x′

2)
v1(x′1)

≤ max
x′
1∈Post1(x1, 1,u1)

v1(x′1).

This, together with (9) yields
v2(x2) ≥ J2(x2, u2) + v2(x′2) (10)

for all x′2 ∈ Post2(x2, 2, u2) showing that v2(x2) is a Lyapunov-like function for S2 with cost J2(x2, u2).
The improvement of Theorem 1 with respect to Theorem 8 in [10] is that it allows that more than one x1 belongs to R(x2)

whereas in [10] it was imposed that R(x2) is a singleton set. This is important in our context as, in practice, this enables the
use of abstractions with overlapping cells to obtain Lyapunov-like functions for the systems they are in alternating simulation
relation with. This aspect will be further discussed in the following section.



IV. BUILDING SYMBOLIC ABSTRACTIONS WITH AFFINE-FEEDBACK CONTROLLERS

A. Transition design

An important classic result recalled in this section is the so-called S-procedure [28, Section 2.6.3], given below.
Lemma 2 (S-procedure [28]): Let N + 1 quadratic functions qi(x) = x>Rix + 2s>i x + ri, i ∈ {0, . . . , N}. We have

q0(x) ≥ 0 for all x ∈ Rn such that q1(x) ≥ 0, . . . , qN (x) ≥ 0 if there exists β1 ≥ 0, . . . , βN ≥ 0 such that
[
R0 s0
s>0 r0

]
�

N∑

i=1

βi

[
Ri si
s>i ri

]
. (11)

The converse holds if N = 1. 4
The present methodology for building the symbolic abstraction can be independently carried out over the Np subsystems

of (2) and, to ease the notation, let us consider a single affine system

x(k + 1) = Ax(k) +Bu(k) + g + ω(k), x(0) = x0 (12)

where, at instant k ∈ N, x(k) ∈ X ⊆ Rnx is the state vector, u(k) ∈ U ⊆ Rnu is the control input, and ω(k) ∈ Ω :=
co{ω1, . . . , ωNω

} ⊂ Rnx is a polytopic non-deterministic disturbance. Let us consider a starting set

Bs = {x ∈ Rn : (x− c)′P (x− c) ≤ 1} (13)

and a final set
Bf = {x ∈ Rn : (x− c+)′P+(x− c+) ≤ 1}, (14)

where the positive definite matrices P, P+, and the centers c, c+, are known a priori and chosen such that ξ ⊆ Bs and
ξ′ ⊇ Bf for a given pair of cells (ξ, ξ′) ∈ Xd. Our goal is to verify whether there exists a controller κ such that u = κ(x)
ensures x′ ∈ ξ′ for all x ∈ ξ and x′ ∈ Post(x, F , u). Also, for all x ∈ ξ, the controller κ(x) must generate only valid
inputs inside Available(x, F ) ⊆ U .

In this paper we consider affine controllers of the form

κ(x) = K(x− c) + ` (15)

where K ∈ Rnu×nx and ` ∈ Rnu are designed to ensure that for all x(k) ∈ Bs we have that the control u(k) = κ(x(k)) ∈ U
implies that x(k + 1) ∈ Bf , under any ω(k) ∈ Ω. The choice of affine controllers is reasonable in our context as they can
represent local first-order approximations of continuous non-linear ones. Let us consider

U =

Nu⋂

i=1

Ūi, Ūi = {u ∈ Rnu : ||Uiu||2 ≤ 1}, (16)

for given matrices Ui of appropriate dimensions. Notice that U is the intersection of (possibly degenerated) ellipsoids.
Theorem 2: For all x(k) ∈ Bs we have x(k + 1) ∈ Bf for system (12) under the constrained affine control law (15) and

any ω(k) ∈ Ω := co{ω1, . . . , ωNω
} ⊂ Rnx if and only if there exist K ∈ Rnu×nx , ` ∈ Rnu , and scalars βi > 0, τi > 0

such that 

βiP 0 (A+BK)>

• 1− βi µ>i
• • P−1+


 � 0, i ∈ {1, . . . , Nω} (17)

with µi = g +Ac+B`+ ωi − c+ and


τiP 0 K>U>i
• 1− τi `>U>i
• • I


 � 0, i ∈ {1, . . . , Nu}, (18)

with given matrices Ui defining U in (16).
Proof: Let x̃ = [x> 1]>, consider an arbitrary ω ∈ Ω and rewrite system (12) under the control law (15) as

x̃(k + 1) = Ax̃(k), A=

[
A+BK g +B`−BKc+ ω

0 1

]
.

Similarly, define the matrices

P =

[
P −Pc
−c>P c>Pc

]
, P+ =

[
P+ −P+c+
−c>+P+ c>+P+c+

]



which can be used to equivalently redefine Bs as {x ∈ Rn : x̃>Px̃ ≤ 1} and Bf in the same fashion. Recalling the
S-procedure (Lemma 2), there exist β > 0 fulfilling the inequality

A>P+A− L � β(P − L) (19)

with L = diag(0, . . . , 0, 1), if and only if for all x(k) ∈ Bs we have x(k+1) ∈ Bf . Now, let us show that (19) is equivalent
to (17). Developing the former, we obtain

[
A>clP+Acl A>clP+χ
• χ>P+χ− 1

]
� β

[
P −Pc
• c>Pc− 1

]
,

with Acl = A+BK and χ = g +B`−BKc+ ω − c+, which is rewritten by the Schur Complement Lemma [28] as


βP −βPc A>cl
• β(c>Pc− 1) + 1 χ>

• • P−1+


 � 0

Then, multiply this last inequality to the right by

Θ =



I c 0
0 1 0
0 0 I




and to the left by its transpose to obtain


βP 0 A>cl
• 1− β c>A>cl + χ>

• • P−1+


 � 0. (20)

Given that ω ∈ Ω = co{ω1, . . . , ωNω
} we verify that this last inequality is equivalent to (17) considering some β ∈

co{β1, . . . , βNω
}.

Finally, to ensure that κ(x) ∈ U for all x ∈ Bs let us again recall the S-procedure, which allows rewriting this statement
equivalently as: there exist scalars τi > 0 such that

[
K>U>i UiK −K>U>i Ui(Kc−`)

• (Kc−`)>U>i Ui(Kc−`)

]
−L� τi(P−L),

for all i ∈ {1, . . . , Nu}, which, after applying the Schur Complement Lemma, yields


τiP −τiPc K>U>i
• τi(c

>Pc− 1) + 1 −(Kc− `)>U>i
• • I


 � 0.

Finally, multiplying this inequality to the right by Θ and to the left by its transpose yields (18), concluding the proof.

B. Optimal cost bound

To introduce a performance objective to this control design, we consider a general quadratic transition cost function of
the form

J (x, u) =



x
u
1



>

Q



x
u
1


 (21)

defined for some given positive semi-definite matrix Q that can be decomposed as Q = L>L. Notice that this form is general
enough to characterize, for instance, any quadratic cost defined as J (x, u) = (u−u0)>Qu(u−u0) + (x−x0)>Qx(x−x0)
for positive semi-definite matrices Qu, Qx and vectors u0, x0 of appropriate dimensions, or a time-cost J (x, u) = T for
some sampling-time T > 0. Even more representative costs could be considered without major difficulties by adopting a
transition-cost function defined as the maximum over several quadratic forms given as in (21) but, for sake of clarity of the
following developments, we decided to consider here the quadratic cost.

Corollary 1: For given sets Bs and Bf defined in (13)-(14), the solution to the convex-optimization problem

inf
K,`,βi≥0,τi≥0,γ≥0,J̃≥0

J̃ s.t. (17), (18), (22)


γP 0 [I K> 0]L>

• J̃ − γ [c> `> 1]L>

• • I


 � 0 (23)



satisfies J̃ = maxx∈Bs
J (x, κ(x)) where the state-feedback control κ(x) given in (15) ensures a transition from Bs to Bf

as given in Theorem 2.
Proof: The proof that J̃ is an upper bound on the stage cost J (x, u) inside Bs under the control law (15) follows

similar steps as the proof of Theorem 2. First, considering (15), one can rewrite


x
u
1


 = V

[
x
1

]
, V =



I 0
K `−Kc
0 1


 , (24)

which allows to equivalently express the stage cost (21) as J (x, κ(x)) = x̃>V >L>LV x̃. Now, consider the condition
“J̃ ≥ J (x, u) for all x ∈ Bs”. Through the S-procedure, this is equivalent to the existence of γ ≥ 0 such that

x̃>V >L>LV x̃− J̃ ≤ γ(x̃>Px̃− L), (25)

which, in turn, can be rewritten through the Schur Complement Lemma as


γP −γPc
• γ(c>Pc− 1) + J̃ [V >L>]

• • I


 � 0. (26)

Multiplying this inequality to the right by Θ and to the left by Θ> yields (23). The minimization over J̃ ensures
maxx∈Bs J (x, κ(x)) = J̃ , concluding the proof.

The convex optimization problem (22)-(23) is the core of our methodology. It not only provides an efficient way (by
semi-definite programming) to determine whether there exists a controller (15) taking all states from Bs to Bf fulfilling the
system requirements but also provides a tight upper-bound J̃ on the stage cost J (x, u). The tightness of this upper-bound
is ensured by the fact that all mathematical steps employed in the proof of Theorem 2 and Corollary 1 preserves equivalence
between statements (e.g., Schur Complement Lemma, S-procedure with N = 1, congruence transformations).

Finally, notice that the upper bound J̃ is a cost function verifying the condition of Theorem 1, allowing to use it to
determine a Lyapunov-like function for system (2) with cost (21) when a Lyapunov-like function for the symbolic system
S̃ with transition cost J̃ is provided.

Before presenting the related numerical experiments, let us present some further remarks regarding the conservatism of the
presented approach. First, let us consider a nominal system with no input constraints and no exogenous input, i.e., U = Rnu

and Ω = {0}. In an optimistic scenario where there exist ` ∈ Rnu such that Ac + B` + g = c+ (i.e., c+ is reached from
c with u = `) we would have µi = 0 in the LMI (17) and this constraint becomes simply a reminiscent of the Lyapunov
inequality (A + BK)>P+(A + BK) − βP � 0 for some β ∈ [0, 1]. If the starting and final sets Bs and Bf are chosen
to have the same size and shape, we have P+ = P . Therefore, in this setting, a necessary and sufficient condition for the
existence of a controller κ as in (15) ensuring the transition from Bs to Bf is that the pair (A,B) is stabilizable. This
provides us with a good guess for the shape of the sets Bs and Bf , which can be defined using matrices P satisfying the
stabilizability condition. Also notice that, if a state-independent control input κ = ` was considered, a necessary condition
for feasibility of (17) would be the stability of A, which is an overwhelming requirement from a control theory perspective.
Indeed, the presence of the linear term on the state in the affine feedback controllers (15) is paramount to ensure that the
state trajectories in the starting ball are not locally diverging from one another, reducing the non-determinism in the symbolic
model. One last observation is that the problem is linear in c, c+ and P−1+ . This can also allow the use of this method to
adjust the positioning of the sets Bs and Bf or the shape of P−1+ in order to attain feasibility, to better bound the transition
cost, or to search for least-violating controllers.

V. NUMERICAL EXPERIMENTS

A. One single transition

In this example we study aspects of determining a single transition for given starting and final sets Bs and Bf , as in (13)
and (14). Consider the system (12) given by A = eTAc , B =

∫ T
0
etAcBcdt, g = 0 with T = 0.5,

Ac =




0 1 0
0 0 1
1 −1 −1


 , Bc =




0
0
1


 . (27)

The control input u is constrained as |u| ≤ 10 and the exogenous input ω has entries bounded in norm by ωmax = 0.01.
Although unstable, this system is stabilizable and

P0 =




2.8106 1.6583 1.0143
1.6583 4.4629 1.4071
1.0143 1.4071 2.3453
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Fig. 2. (Section V-A) To the left, value of the upper-bound J̃ on the cost function J (x, u) for different volumes of the starting set Bs and different
contraction ratios η of the final set Bf . To the right, the closed-loop spectral radius ρ(Acl) for different volumes of the starting set Bs and varying bounds
ωmax on the exogenous disturbance ω(k).

satisfies the closed-loop Lyapunov inequality A>clP0Acl − P0 ≺ 0 for some matrix K. Then, we define Bs and Bf by
P = ν−1P0, P+ = ηP , c = 0 and c+ = [0.1 0.5 1.9]> where ν > 0 is a volume multiplier for Bs and η > 0
is a contraction ratio factor. In practice, greater values of ν imply larger volumes vol(Bs) and η verifies the equality
vol(Bf )ηnx/2 = vol(Bs). For several different values of η and ν, we solved the optimization problem (22)-(23) considering
the quadratic cost J (x, u) = x>x+ u>u.

On average, each solution to (22)-(23) was found in 0.0158 seconds on an Intelr CoreTM i7-10610U CPU 1.80 GHz×8
with 16 GB of memory and using the Julia JuMP [29] interface with the Mosek solver on Ubuntu 20.04.

In Figure 2, on the left-hand-side plot, one can notice that for increasing volumes of Bs or increasing contraction ratios η,
larger costs are obtained. Indeed, having larger volumes means that the set on which J (x, u) must be bounded increases and
higher contraction ratios η demand a larger control effort. On the right-hand side, in turn, for a fixed η = 1, we varied ωmax

to investigate the effect of the exogenous input on the closed-loop spectral radius ρ(Acl). Doing so, we noticed that allowing
for larger uncertainties ω(k) tends to shrink the spectrum of Acl and the nominal system is controlled more aggressively
(i.e, with a larger decay-rate). This can be also interpreted as the controller mapping the nominal system (e.g., ω(k) = 0)
from Bs into a smaller set inside Bf to compensate for the larger uncertainties and ensure a successful transition.

B. Optimal control

In this example we provide one possible application of the method that uses the state-feedback transition system for
the optimal control of piecewise-affine systems. Consider a system S := (X ,U , F ) with the transition function F (x, u)
defined in (3) by

A1 =

[
1.01 0.3
−0.1 1.01

]
, B1 =

[
1 0
0 1

]
, g1 =

[
−0.1
−0.1

]
,

A2 = A>1 , A3 = A1, B2 = B3 = B1, g2 = 0 and g3 = −g1. These systems are three spiral sources with unstable
equilibria at xe1 = [−0.9635 0.3654]>, xe2 = 0, and xe3 = −xe1. We also define the additive-noise sets Ω1 = Ω2 =
Ω3 = [−0.05, 0.05]2, the control-input set U = [−0.5, 0.5]2 and the state space X = [−2, 2]2. The Np = 3 partitions of X
are X1 = {x ∈ X : x1 ≤ −1}, X3 = {x ∈ X : x1 > 1}, and X2 = X \ (X1 ∪X3). The goal is to bring the state x from
the initial set X0 to a final set X∗, while avoiding the obstacle O, presented in Figure 3. The associated stage-cost function
J (x, u) is defined in (21) with Q = diag(10−2I, 0) which evenly penalize states and inputs far away from the origin. To
build a deterministic state-feedback abstraction in alternating simulation relation with the system as described in Lemma 1,
a set of balls of radius 0.2 covering the state space is adopted as cells ξ ∈ Xd. We assume that inside cells intersecting
the boundary of partitions of X the selected piecewise-affine mode is the same all over its interior and given by the mode
defined at its center. An alternative to this is to split these cells and use the S-Procedure to incorporate the respective cuts
into the design problem, but we do not proceed in this way to favor a clear illustration of the results.

We thus compute state-feedback transitions between these cells using the results in Corollary 1. To avoid solving the
corresponding optimization problem for every pair of cells, we over approximate the reachable set of each cell by the
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growth-bound proposed in [12, Theorem VIII.5] and only compute transition targeting cells with a non-empty intersection
with this over-approximation for ω = 0.

After about 206 seconds, 6984 state-feedback transitions were created among the cells, in the same computational setup
as in the previous example. Finally, applying Dijkstra’s algorithm [30, p. 86] to the reverse deterministic graph of the
state-feedback abstraction with edge costs defined by the upper bounds J̃ (calculated from each solution of (22)-(23)), we
obtained in 0.04 seconds a Lyapunov-like function for the abstraction, as given in Definition 3. Given that the upper bounds
J̃ satisfy the conditions of Theorem 1, this Lyapunov-like function can be also used for the original system, taking into
account the underlying alternating simulation relation. A simulated trajectory implementing the controller associated to the
shortest path found by Dijkstra’s algorithm and undergoing random noise inputs is depicted in Figure 3. For this problem, the
guaranteed total cost was 2.05 (obtained from the Dijkstra’s algorithm) whereas the true total cost of this specific trajectory
was 1.29, showing that the worst-case bound obtained was sufficiently close to this value. Also, the associated Lyapunov-like
function is represented for each cell in the abstraction. Although the methodology adopted in this example (discretizing the
state-space) may suffer with the curse of dimensionality, its purpose is to illustrate the state-feedback transitions developed
in this paper in optimal control problems with complex specifications.

VI. CONCLUSIONS AND FUTURE WORK

In this work we propose state-feedback transitions that are transitions between cells of a symbolic system parameterized
by local feedback controllers that are correct-by-design, i.e., satisfy the transition requirements and input constraints. These
transitions allows us to reduce the non-determinism in symbolic abstractions and to state an alternating simulation relation
with the original system. The construction of a state-feedback transition is done by solving a convex optimization problem
(with linear matrix inequalities as constraints) and a tight upper bound on the transition cost is then obtained. This allows
us to compute Lyapunov-like functions for both the symbolic and real systems. Two examples illustrate particularities and
usefulness of the presented methodology.

For future work, we seek to extend these results to design not only the transitions but also the positioning and shape of
the cells along the optimal trajectories.
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