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Quadratic approximation based heuristic for optimization-based
coordination of automated vehicles in confined areas

Stefan Kojchev1, Robert Hult2 and Jonas Fredriksson3

Abstract— We investigate the problem of coordinating mul-
tiple automated vehicles (AVs) in confined areas. This problem
can be formulated as an optimal control problem (OCP) where
the motion of the AVs is optimized such that collisions are
avoided in cross-intersections, merge crossings, and narrow
roads. The problem is combinatorial and solving it to optimality
is prohibitively difficult for all but trivial instances. For this
reason, we propose a heuristic method to obtain approximate
solutions. The heuristic comprises two stages: In the first
stage, a Mixed Integer Quadratic Program (MIQP), similar in
construction to the Quadratic Programming (QP) sub-problems
in Sequential Quadratic Programming (SQP), is solved for the
combinatorial part of the solution. In the second stage, the
combinatorial part of the solution is held fixed, and the optimal
state and control trajectories for the vehicles are obtained by
solving a Nonlinear Program (NLP). The performance of the
algorithm is demonstrated by a simulation of a non-trivial
problem instance.

I. INTRODUCTION

The idea of fully automated vehicles (AV) is receiving
substantial attention from both the public and scientific world
as significant progress towards deploying automated vehicles
has been made during the last decade. Unfortunately, many
barriers between the current state-of-the-art and large-scale
commercial application exits, especially for deployment of
automated vehicles on public roads [1]. However, in confined
areas, such as ports, mines, and logistic centers, some of
the hard challenges of public road driving are absent. In
particular, such areas are typically void of unpredictable
non-controlled actors, which dramatically reduces safety
concerns. Therefore, it is believed that confined areas present
a good opportunity for early, large-scale deployment of
automated vehicles, as part of larger commercial transport
solutions for material flow.

One of the challenges in confined areas is the safe and ef-
ficient coordination of AVs in mutually exclusive (MUTEX)
zones, such as intersections, work-stations (e.g. crushers,
loading/unloading spots, etc.), narrow roads, and, in the case
of electrified AVs, charging-stations. Adequate coordination
can lead to improved energy-efficiency and considerable
increases in productivity.
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A. Related Work

Automating and coordinating intersections for fully au-
tomated vehicles is a frequently discussed control problem,
see [2] for a comprehensive survey. The problem has been
formally shown to be NP-hard [3], and such problems are
in general difficult to solve. For this reason a number of
methods have been proposed, leveraging results from, e.g.,
solutions based on hybrid system theory [4], reinforcement
learning [5], scheduling [6], model predictive control (MPC)
[7], [8] or direct optimal control (DOC) [9], [10].

In contrast to intersection scenarios often found in the
literature, confined areas have a number of distinguishing
features. For example, in the case of intersection coordina-
tion, an approach that is often considered is to have vehicles
arriving at speed in a cutout around the intersection area
[7], [8]. This is often motivated by practical considerations;
neither the intent of the automated vehicles nor the state
of the uncertain environment can be accurately predicted
over long time-horizons. For confined areas, however, it is
possible, and desirable, to plan the motion of each vehicle
from the start of a transport mission to its end. Moreover,
a number of works on public-road applications focus on
distributed and decentralized schemes, sometimes with inter-
mittent or corrupted communication [17]. For applications at
confined sites, a central computational unit and good wireless
coverage can often be assumed. Thus, for these use cases,
we believe that a centralized approach that provides high
level control actions is favorable. A low level controller that
tracks the obtained optimal state and control trajectories will
typically be also deployed in practice, however, it is not
covered in this work.

B. Main Contribution and Outline

In this paper, we formulate the site-coordination problem
as an optimal control problem, which after transcription
results in a Mixed Integer Nonlinear Program, and propose a
two-staged heuristic method for its approximate solution. In
the first stage of the heuristic, an MIQP problem is solved to
obtain the combinatorial part of the solution, i.e., the order in
which the vehicles utilize the MUTEX-zones. In the second
stage, the combinatorial part is fixed and a continuous NLP
is solved for the optimal vehicle trajectories. The MIQP
of the first stage is formed as an approximation of the
original MINLP, in a manner similar to how the Quadratic
Programming (QP) sub-problems are formed in Sequential
Quadratic Programming (SQP) [11]. The idea of using SQP-
like methods in approximate solution of MINLPs has been
used in other works [13], [14], however, to the authors’ best
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Fig. 1. Types of conflict zones.

knowledge, it has not been adapted and applied to vehicle
coordination problems. A structurally similar heuristic was
presented in [9], where a scheduling problem is derived
from the original MINLP, with the introduction of a number
of approximations, and solved as an MIQP. While sharing
the same two-staged structure, the method presented in this
paper avoids some of the approximations and shortcom-
ings of [9], without expanding the combinatorial solution
space. In particular, the heuristic presented herein enables
easy inclusion of rear-end collision constraints, which were
previously neglected, and avoids the expensive computation
of parametric sensitivities.

In addition to the cross-intersections, we consider merge-
split and narrow road MUTEX zones. In the merge-split
MUTEX zones, the vehicles first join in on a common
patch of road which after some distance separate, and in
the narrow-roads the vehicles that are coming from different
directions join in on a common patch of road. Merge-split
and narrow roads are often found in confined sites and occur
due to the construction of the site. Although the approach
focuses on confined sites, the method of handling the mutual
exclusion zones can be extendable to other scenarios as well
(e.g., public road applications).

The remainder of the paper is organized as follows:
Section II presents a formulation of the problem that is solved
in this paper. In Section III the method for solving the stated
problem is presented, followed by Section IV where simula-
tion results illustrate the coordination algorithm. Section V
concludes the work and provides some possible extensions.

II. PROBLEM FORMULATION

In this paper, we consider a fully confined area, meaning
that non-controlled traffic participants such as pedestrians,
manually operated vehicles, bicycles, etc., are absent. Fur-
thermore, the confined road network consists of Na fully
automated vehicles with cross-intersection, path merges, path
splits, and narrow roads. In addition, we assume that the
paths of all vehicles, i.e., their routes through the road
network are known, that overtakes are prohibited, and that
no vehicle reverses.

A. Optimal Coordination Problem

The problem of finding the optimal vehicle trajectories that
avoid collisions can be stated as:

Problem 1: (Optimal coordination problem) Obtain the
optimal state and control trajectories X ∗ =

{
x∗
1, ..., x

∗
Na

}
,

U∗ =
{
u∗
1, ..., u

∗
Na

}
, given the initial state X0 =

{x1,0, ..., xNa,0}, by solving the optimization problem

min
xi,ui,OI ,OM

Na∑
i=1

Ji (xi, ui) (1a)

s.t initial states xi,0 = x̂i,0,∀i (1b)
system dynamics ∀i (1c)
state and input constraints ∀i (1d)
safety constraints ∀i (1e)

where Na is the number of vehicles, Ji(xi, ui) is the cost
function, OI ,OM are the order in which the vehicles enter
the MUTEX zones and will be formally stated in this section.

The problem is formulated in the spatial domain as it is
beneficial to optimize the trajectories of the vehicles over
their full paths. The rationale for using spatial dynamics is
that the time it takes for the vehicle to traverse a path is not
known a-priori. Thus, it is inappropriate to plan the vehicle’s
motion with time as the independent variable.

B. System dynamics and state and input constraints

The system dynamics for vehicle i ∈ 1, ..., Na in the
spatial domain can be formed using that dpi

dt = vi(t) and
dt = dpi/vi(t) and stated as

dti
dpi

=
1

vi(pi)
(2)

dxi

dpi
=

1

vi(pi)
fi(pi, xi(pi), ui(pi)) (3)

0 ≤ h(pi, xi, ui). (4)

where the position pi is the independent variable, the time ti
and xi are the vehicle state variables, where xi ∈ Rn−1

collects the remaining vehicle states, and ui ∈ Rm the
control input, with i ∈ {1, . . . , Na}. Note that what the
remaining state variable (xi) are, depends on what model is
used for the system dynamics. We assume that the functions
fi and hi, that describe the vehicle system’s dynamics and
constraints, are smooth.

C. Safety constraints

The safety constraints should ensure a collision-free cross-
ing of the conflict zone (CZ) that the vehicles encounter.
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A conflict zone is described by the entry and exit position
[pini , pouti ] on the path of each vehicle. From the known
positions, the time of entry and exit of vehicle i is tini =
ti(p

in
i ) and touti = ti(p

out
i ), respectively. In this paper, we

consider three types of conflict zones, the “intersection-like”,
“narrow road” and the “merge-split”, depicted in Figure 1.
The narrow road CZ is when two vehicles that are coming
from opposite directions have to share a common patch of
road. In the intersection-like CZ and narrow road CZ, it is
necessary to only have one vehicle inside the CZ, i.e., not
allowing the vehicle j to enter the CZ before vehicle i ̸= j
exits the CZ, or vice-versa. We let I = {I1, I2, ..., Ir0}
denote the set of all intersections and narrow roads in the
confined site, with r0 being the total number of intersection
and narrow road CZs, and Qr = {qr,1, qr,2, ..., qr,l} denote
the set of vehicles that cross an intersection or narrow road
Ir. The order in which the vehicles cross the intersection Ir is
denoted OI

r =
(
sr,1, sr,2, ..., sr,|Qr|

)
, where sr,1, sr,2, ... are

vehicle indices and we let OI =
{
OI

1 , . . . ,OI
r

}
. A sufficient

condition for collision avoidance for the r-th intersection or
narrow road CZ can be formulated as

tsr,i(p
out
sr,i) ≤ tsr,i+1

(pinsr,i+1
), i ∈ I[1,|Qr|−1], (5)

where t is determined from (2).
In the merge-split CZ case, let M = {M1,M2, ...,Mw0

}
denote a set of all merge-split zones, with w0 being the
total number of merge-split CZs in the site and Zw =
{zw,1, zw,2, ..., zw,h} denote the set of vehicles that cross
the merge-split CZ Mw. For efficiency, it is desirable to
have several vehicles in the zone at the same time, instead
of blocking the whole zone. This requires having rear-
end collision constraints once the vehicles have entered the
merge-split CZ. In this case, the order in which the vehicles
enter the zone is denoted as OM

w =
(
sw,1, sw,2, ..., sw,|Zw|

)
,

and we let OM =
{
OM

1 , . . . ,OM
w

}
. The collision avoidance

requirement for the w-th merge-split CZ is described with the
following constraints:

tsw,i
(pinsw,i

) + ∆t ≤ tsw,i+1
(pinsw,i+1

+ c) (6a)

tsw,i,ki +∆t ≤ tsw,i+1(psw,i,ki − pinsw,i
+ pinsw,i+1

+ c),

kinsw,i
≤ ki ≤ koutsw,i

(6b)

tsw,i
(poutsw,i

) + ∆t ≤ tsw,i+1
(poutsw,i+1

+ c), (6c)

i ∈ I[1,|Zw|−1].

That is, while in the CZ, the vehicles must be separated by
at least a time-period ∆t and a distance c, depending on if
vehicle j is in front of vehicle i or vice versa. This is equiv-
alent to the standard offset and time-headway formulation
often used in automotive adaptive cruise controllers.

D. A practical reformulation of the collision constraints

A common way to handle constraints such as (5) and (6) is
to introduce auxiliary binary variables and use the “big-M”
technique [12]. For example, an equivalent representation to
the constraint (5), with bsr,i,i+1 ∈ {0, 1} , i ∈ I[1,|Qr|−1]

and a sufficiently large M is

tsr,i(p
out
sr,i)− tsr,i+1(p

in
sr,i+1

) ≤ bsr,i,i+1M, (7a)

tsr,i+1
(poutsr,i+1

)− tsr,i(p
in
sr,i) ≤ (1− bsr,i,i+1)M. (7b)

In the case where bsr,i,i+1 = 0, the vehicle i + 1 is
constrained to cross the CZ after the vehicle i, with the
opposite being true if bsr,i,i+1 = 1. We collect all integer
variables for all CZs in b ∈ Zro+w0

2 .

E. Discretization

The independent variable is discretized as pi =
(pi,0, . . . , pi,Ni

), where pi,Ni
indicates the end position for

vehicle i, and the input is approximated using zero order
hold such that u(p) = ui,k, p ∈ [pi,k, pi,k+1[. The equations
(2), (3) are (numerically) integrated on this grid, giving the
“discretized” state transition relation[

ti,k+1

xi,k+1

]
= F (xi,k, ui,k, pi,k, pi,k+1) (8)

where F denotes the integration of (2), (3) from pi,k to
pi,k+1.

III. METHOD

The optimal coordination problem, Problem 1, can be
stated as a Mixed Integer Nonlinear Program (MINLP),
where the crossing order correspond to the combinatorial
(“integer part”) and the state and control trajectories corre-
spond to the “NLP part”. In essence, we can state Problem
1 as

min
W,b

J(W) (9a)

s.t. g(W) = 0 (9b)
h(W) ≤ 0 (9c)
c(W, b) ≤ 0, (9d)

where W = {X ,U}, J(W) =
∑Na

i=1 Ji (wi), g(W), h(W)
gather all equality and inequality constraints, and c(W, b) =
cw(W)+Cb are the integer constraints for the combinatorial
part of the problem with C being a matrix that captures the
influence of the integer variables.

Since finding a solution to MINLP problems is known to
be difficult, it is common to obtain approximate solutions
with heuristics. One heuristic approach used in e.g. [9],
is to use a two-staged procedure, where the integer part
of the solution first is found with a heuristic, and the
continuous part is found by solving the NLP obtained by
eliminating all other integer options from the MINLP. In
this paper, we follow this decomposition idea and propose
an alternative heuristic for the integer part than [9]. In the
confined area coordination context, the integer part of the
solution corresponds to the crossing order of the vehicles at
the MUTEX zones.

6158

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on November 29,2023 at 14:06:30 UTC from IEEE Xplore.  Restrictions apply. 



A. Crossing order heuristic

The crossing order heuristic is based on solving an MIQP
that is assembled from a quadratic approximation of (9). The
quadratic approximation is formed similarly to how the QP
sub-problems are formed in SQP methods [11]. In essence,
(9) can be reformulated as:

min
∆W,b

1

2

[
∆W
b

]T
H(W, λ, µ)

[
∆W
b

]
+

▽WJ(W)T
[
∆W
b

]
+ J(W∗∗) (10a)

s.t. g(W∗∗) + ▽Wg(W∗∗)T
[
∆W
b

]
= 0 (10b)

h(W∗∗) + ▽Wh(W∗∗)T
[
∆W
b

]
≤ 0 (10c)

cw(W∗∗) + ▽Wcw(W∗∗)T
[
∆W
b

]
+ Cb ≤ 0,

(10d)

where H(W, λ, µ) = blkdiag({Hi}Na

i=1 ,0r0+w0,r0+w0
)

is a block diagonal matrix with positive definite
Hi(wi, λi, µi) = ▽2

wi
L(wi, λi, µi) = ▽2

wi
Ji(wi) −

▽2
wi
λT
i g(wi) − ▽2

wi
µT
i h(wi), where λi, µi are the dual

variables and 0r0+w0,r0+w0 zeros of appropriate size for the
integer variables, and ∆W = W − W∗∗, with a solution
guess W∗∗.

For the heuristic used in this paper, we make the simplifi-
cation that the dual variables (λi, µi) are equal to zero. This
results in that Hi only includes the second order expansion
of the cost function, i.e., Hi(wi) = ▽2

wi
Ji(wi). The solution

guess W∗∗ can be obtained, for example, by solving the
optimization problem (1) without safety constraints (1e), or
a forward simulation of the vehicles with, for example, a
simple feedback controller.

The MIQP problem (10) can be compactly written as

min
W,b

1

2

[
W
b

]T
H

[
W
b

]
+ JT

[
W
b

]
+ α (11a)

s.t. Aeq

[
W
b

]
= beq (11b)

Aineq

[
W
b

]
≤ bineq, (11c)

where J now contains all the first order terms, α contains
the linear terms and where the constraints (10b)-(10d) are
grouped into equality constraints Aeq, beq and inequality con-
straints Aineq, bineq, respectively. The solution to the MIQP
problem provides the “approximately optimal” crossing or-
ders ÔI , ÔM that is obtained from the values of the integer
variables b.

B. Fixed-order NLP

Removing all other integer solutions than that found by
the heuristic, (1) is reduced to an NLP. Obtaining the optimal
state and control trajectories is thus found through solving

the fixed-order coordination problem

min
xi,k,ui,k

Na∑
i=1

Ji (xi,k, ui,k) (12a)

s.t (1b)− (1e), ∀i,∀k (12b)

OI = ÔI , OM = ÔM (12c)

The two stage approximation approach is summarized in
Algorithm 1.

Algorithm 1 Two stage approximation algorithm
Input: Na, I,Qr,M,Zw, vehicle paths
Output: X ∗, U∗

1: ∀i: Obtain a solution guess w∗∗
i by, e.g., solving NLP

(1) w/o safety constraints (5).
2: Calculate and form the approximation terms H,J, α.
3: Solve the MIQP (11) to get “approximately optimal”

crossing orders ÔI , ÔM.
4: Solve the fixed-order NLP (12) using ÔI , ÔM to obtain

X ∗, U∗.

IV. SIMULATION RESULTS

In this section, we present a simulation example showing
the operation and performance of the coordination algorithm.

A. Simulation setup

The vehicles are modelled as a triple integrator ...
x = u,

whereby the spatial model is:
dti
dpi
dvi
dpi
dai

dpi

 =

1
vi
ai

vi
ui

vi

, (13)

where ai is the acceleration and ui is the jerk ji. The problem
is transcribed using multiple shooting (with N shooting
points) and an Explicit Runge-Kutta-4 (ERK4) integrator.

The state constraints are chosen as bounds on the speed
and longitudinal acceleration (vi ≤ vi,k ≤ vi, ai,k ≤ ai,lon)
in order to obey speed limits and physical constraints. The
vehicles are expected to manoeuvre on curved roads, thus,
it is necessary to limit the lateral forces to avoid vehicle
stability problems, like roll over. As the one-dimensional
model that is used in this paper does not account for lateral
motion, the following constraint is enforced, as similarly
proposed in [8],(

ai,k
ai,lon

)2

+

(
κi(si,k)vi,k

ai,lat

)2

≤ 1, (14)

where ai,lat is the lateral acceleration limit and κi(pi,k) is
the road curvature, that is assumed to be available at every
point along the path.

While other objectives could be used, we consider a trade-
off between minimization of the total travel time and the
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squares of the longitudinal acceleration and longitudinal jerk:

J(xi(pi), ui(pi)) = (15)∫ pi,Ni

pi,0

(
Piai(pi)

2 +Qiji(pi)
2
) 1

vi(pi)
dpi +Riti(pi,Ni),

where Pi, Qi, Ri are the appropriate weights. The inclusion
of the acceleration and jerk in the objective can be interpreted
as a drivability measure. The objective function is integrated
with Forward Euler, leading to the “discretized” objective
function

Ji (xi,k, ui,k) = (16)
N∑

k=1

((
Pia

2
i,k +Qij

2
i,k

) ∆pi,k
vi,k

)
+Riti,N ,

with ∆pi,k = pi,k+1−pi,k. We consider a confined site with
layout shown in Figure 2. There are in total ten vehicles,
two merge-split CZs, two narrow road CZs and sixteen
intersection CZs. Every vehicle starts from an initial velocity
of 50 km/h and vehicles 5 and 10 start from a nonzero
initial time to ensure that a collision occurs if no coordinating
action is taken. The respective initial times for those vehicles
are t0,5 = 56 and t0,10 = 11.3 seconds. The chosen velocity
and acceleration bounds are vi = 3.6 km/h, vi = 90 km/h,
ai,lon = 4 m/s2, ai,lat = 2 m/s2. The weight coefficients
for the objective are: Pi = 1, Qi = 1, Ri = 10 and the
number of shooting points is N = 100 for each vehicle.
The intersection CZ is created with 5 meter margin ahead of
and behind the collision point, where as in the merge-split
and narrow road CZ the margin is 15 meters for both the
entry and exit collision point. For the merge-split CZ it is
desirable to keep at least 0.5s margin between the vehicles,
i.e. ∆t = 0.5 in (6).

We utilize the CasADi [15] toolkit and IPOPT [16] to
formulate and solve the optimization problem (12) and use
Gurobi for the MIQP (11).

B. Discussion of results

In the following, the results for this simulation scenario are
presented. In particular, we demonstrate the uncoordinated
and coordinated results for one merge-split zone, one inter-
section zone, and one narrow road, all circled over in Figure
2. The uncoordinated results are obtained as the individual
optimum of each vehicle, i.e., the speed profiles are obtained
by solving the optimization problem without any MUTEX
zone constraints.

Figure 3 and Figure 4 show the position vs. time trajecto-
ries of the two vehicles at the merge-split CZ in the uncoor-
dinated and coordinated case, respectively. The trajectories
are shifted such that position zero is the entry position of the
CZ for both vehicles. The gray rectangle depicts the CZ and
time spent inside the CZ for the 1st vehicle. The interpretation
of constraints (6) is that a collision occurs if the trajectories
intersect while both vehicles are in the CZ. Figure 3 shows
that without coordination, the second vehicle would run into
the first just after t = 20 s (the trajectories intersect). In the
coordinated case the vehicles are instead controlled to avoid

Fig. 2. Mock-up confined site area. The CZs that are investigated in the
simulation scenario are circled over in this figure.

a collision (the trajectories do not intersect) and keep at least
the specified distance at all times. Note that an intersection
between the trajectories outside the CZ is not relevant as they
are no longer on a shared road. By allowing both vehicles
to be in the CZ, and not blocking the whole zone for one
vehicle, the throughput is increased.

In the scenarios where the paths of two (or more) vehicles
intersect, it is necessary to only have one vehicle in the zone
at any given time. The reasoning for this decision is that
the CZ in this case occupies a relatively small patch of road
and blocking off the whole zone for one vehicle will not
result in a major loss of throughput. Figure 5 shows the
position-vs-position trajectory of the 1st and 3rd vehicle in
the uncoordinated and coordinated case, respectively. The red
area represents the CZ, but in this case, a collision occurs
when two vehicles are inside the CZ at the same time. This
is equivalent to all configurations where the trajectory is
inside the gray area. As the figures show, a collision occurs
in the uncoordinated case (the trajectory passes through
the red area), the coordinated vehicles satisfy the collision
constraints and avoid being in the CZ at the same time.

For the narrow road collision zones, the collision avoid-
ance is defined in the same way as in the intersection zone
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Fig. 3. Uncoordinated crossing for the merge-split CZ for the 1st and
2nd vehicle. The gray box is the occupancy time in the zone for the 1st

vehicle. While it is allowed for the 2nd vehicle to enter the CZ whilst
the 1st vehicle is in it, an intersection between the vehicles translates to a
collision between the vehicles.

Fig. 4. Coordinated crossing for the merge-split CZ for the 1st and 2nd

vehicle. The gray box is the occupancy time in the zone for the 1st vehicle.
The 2nd vehicle enters the CZ whilst the 1st vehicle is in and keeps the
desired time gap.

Fig. 5. Uncoordinated and coordinated crossing of the intersection zone. An
intersection of the depicted trajectory with the intersection zone is equivalent
to both vehicles being in the CZ at the same time.

since the road conditions allow for only one vehicle to
occupy the zone at a time. Figure 6 shows that both vehicles
are inside the zone at the same time in the uncoordinated case
(the trajectory passes through the red area). This is avoided
in the coordinated case, although with a very small margin.
The interpretation of the trajectory touching the corner of
the red area is that one vehicle enters the narrow road just
as the other exits.

Figure 7 shows the speed profiles of the vehicles for the
uncoordinated and coordinated case, where the black lines
illustrate implicit bounds on speed through the acceleration

Fig. 6. Uncoordinated and coordinated crossing of a narrow road collision
zone. An intersection of the depicted trajectory with the CZ is equivalent
to both vehicles being in the CZ at the same time.

constraint (14). As the algorithm is aware of all CZs the
vehicles encounters, it is able to avoid collisions with small
speed changes well before the vehicle arrives at the CZ. With
the objective function aiming to minimize the acceleration
and jerk, it is noticeable that the speed profiles are smooth
throughout the whole site and would not be challenging to
follow in an actual application. It is worth to highlighting
that several collisions occur in the uncoordinated case. When
the vehicles are coordinated, all collisions are avoided. For
sake of brevity, we refrain from depicting these results as the
critical behaviour is similar to the cases discussed in detail
above.

The simulation scenario is implemented in MATLAB on a
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Fig. 7. Speed profiles for the uncoordinated (dashed lines) and coordinated
(solid lines) vehicles.

2.90GHz Intel Xeon computer with 32GB of RAM. The total
solve computational time for the example is 1.973 seconds.
To be precise, the MIQP requires 0.14 seconds and the main
coordination optimal control problem requires 1.833 seconds.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a heuristic that finds
approximate solutions to the optimal coordination problem
of automated vehicles at confined sites with multiple col-
lision zones of different types. The approach optimizes the
trajectories of the vehicles over their entire path while taking
all collision zones into account. In future work, we intend to
investigate improvement on the NLP problem computation
time, closed-loop behaviour, and coupling the approach with
a safety supervisor to guarantee satisfaction of the safety
constraints.
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