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Abstract

Designing distributed optimal controllers subject to communication constraints is a difficult
problem unless structural assumptions are imposed on the underlying dynamics and information
exchange structure, e.g., sparsity, delay, or spatial invariance. In this paper, we borrow ideas
from graph signal processing and define and analyze a class of Graph Symmetric Systems (GSSs),
which are systems that are symmetric with respect to an underlying graph topology. We show
that for linear quadratic problems subject to dynamics defined by a GSS, the optimal centralized
controller is given by a novel class of graph filters with transfer function valued filter taps and
can be implemented via distributed message passing. We then propose several methods for
approximating the optimal centralized graph filter by a distributed controller only requiring
communication with a small subset of neighboring subsystems. We further provide stability
and suboptimality guarantees for the resulting distributed controllers. Finally, we empirically
demonstrate that our approach allows for a principled tradeoff between communication cost
and performance while guaranteeing stability. Our results can be viewed as a first step towards
bridging the fields of distributed optimal control and graph signal processing.

1 Introduction

Computing a distributed optimal controller in which subcontrollers have access to subsets of global
system information is in general a computationally intractable problem. Indeed, even when re-
stricted to quadratic costs, Gaussian noise, and linear dynamics, the resulting optimal controller
can be nonlinear and difficult to compute (Witsenhausen, 1968). Nevertheless, significant progress
has been made in distributed optimal controller synthesis over the past two decades by identifying
structural assumptions on the underlying dynamics and information exchange structure such that
the resulting distributed controller synthesis problem is convex.
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One such structural assumption that has been shown to lead to tractable distributed optimal
control problems is spatial invariance (Bamieh et al., 2002) (and other closely related notions of sym-
metry (Massioni and Verhaegen, 2009)). Such systems are invariant under subsystem permutations,
and have been shown to have optimal centralized controllers that are approximately distributed. In
particular, this allows for distributed controllers that enjoy stability and near-optimality guarantees
to be computed by appropriately truncating the centralized controller.

Contributions: In this paper, inspired by results from graph signal processing, we introduce the
notion of Graph Symmetric Systems (GSSs), which are systems that are symmetric with respect to
an underlying graph topology (formalized in §2-A). We show that for such systems, the resulting
Linear Quadratic (LQ) centralized optimal controller admits an efficient message passing imple-
mentation in the form of a novel class of graph filters defined by transfer function filter taps. We
subsequently propose and analyze two complementary approaches to computing near-optimal dis-
tributed controllers by truncating the centralized optimal controller subject to stability constraints.
By leveraging tools from robust System Level Synthesis (SLS) (Matni et al., 2017; Anderson et al.,
2019), we show that these truncation algorithms can be solved via convex optimization, and that the
resulting distributed controllers enjoy sub-optimality guarantees relative to the centralized optimal
controller. These results constitute an important first step towards bridging the complementary,
but traditionally disparate, fields of distributed optimal control and graph signal processing.

Related work: An alternative structural assumption for tractable distributed optimal control of
linear systems can be specified in terms of the sparsity and delay patterns of the control system. In
particular, it is possible to characterize conditions on the sparsity and delay patterns of the infor-
mation exchanged between subcontrollers relative to the propagation of signals through sparse and
delayed distributed plants such that distributed optimal control is tractable. The seminal paper
Rotkowitz and Lall (2005) introduced the notion of quadratic invariance,1 which built upon and
generalized funnel causality (Bamieh and Voulgaris, 2005), showed that so long as subcontrollers
could communicate as quickly as control signals propagated through the plant, then the resulting
distributed optimal control problem could be solved via convex optimization. This convex param-
eterization of sparse and delayed controllers has since been further generalized in the System Level
Synthesis (SLS) (Anderson et al., 2019) and Input-Output Parameterization (IOP) (Furieri et al.,
2019) frameworks, which allow for even richer classes of sparsity and delay patterns to be imposed
on distributed controllers.

A related class of distributed controllers are those based on Graph Neural Networks (GNNs).
GNNs can be viewed as graph filters followed by pointwise nonlinear activation functions (Ruiz
et al., 2021), and among other favorable properties, enjoy stability to graph perturbations (Gama
et al., 2020). While recent use of GNNs for distributed control has shown promise (Gama and
Sojoudi, 2022; Gama et al., 2022; Yang and Matni, 2021), such results currently lack strong guar-
antees of stability. We believe the results in this paper are a first step towards addressing this gap
in the literature, by explicitly connecting graph filters and distributed optimal controllers. The
direct relationship between graph filters and GNNs suggests that understanding the former will
give insight in the effects of the latter.

Notation: We use upper- and lower-case letters such as A and x to denote matrices and vectors
respectively, although lower-case letters might also be used for scalars or functions (the distinction

1We note that spatially invariant systems, as defined in Bamieh et al. (2002), also satisfy quadratic invariance.
We show in Appendix B that graph symmetric systems and controllers lead to optimal control problems satisfying
quadratic invariance.
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will be apparent from the context). For both upper- and lower-case letters, we use boldface such as
Λ and φ to denote transfer matrices or vector/scalar transfer functions.

2 The Linear Quadratic Regulator Problem for Graph Symmetric
Systems

Consider a discrete-time linear time-invariant (LTI) system composed of N interconnected scalar
subsystems, each with state xi(t) ∈ R, control input ui(t) ∈ R and which evolves under the dynamics

xi(t+ 1) =
N∑
j=1

Aijxj(t) +
N∑
j=1

Bijuj(t) + wi(t), (1)

for suitable matrices Aij , Bij describing the interaction between subsystems. Here wi(t) is an i.i.d.
zero-mean noise. We can compactly express the dynamics of the full system in terms of the joint
states x(t) = [x1(t), . . . , xN (t)]> and joint control actions u(t) = [u1(t), . . . , uN (t)]> as

x(t+ 1) = Ax(t) +Bu(t) + w(t), (2)

where (A,B) are defined such that the global dynamics (2) are consistent with the subsystem
dynamics (1).

Our goal is to find a (potentially time-varying) state-feedback controller Kt that minimizes the
cost

J
(
{x(t)}, {u(t)}

)
:= lim

T→∞

1

T

T−1∑
t=0

Ew
[
x(t)TQx(t) + u(t)TRu(t)

]
(3)

where u(t) = Kt(x(t)) and Q � 0, R � 0 are known symmetric N × N matrices. The Linear
Quadratic Regulator (LQR) problem is then given by

min
K

J
(
{x(t)}, {u(t)}

)
s. t. u(t) = Kt

(
x(t)

)
. (4)

In the centralized setting where each subsystem has access to the global state, it is well-known
that the controller that solves (4) is a linear static controller u(t) = K?x(t) where K? = −(R +
B>PB)−1B>PA and P is the unique solution to the discrete-time algebraic Ricatti equation:

P = A>PA−A>PB
(
R+B>PB

)−1
B>PA+Q. (5)

In this work, we consider a distributed variant of (4) where each subsystem can only exchange
information with a small subset of subsystems. Specifically, this communication constraint is en-
coded as a graph G = {V, E}, where V = {v1, . . . , vN} is the set of N components (nodes) and
where E ⊆ V × V is the set of the corresponding interconnections (edges). It is assumed that the
graph is undirected, i.e. (vi, vj) ∈ E if and only if (vj , vi) ∈ E . As described in the introduction,
general information exchange constraints can lead to non-convex optimal control problems (Wit-
senhausen, 1968). However, as we show later, under suitable graph symmetry assumptions on the
dynamics matrices A,B and the cost matrices Q,R, the optimal centralized controller admits a dis-
tributed message passing implementation allowing for a principled tradeoff between communication
complexity and controller performance.
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In the rest of this section, we borrow ideas from graph signal processing (Sandryhaila and Moura,
2013) and introduce the notion of graph symmetric systems. First, we introduce a convenient way to
define operations that respect the underlying communication graph structure via the graph matrix
description (GMD) S ∈ RN×N . The matrix S is such that the (i, j)th entry is zero whenever there
is no connection between components vi and vj , i.e. [S]ij = 0 if i 6= j and (vi, vj) /∈ E . Note that,
since the graph is undirected, the matrix S is symmetric. Therefore, it has an eigedecomposition in
terms of an orthonormal basis of eigenvectors S = V ΛSV

> where ΛS ∈ RN×N is a diagonal matrix
with elements λS,i ∈ R such that Svi = λS,ivi for vi ∈ RN being the ith column of V . We now
introduce the notion of a graph symmetric system.

Definition 1 (Graph Symmetric System). Given a GMD S = V ΛSV
> for a graph G, a linear

system (2) is graph symmetric with respect to G if the dynamics matrices A,B are simultaneously
diagonalized by V , i.e.,

A = V ΛAV
> , B = V ΛBV

>, (6)

where ΛA,ΛB are diagonal.

Note that Definition 1 does not require the dynamics to be sparse. In fact, matrices A and
B of the form in Definition 1 can be arbitrarily dense, i.e., the evolution of a subsystem state
xi(t+ 1) can depend on subsystems that i cannot directly communicate with (Gama et al., 2019).
This is distinct from sparsity/delay constraints used in Anderson et al. (2019); Rotkowitz and Lall
(2005); Furieri et al. (2019), and encodes a different notion of symmetry than that exploited in the
distributed control of spatially invariant systems (Bamieh et al., 2002).

By well-known results in graph signal processing (Sandryhaila and Moura, 2013), simultaneous
diagonalizability of the system matrices (A,B) and the GMD S implies2 that they can be written
as matrix polynomials of S of degrees at most N − 1,

A =
N−1∑
k=0

hA,kS
k , B =

N−1∑
k=0

hB,kS
k. (7)

Matrices that can be expressed in this matrix polynomial forms are called graph filters (Segarra
et al., 2017) and the coefficients hA,k, hB,k are referred to as the filter weights or filter taps.

We now give a message-passing interpretation of graph symmetric systems. First, it can be
seen from the sparsity pattern of the GMD S that the output of Sx(t) can be computed entirely
as a linear combination of the states in nodes 1 hop away in G. To see this, consider the operation
Sx(t) whose ith entry yields

[Sx(t)]i =
∑

j:(vj ,vi)∈E

[S]ij [x(t)]j . (8)

More generally, when considering polynomials, it is observed that Skx(t) is equivalent to exchanging
k times information with one-hop neighbors. Therefore, if the system matrix A and the control
matrix B are polynomials of S, then the evolution of the system can be computed entirely by means
of exchanges with neighboring nodes. Hence, the system dynamics can be viewed as implementing
distributed message passing (Ruiz et al., 2021). Examples of such linear, distributed systems,

2Under the assumption that S corresponds to a finite graph and has all distinct eigenvalues. On a high level, the
result follows directly from the Cayley-Hamilton theorem.
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include both discrete-time and continuous-time diffusions, solutions to the heat equation, among
many others, see Gama et al. (2019) and references therein.

For the rest of the paper, we also assume that the cost matrices for the LQR problem (4) can
also be simultaneously diagonalized with the dynamics matrices. Formally, we make the following
assumption.

Assumption 1. The system (2) defines a graph symmetric system with respect to a fixed GMD
S, and the cost matrices (Q,R) defining the LQR problem (4) are graph symmetric with respect
to S, i.e., they are simultaneously diagonalized by the ortho-bases V satisfying S = V ΛSV

>. In
particular

Q = V ΛQV
> , R = V ΛRV

>,

where ΛQ,ΛR are symmetric.

3 Optimal Distributed Linear Controller via System Level Syn-
thesis

SLS provides a convex parameterization of achievable closed-loop system responses (Anderson et al.,
2019; Wang et al., 2018), which can be leveraged to show that the optimal controller for graph
symmetric systems under Assumption 1 can be written as a novel class of graph filters defined by
transfer function valued filter taps.

3.1 Background: System-Level Synthesis

As noted in §4 of Anderson et al. (2019), we can compactly write the system dynamics (2) in the
frequency domain as

(zI −A)x = Bu + w,

where x =
∑∞

t=0 z
−tx(t) is the signal x(t) in the z-domain, and idem for u and w. For a (dynamic)

linear state-feedback controller u = Kx, it follows immediately that

x = (zI −A−BK)−1w =: Φx(z)w,

u = K(zI −A−BK)−1w =: Φu(z)w,
(9)

where Φx(z) ∈ CN×N and Φu(z) ∈ CN×N are system responses that map the disturbance w to
state x and control input u, respectively. The following SLS theorem states that all achievable
responses lie in an affine subspace of strictly proper stable rational transfer functions 1

zRH∞.

Theorem 1. (Anderson et al., 2019, Thm. 4.1) For the LTI system evolving under the dynamics
(2) and control policy u = Kx, the following statements are true:

1. The affine subspace defined by

[
zI −A −B

] [Φx

Φu

]
= I, Φx,Φu ∈

1

z
RH∞ (10)

parameterizes all system responses from w to (x,u) as defined in (9), achievable by an inter-
nally stabilizing state feedback controller K.
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2. For any transfer matrices Φx,Φu satisfiying (10), the controller K = ΦuΦ
−1
x is internally

stabilizing and achieves the desired system response in (9).

For disturbance w(t)
i.i.d.∼ N (0, I), one can recast the optimization problem (4) in terms of

system responses Φx and Φu as

minimize
Φx,Φu

∥∥∥Q1/2Φx

∥∥∥2
H2

+
∥∥∥R1/2Φu

∥∥∥2
H2

s.t. constraint (10).

(11)

With a slight abuse of notation, we define J(Φx,Φu) to be the LQR cost achieved by Φx and Φu

in the objective of (11) and J(K) as the cost (3) achieved by applying controller K.

3.2 SLS for Graph Symmetric Systems

We now proceed to show that under Assumption 1, the optimal system response for a graph
symmetric system that solves the LQR problem (11) can be written as a graph filter.

Theorem 2. Given a GMD S = V ΛSV
>, consider an instance of the LQR problem (11) where

the underlying system and cost satisfy Assumption 1. Then, there exists a global optimum (Φ?
x,Φ

?
u)

where both Φ?
x and Φ?

u are diagonalizable by V, i.e.,

Φ?
x = VΛ∗xV

>, Φ?
u = VΛ∗uV

>,

where Λ∗x and Λ∗u are diagonal transfer matrices. Hence, the optimal controller K? = (Φ?
u)(Φ?

x)−1

can also be diagonalized by V .

Proof. See Appendix.

Remark 1. Note that the elements defined by the diagonal responses Λ?
x,Λ

?
u are transfer functions

[Λ?
x]ii(z), [Λ

?
u]ii(z). Thus the resulting graph filter taps are transfer functions as well, i.e., a transfer

function Φ(z) that is simultaneously diagonalizable with the matrix S can be written as:

Φ(z) =
N−1∑
k=0

φk(z)S
k. (12)

The main implication of Theorem 2 is that the optimal linear state-feedback controller for
graph symmetric systems under Assumption 1 is a graph filter and can thus be implemented via
distributed message passing. We note, however, that the above result implies that the resulting
optimal system response Φ? := (Φ?

x,Φ
?
u) could be dense, as SN−1 is dense if S defines a connected

graph. This can be undesirable in practice, as it requires N − 1 communication exchanges with
one-hop neighbors, potentially causing significant delays if the size N of the graph is large. In
the next section, we leverage a robust variant of the SLS parameterization given in Theorem 1 to
restrict the optimal system responses to only the first F � N − 1 filter taps while guaranteeing
stability and near optimal performance.

We end this section by noting that in the graph signal processing literature (Sandryhaila and
Moura, 2013), a controller of the form of (12) is known as a linear, shift-invariant (LSI) graph filter,
and is analogous to an LTI filter. Note that SΦ?x = Φ?Sx, hence the name. In particular, Equation
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(12) is a spatially finite impulse response (FIR) graph filter (Segarra et al., 2017) that is completely
characterized by a finite set of N filter taps that can be conveniently described by a collection
of transfer functions φ? = [φ?0, . . . ,φ

?
N−1]

T ∈ RN . We emphasize that the transfer functions
themselves are not restricted to be temporally FIR. Spatially FIR graph filters are also known as
convolutional graph filters (Ruiz et al., 2021) due to their sum-and-shift nature, understanding that
the effect of the operation Sx is to shift the signal around the graph (thus, oftentimes, the GMD
S is referred to as the graph shift operator). Furthermore, spatially FIR graph filters satisfy the
convolution theorem that indicates that a convolution in the vertex domain can be computed by
means of an elementwise multiplication in the spectrum domain (Sandryhaila and Moura, 2013).
Finally, in the context of finite graphs, it is observed that the space of FIR graph filters of the
form (12), characterized by N filter taps, is equivalent to the space of spatially infinite impulse
response (IIR) graph filters as well as autoregressive, moving average (ARMA) graph filters (Isufi
et al., 2016).

4 Localized Approximations to the Optimal Distributed Linear
Controller

In this section, we discuss several methods to approximate the optimal dense system response in
the form of (12) with one that is localized and uses F � N filter taps. We start with a projection
method based on graph filter design. We then present a robust SLS formulation of the approxi-
mation problem that guarantees the stability of the resulting localized controller. Finally, we show
how these two can be combined into a robust projection method that also ensures stability. In
the following, we define Φ? := (Φ?

x,Φ
?
u), and recall that Φ? can be written as a graph filter (12)

defined by transfer function filter taps φ?k(z), k = 0, ..., N − 1. We further recall that each trans-
fer function filter tap φ?k(z) admits the following expansion in terms of its Markov parameters:
φ?k(z) =

∑∞
i=1 z

−iφ?k[i].

4.1 Naive Projection

We propose an approach inspired by the graph signal processing literature, wherein we exploit the
graph filter structure of the optimal system responses (Segarra et al., 2017). More specifically, we
project the optimal system responses Φ? onto graph filters of order F in the H2 norm by solving
the following optimization problem

min
φ
‖Φ−Φ?‖2H2

. (13)

Here φ := [φ0(z), . . . ,φF−1(z)]
> ∈ CF collects the F transfer function filter taps defining Φ :=∑F−1

k=0 φk(z)S
k. If we further restrict each transfer function filter tap φk(z) to be FIR of order n,

i.e., if we write φk(z) =
∑n

i=1 z
−iφk[i], then this reduces to solving the following unconstrained

quadratic program

min
{φk[i]}

n∑
i=1

∥∥∥∥∥
F−1∑
k=0

φk[i]S
k −

N−1∑
l=0

φ?l [i]S
l

∥∥∥∥∥
2

F

. (14)

Proposition 3 (Approximating filter taps). If the eigenvalues {λi} of the GMD S are all distinct,
then the filter taps that solve (13) are given by

φk[i] = φ?k[i] + εk[i] (15)
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where ε is the error vector computed as

ε[j] =
( N∑
i=1

λiFλ
T
iF

)−1( N∑
i=1

λiFλ
T
i(N−F )

)
φ?N−F [j] (16)

with λiF := [1, λi, λ
2
i , . . . , λ

F−1
i ] ∈ RF is the collection of the first F powers of λi, λi(N−F ) :=

[λFi , . . . , λ
N−1
i ] ∈ RN−F is the collection of the remaining powers and φ?N−F [i] := [φ?F [i], . . . , φ?N−1[i]] ∈

RN−F collects the tail N − F optimal filter taps.

Proof. It follows from using the convexity of (14), matrix calculus and properties of Vandermonde
matrices.

Prop. 3 determines in closed-form how to compute the filter of order F that best approximates
the optimal linear distributed controller in the H2 norm. It also shows that each filter tap transfer
function φk(z) is obtained as the optimal tap φ?k(z) with an added corrective term that accounts
for the N − F taps that could not be included.

This approach is easy to implement computationally, as it only requires solving a least squares
problem to minimize the projection cost. However, the resulting controller cannot be guaranteed
to be stabilizing. As we show later via numerical simulation, approximations with a small number
of filter taps F are often unstable. This motivates an approach that takes into account the stability
of the resulting controller.

4.2 Localized Approximations via Robust SLS

Robust SLS (Matni et al., 2017; Anderson et al., 2019) offers a systematic way to reason about
approximate system responses, i.e., system responses that do not exactly satisfy the achievability
constraint (10). In particular, as shown in the following result, robust SLS allows for an explicit
characterization of the effects of using approximate system responses for controller design.

Theorem 4 (Corollary 4.4 of Anderson et al. (2019)). Let (Φx,Φu,∆) be a solution to

[
zI −A −B

] [Φx

Φu

]
= I + ∆, Φx,Φu ∈

1

z
RH∞. (17)

Then if ‖∆‖H∞ < 1 the controller K = ΦuΦ
−1
x stabilizes the system (2), and the actual system

response that is achieved is given by[
x
u

]
=

[
Φx

Φu

]
(I + ∆)−1w.

We leverage this result to provide an upper-bound on the amount of truncation that can be
applied to Φ? without destabilizing the system.

Corollary 5. Let (Φx,Φu,∆) be a solution to (17) and assume that ‖∆‖H∞ < 1. Then the
controller K = ΦuΦ

−1
x achieves an LQR cost (11) J that can be bounded as

J(K) ≤ 1

1− ‖∆‖H∞

∥∥∥∥[Q1/2 0

0 R1/2

] [
Φx

Φu

]∥∥∥∥
H2

.
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Proof. First, we note that by Theorem 4, the system responses (Φ̃x, Φ̃u) achieved by K are given
by [

Φ̃x

Φ̃u

]
=

[
Φx

Φu

]
(I + ∆)−1.

Thus, the cost achieved by the controller K is bounded by

J(K) = J(Φ̃x, Φ̃u)

=

∥∥∥∥[Q1/2 0

0 R1/2

] [
Φx

Φu

]
(I + ∆)−1

∥∥∥∥
H2

≤
∥∥(I + ∆)−1

∥∥
H∞

∥∥∥∥[Q1/2 0

0 R1/2

] [
Φx

Φu

]∥∥∥∥
H2

≤ 1

1− ‖∆‖H∞

∥∥∥∥[Q1/2 0

0 R1/2

] [
Φx

Φu

]∥∥∥∥
H2

,

where we used Cauchy-Schwarz in the first inequality and the small gain theorem and the fact that
‖∆‖H∞ < 1 in the last step.

Corollary 5 offers a way to synthesize stable truncated system responses. Specifically, to syn-
thesize a system response that uses only F < N − 1 filter taps while guaranteeing both stability
and performance, we propose the following optimization problem:

minimize
φx,φu,γ∈(0,1)

1

1− γ

∥∥∥∥[Q1/2 0

0 R1/2

] [
Φx

Φu

]∥∥∥∥
H2

(18a)

s.t.
[
zI −A −B

] [Φx

Φu

]
= I + ∆,

‖∆‖H∞ ≤ γ,

Φx(z) =
F−1∑
k=0

φx,k(z)S
k, φx,k(z) ∈

1

z
RH∞,

Φu(z) =
F−1∑
k=0

φu,k(z)S
k, φu,k(z) ∈

1

z
RH∞.

(18b)

By Corollary 5, the solution to (18) defines a controller that is stabilizing. We further show in
the next result that it enjoys guaranteed suboptimality bounds relative to the optimal controller
defined by Φ?. We first introduce the following notation: for a system response of the form
Φ =

∑N−1
k=0 φk(z)S

k, we define the F -truncation PF (Φ) and the F -tail PF⊥(Φ) as

PF (Φ) :=
F−1∑
k=0

φk(z)S
k, PF⊥(Φ) :=

N−1∑
k=F

φk(z)S
k.

Theorem 6. Let (Φ̃x, Φ̃u, γ̃) be the optimal solution to the robust SLS problem (18). Let (Φ?
x,Φ

?
u)

be the optimal solution to the untruncated SLS problem (11). Suppose that

‖∆∗‖H∞ := ‖(zI −A)PF⊥(Φ?
x)−BPF⊥(Φ?

u)‖H∞ < 1.
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Then, the controller K = Φ̃uΦ̃
−1
x is stabilizing and

J(K) ≤ 1

1− ‖∆∗‖H∞

(
J(Φ?

x,Φ
?
u) + J(PF⊥(Φ?

x), PF⊥(Φ?
u))
)

(19)

Proof. By the constraints (18b) and Theorem 4, we immediately have that K is stabilizing. To show
the given suboptimality bound, we first note that there exist some γ such that (PF (Φ?

x), PF (Φ?
u), γ)

is a feasible solution to the robust optimization problem (18). To see this, observe that

[
zI −A −B

] [PF (Φ?
x)

PF (Φ?
u)

]
=
[
zI −A −B

] [Φ?
x

Φ?
u

]
−
[
zI −A −B

] [PF⊥(Φ?
x)

PF⊥(Φ?
u)

]
= I −∆∗,

where the last step follows from the achievability of the optimal response (Φ?
x,Φ

?
u) and the def-

inition of ∆∗. Thus, (PF (Φ?
x), PF (Φ?

u), ‖∆∗‖H∞) is a feasible solution with our assumption that

‖∆∗‖H∞ < 1. Denote the robust SLS objective (18) as J̃(Φx,Φu, γ). By the optimality of the

solution (Φ̃x, Φ̃u, γ̃), we have that

J̃(Φ̃x,Φ̃u, γ̃) ≤ J̃(Φ?
x,Φ

?
u, ‖∆∗‖H∞)

≤ 1

1− ‖∆∗‖H∞

∥∥∥∥[Q1/2 0

0 R1/2

] [
PF (Φ?

x)
PF (Φ?

u)

]∥∥∥∥
H2

,

where we applied Corollary 5 in the second inequality. The desired result follows then from the
fact that [

PF (Φ?
x)

PF (Φ?
u)

]
=

[
Φ?
x

Φ?
u

]
−
[
PF⊥(Φ?

x)
PF⊥(Φ?

u)

]
and an application of the triangle inequality.

This optimization problem is jointly quasi-convex and can be solved efficiently using bisection.
Further, feasibility provides a stability certificate in the form of ‖∆‖H∞ < 1.

4.3 Robust Projection

Lastly, we can combine the robustness constraints used in robust SLS with the signal-processing-
based projection method. Specifically, we solve the following optimization problem

minimize
Φx,Φu,γ∈(0,1)

‖Φ−Φ∗‖2H2

s.t. (Φx,Φu, γ) satisfy constraint (18b).
(20)

We note that solving this problem does not give an upper bound on the cost of the resulting
controller, but the robustness constraint ensures that the resulting controller is stabilizing.
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4.4 Implementation

We end this section by detailing practical implementation details for optimization problems (18)
and (20). First, we note that computationally, one cannot directly optimize for the IIR system
responses as is written in (18), (20). In practice, we use an FIR approximation of the strictly
proper transfer functions φx(z) and φu(z), i.e., φ(z) is parameterized as

φ(z) =

n∑
i=1

z−iφ[i]

for some given FIR order n. As shown in Anderson et al. (2019), the suboptimality incurred by
such an FIR approximation decays exponentially in the horizon n.

TheH∞-norm constraints on the (also FIR) transfer matrix ∆ can then be enforced via semidef-
inite programming (see Theorem 5.8 in Dumitrescu (2007)), potentially introducing a nontrivial
computational burden. However, we note that one can replace the H∞-norm constraint in op-
timization problems (18) and (20) with any induced norm constraint. A particularly appealing
option is the `1 → `1 induced norm (which defines the L1-norm of the transpose system), as this
norm decomposes columnwise. As shown in Anderson et al. (2019); Wang et al. (2018), the result-
ing robustness constraints are linear and embarrassingly parallelizable. We defer this extension to
future work.

5 Numerical Experiments

We show that our approach offers a principled way to trade off performance and communication
complexity through numerical experiments. We also demonstrate the importance of the robustness
constraints in synthesizing stable distributed controllers and compare the performance of robust
SLS and projection-based methods on synthesizing localized controllers. All code needed to re-
produce the examples found in this section is available at https://github.com/unstable-zeros/
graph-symmetric-systems.

5.1 Setup

In the following experiments, we consider the distributed linear quadratic regulator (LQR) problem
(4) over N = 10 scalar subsystems. We generate the GMD S and dynamic matrices A and B using
a process similar to that in Gama and Sojoudi (2022). To generate a problem instance, we start by
creating the communication network G by randomly sampling N numbers {ui}Ni=1 ∼ U [0, 1], and
creating a bi-directional link between vi and each of its 3 nearest points as defined by the topology
on the interval [0, 1] under the metric d(vi, vj) = |ui−uj |. We then take S to be a symmetric matrix
that shares the sparsity pattern of the Laplacian of G, with its entry values sampled independently
from N (0, 1). The GMD S is then normalized to have a spectral radius of 1. We generate the
dynamics matrices A and B to share the same eigenvectors as S, and sample their eigenvalues i.i.d.
from the standard normal distribution – hence both A and B are symmetric matrices. We take
the cost matrices Q = R = IN . For both of the following experiments, we randomly generate 50
problem instances using this process. We end by noting that G generated this way have, on average,
a diameter of 5.92 hops.

For the implementation of the optimization problems, we approximate the transfer functions
φ(z) with an FIR horizon of n = 10. Further, for the robust SLS problem (18), instead of using
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bisection to determine the best value of γ, we fix γ = 0.98, as empirically the value of γ does not
significantly affect the cost achieved by the controllers.

Figure 1: The percentage of synthesized F -hop controllers that are stabilizing using naive projection and robust
SLS-based synthesis across 50 random trials. The dashed red line denotes the average graph diameter of systems.

5.2 Importance of Stability Constraints

In this experiment, we demonstrate the importance of the robust SLS-based stability constraints
in synthesizing stable distributed controllers. We vary the number of allowed filter taps and apply
both the naive projection (13) and robust SLS (20) methods to 50 randomly generated problem
instances. For the naive projection method, we report the percentage of resulting controllers that
are stable. For robust SLS, we report the percentage of optimization problems (18) being feasible,
as feasible solutions optimization problem (18) are guaranteed to be stabilizing. The results are
shown in Figure 1.

First, we observe that as expected, a higher number of filter taps result in a higher probability of
synthesizing stable responses for both methods. However, the naive projection method has nonzero
probability of resulting in an unstable controllers even with a large number of filter taps i.e., even
when the projection error between the stable optimal system responses and the projected responses
is small. On the other hand, the percentage of stable solutions resulting from the robust SLS
problem increases monotonically with the number of filter taps, which is expected for a principled
way of synthesizing stable controllers. Robust SLS also generally achieves a higher percentage of
certifiably stable responses than that of naive projection, except for in the extremely sparse case of
F = 3. This suggests that the robust constraint might be too restrictive for synthesizing extremely
sparse responses. Combined with the low computation cost of naive projection, this suggests a
potential benefit of applying both methods in the sparse regime.

5.3 Truncation Performance

In this experiment, we compare the performance of robust SLS and robust projection for different
filter tap numbers F on the same 50 randomly generated problem instances. We show the median
(solid lines), 25-th and 75-th percentile (shaded regions) of the costs achieved by both methods in
Figure 2.
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Figure 2: Cost achieved by F -hop controllers across 50 randomly generated systems. Solid lines denote the median
cost achieved by each method, and the shaded regions show the 25-th and 75-th percentile of the costs.

First, we note that the median costs decreases monotonically for both methods as the number
of hops increase. This shows that that the optimization problems can leverage the increase in
expressivity of the graph filters to achieve better performance, which matches our intuition. Second,
we note that the robust SLS-based method achieves a lower cost than robust Projection over for
all numbers of filter taps considered. We also note that to the left of 4 hops, the upper boundary
of the shaded region, which represents the 75-th percentile of the cost, is infinite, indicating that
at least 25% of the robust synthesis problems are infeasible. This again suggests a need to develop
more flexible methods in the sparse regime.

6 Conclusion

In this works, we introduced the notion of graph symmetric systems and showed that for linear
quadratic problems, the optimal system response for graph symmetric systems can be written as
(potentially dense) graph filters. We then proposed three methods to approximate the optimal
responses with localized responses and validated their performance in numerical simulation. Di-
rections of future work include relaxing the GSS constraints, applying the results on L1 norm to
enable distributed computation, and understanding how this can better inform GNN-based con-
trollers with nonlinear activation functions.
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.1 Proof for Theorem 2

We show that for any optimal system response Φ?
x, Φ?

u of the optimization problem (11) that is
not diagonalizable with V , i.e.,

Λ?
x = V >Φ?

xV, Λ?
u = V >Φ?

uV

are not diagonal, we can construct a simultaneously diagonalizable system response Φ′x, Φ′u that is
equally optimal. In particular, we construct such a system response as follows:

Φ′x = VΛ′xV
>, Φ′u = VΛ′uV

> (21)

[Λ′x]ij =

{
[Λ?

x]ij i = j

0, o.w.
, [Λ′u]ij =

{
[Λ?

u]ij i = j

0 o.w.
. (22)

We first show that Φ′x, Φ′u are feasible solutions of (11). From the achievability condition on
Φ?
x,Φ

?
u, we have that

(zI −A)Φ?
x −BΦ?

u = I. (23)

Using the simultaneous diagonalizability of A and B, we have

V (zI − ΛA)V >VΛ?
xV
> − V ΛBV

>VΛ?
uV
> = I =⇒ (zI − ΛA)Λ?

x − ΛBΛ?
u = I. (24)

Since the matrices (zI − ΛA), ΛB and I are diagonal, we have

(zI − ΛA)Λ′x − ΛBΛ′u = diag
[
(zI − ΛA)Λ?

x − ΛBΛ?
u

]
= I, (25)

where diag[M] projects a matrix M onto its diagonal elements. Therefore, Φ′x, Φ′u is also feasible.
Now, we show that Φ′x, Φ′u gives a cost at least as good as that of Φ?

x,Φ
?
u. By the simultaneous

diagonalizability of the matrices Q and R, and the fact that the H2-norm is invariant under unitary
transformations, we have that∥∥∥Q1/2Φ′x

∥∥∥2
H2

+
∥∥∥R1/2Φ′u

∥∥∥2
H2

=
∥∥∥V Λ

1/2
Q V >VΛ′xV

>
∥∥∥
H2

+
∥∥∥V Λ

1/2
R V >VΛ′uV

>
∥∥∥
H2

=
∥∥∥Λ

1/2
Q Λ′x

∥∥∥2
H2

+
∥∥∥Λ

1/2
R Λ′u

∥∥∥2
H2

.

(26)
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Denoting the i-th eigenvalue of Q and R with λQ,i, λR,i, respectively, we have the inequality∥∥∥Λ
1/2
Q Λ′x

∥∥∥2
H2

+
∥∥∥Λ

1/2
R Λ′u

∥∥∥2
H2

.

=
∑
i,j

λQ,i
∥∥[Λ′x]ji

∥∥2
H2

+
∑
i,j

λR,i
∥∥[Λ′u]ji

∥∥2
H2

≤
∑
i,j

λQ,i ‖[Λ?
x]ji‖2H2

+
∑
i,j

λR,i ‖[Λ?
u]ji‖2H2

=
∥∥∥Λ

1/2
Q Λ∗x

∥∥∥2
H2

+
∥∥∥Λ

1/2
R Λ∗u

∥∥∥2
H2

,

(27)

which follows from the definition of Λ′x and Λ′u in equation (22). Reversing the steps in (26), we
see that Φ′x,Φ

′
u achieves a cost at least as good as that of Φ?

x,Φ
?
u. We can thus conclude that there

always exists an optimal simultaneously diagonalizable system response to the LQR problem (11).
The controller K′ = (Φ′u)(Φ′x)−1 is thus optimal and simultaneously diagonalizable by V .

.2 GSS and Controllers Satisfy Quadratic Invariance

Here we show that optimal control problems over graph symmetric systems and controllers satisfy
quadratic invariance (Rotkowitz and Lall, 2005). Before proceeding, we remark that the analysis
of LQR optimal control problem over GSSs does not require quadratic invariance. In particular,
in Theorem 2 we analyze the unconstrained optimal control problem and show that the resulting
unconstrained optimal controller satisfies a corresponding notion of graph symmetry. However,
in the interest of completeness, we show that if such a constraint were imposed on the controller
during synthesis, the resulting problem satisfies quadratic invariance.

To that end, the corresponding constrained controller synthesis problem can be stated as

minimize
K

J(K)

subject to K stabilizes system (2)

K ∈ S

where S := {S ∈ RH∞ | S is diagonalizable by V }. Denoting the plant input-output transfer
function as

G(z) = (zI −A)−1B,

we have the following proposition.

Proposition 7. The set of graph symmetric controllers S is quadratically invariant under G if
system (2) is graph symmetric.

Proof. The proof follows directly from the definition of quadratic invariance (Rotkowitz and Lall,
2005, Def. 2) by straightforward calculation. First, we note that

G(z) = V (zI −ΛA)−1ΛBV
>

is diagonalizable by V . For any controller K ∈ S, it then follows immediately that

KGK ∈ S

as the product of simultaneously diagonalizable matrices is also simultaneously diagonalizable,
proving the claim.

16


	1 Introduction
	2 The Linear Quadratic Regulator Problem for Graph Symmetric Systems
	3 Optimal Distributed Linear Controller via System Level Synthesis
	3.1 Background: System-Level Synthesis
	3.2 SLS for Graph Symmetric Systems

	4 Localized Approximations to the Optimal Distributed Linear Controller
	4.1 Naive Projection
	4.2 Localized Approximations via Robust SLS
	4.3 Robust Projection
	4.4 Implementation

	5 Numerical Experiments
	5.1 Setup
	5.2 Importance of Stability Constraints
	5.3 Truncation Performance

	6 Conclusion
	.1 Proof for Theorem 2
	.2 GSS and Controllers Satisfy Quadratic Invariance


