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Abstract— Iterative algorithms are of utmost importance
in decision and control. With an ever growing number of
algorithms being developed, distributed, and proprietarized,
there is a similarly growing need for methods that can provide
classification and comparison. By viewing iterative algorithms
as discrete-time dynamical systems, we leverage Koopman
operator theory to identify (semi-)conjugacies between algo-
rithms using their spectral properties. This provides a general
framework with which to classify and compare algorithms.

I. INTRODUCTION

For many problems that are commonly faced in control
and decision settings, a variety of numerical algorithms exist
to find approximate solutions. For instance, ordinary differ-
ential equations can be solved with either the forward or the
backward Euler method. Roots to polynomial functions can
be found with either the Newton-Raphson or Secant method.
Deep neural networks can be optimized with stochastic
gradient descent using either a fixed or an adaptive learning
rate. In each case, differences in numerical stability, usage
of computational resources, and speed, among other factors,
must be taken into consideration, in order to decide which
method to employ.

A well known result within the field of numerical analysis
is that many of these seemingly different algorithms are,
in fact, equivalent. That is, the output of one algorithm
can be exactly mapped to the output of another. In its
simplest form, such equivalency between algorithms involves
the same number of variables and operations, but different
values of free parameters, making an appropriate choice of
initial conditions lead to the same output. A sufficiently
straightforward example of such an equivalence could be
identified by looking at the underlying equations. However,
in more subtle scenarios, two algorithms can be equivalent,
but take on different looking forms, making an identifica-
tion challenging. The ability to recognize equivalency is
important in assessing the novelty of proposed algorithms
[1]. Additionally, classifying algorithms by their equivalent
counterparts (i.e. defining equivalence classes) provides a
way in which to better analyze them.

Recent work to automatically detect equivalencies has
taken a control theoretic perspective [1]. By viewing iterative
algorithms as linear control systems [2], and evaluating their
corresponding transfer functions, it was possible to develop

1W.T.R. is with the Interdepartmental Graduate Program in Dynamical
Neuroscience, University of California, Santa Barbara.

2W.T.R., M.F., R.M., and I.M. are with AIMdyn Inc., Santa Barbara.
3 I.G.K. is with the Departments of Chemical and Biomolecular Engi-

neering, and of Mathematics and Statistics, The Johns Hopkins University.
4 I.M. is with the Departments of Mechanical Engineering and of

Mathematics, University of California, Santa Barbara.

an analytic method that could directly identify equivalent
algorithms. While broadly successful, such an approach has
several limitations. First, it was only able to identify linear
mappings between algorithms, restricting the class of equiv-
alencies that could be identified. Second, several different
definitions of equivalence had to be introduced in order to
capture the equivalencies of the different algorithms that
were studied. Third, it was necessary to have access to the
equations underlying the iterative algorithms. In cases where
the algorithms are proprietary, this may not be available.
Lastly, the control theoretic framework adds an additional
layer of complexity that is not strictly necessary.

We study the equivalence of algorithms from a related,
dynamical systems theoretic perspective. Dynamical systems
have a long history of inter-relatedness with algorithms [3]–
[5], and recent developments in Koopman operator theory
[6]–[9] have been used to optimize and analyze algorithms
[10], especially within the field of machine learning [11]–
[16]. Here, we show that the different types of equivalence
established by Zhao et al. (2021) [1] naturally fall under
the idea of (semi-)conjugacy, which can be identified from
spectral properties of the Koopman operator. Using several
of the illustrative examples from Zhao et al. (2021), we
find that different algorithms that are equivalent by: 1)
linear, invertible mappings; 2) linear, embedded mappings;
3) nonlinear, invertible mappings; and 4) shifts of output
values, can all be detected by signatures in their Koopman
spectra. Taken together, our work provides evidence that
Koopman operator theory is a general approach for studying
algorithmic equivalence.

The remainder of the paper is organized as follows. We
begin by discussing how iterative algorithms can be viewed
as discrete-time dynamical systems (Sec. II-A) and review
basics of Koopman operator theory (Sec. II-B). In particular,
we highlight the importance of the Koopman mode decompo-
sition. We proceed to define the notions of (semi-)conjugacy,
and discuss results that allow the Koopman spectrum to be
used in identifying (semi-)conjugate systems (Sec. II-C). In
Sec. III, we show that the theory outlined in Sec. II can be
used to identify equivalences in various example algorithms.
We conclude in Sec. IV.

II. KOOPMAN OPERATOR THEORY

A. Iterative algorithms as dynamical systems

The idea central to our framework is that iterative algo-
rithms can be viewed as discrete-time dynamical systems.
To see this, consider an algorithm, A : X → X , whose state
space is X ⊆ Rd, for some d ∈ N. Starting from an initial
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state x0 ∈ X , each iterative application of A evolves the
state-space input by

xk+1 = Axk = Ak+1x0. (1)

Comparing Eq. 1 to the classical perspective of dynamical
systems, we see that A acts as a dynamical map, with the
number of iterations, k ∈ N, acting as “time”. The resulting
sequence, {xk}Nk=1, is a trajectory through state-space. The
existence of geometric objects that are studied in dynamical
systems theory, such fixed points, limit cycles, quasi-periodic
attractors, etc. depends on the precise nature of A and X .
Indeed, the same A, applied to different domains of X , can
have different properties. However, in order for an algorithm
to be of general practical utility, it is necessary for it to
converge, and converge in a finite number of iterations.
Therefore, for the algorithms we study in this paper, we will
assume that there is a large region of state space, M ⊆ X ,
where A evolves any initial condition x0 ∈ M to within ε
of the fixed point x∗, in at most Nmax ∈ N iterations.

However, the key idea in this paper, the comparison of
dynamical systems based on the spectrum of the associated
Koopman operator, is applicable to a much broader set of
systems with point, limit cycle, toroidal, and even chaotic
attractors [17], [18].

B. Koopman mode decomposition

While the discrete-time dynamical systems view of al-
gorithms outlined in Sec. II-A motivates the use of dy-
namical systems theory, the standard tools are difficult to
leverage when the algorithms are nonlinear or when the
equivalence between algorithms is nonlinear. Additionally,
they are impossible to use when the equations underlying the
algorithms are not known. Therefore, the course of action is
not immediately apparent. Koopman operator theory, a data-
driven dynamical systems theory [6]–[9] that is intimately
related to the geometrical objects present in the classical
theory [8], [18]–[21], offers a way forward.

The central object of interest in Koopman operator theory
is the Koopman operator, U , an infinite dimensional linear
operator that describes the time evolution of observables (i.e.
functions of the underlying state space variables) that live
in the functional space, F . That is, after t > 0 amount of
time, which can be continuous or discrete, the value of the
observable f ∈ F , which can be a scalar or a vector valued
function, is given by

U tf(x0) = f
[
T t(x0)

]
, (2)

where T is the dynamical map evolving the system and x0 ∈
M is the initial condition in state space M ⊆ X ∈ Rd. For
the remainder of the paper, it will be assumed that M is of
finite dimension and that F is the suitably chosen space of
functions in which the spectral expansion exists [18].

The action of the Koopman operator on the observable f
can be decomposed as

Uf(x0) =

∞∑
r=0

λrφr(x0)vr, (3)

where the φr are eigenfunctions of U , with λr ∈ C as their
eigenvalues and vr as their Koopman modes [8]. For systems
with chaotic or shear dynamics, there is an additional term
in Eq. 3 arising from the continuous part of the spectrum [8].
As the algorithms we study are not expected to have such
dynamics, for the remainder of this paper it will be assumed
that the dynamical systems we are considering are such that
the Koopman operator only has a point spectrum.

Spectrally decomposing the action of the Koopman op-
erator is powerful because, for a discrete-time dynamical
system, the value of f at time step, k ∈ N, is given simply
by

f
[
T k(x0)

]
= Ukf(x0) =

∞∑
r=0

λkrφr(x0)vr. (4)

From Eq. 4, we see that the dynamics of the system in the
directions vr, scaled by φr(x0), are given by the magnitude
of the corresponding λr. Assuming that |λr| ≤ 1 for all r,
finding the long time behavior of f amounts to considering
only the φr(x0)vr whose |λr| ≈ 1.

While the number of triplets (vr, λr, φr) needed to fully
capture the action of U is, in principle, infinite, in many
applied settings it has been found that a finite number, R ∈
N, of them allows for a good approximation [9]. Namely, for
a generic n-dimensional system that is stable in the basin of
attraction to a fixed point x∗, there is the set of principal
eigenvalues λ = (λ1, λ2, ..., λR), with real part less than or
equal to 1 and such that |λ1| < |λ2| < ... < |λR|. All the
other eigenvalues are obtained by

λk = λk1
1 · λ

k2
2 ... · λkR

n , (5)

where k = (k1, ..., kR) ∈ NR. Thus, we can often select a
finite number, R, of eigenvalues that dominate the spectral
expansion after a sufficient number of iterates, as their
magnitudes are closer to 1. That is,

Ukf(x0) ≈
R−1∑
r=0

λkrφr(x0)vr. (6)

Many numerical methods exist to compute the Koopman
mode decomposition, which have allowed it to be applied to
complex problems across a wide range of scientific domains.
The most popular method is dynamic mode decomposition
(DMD) [22]–[24], and its variants [21], [25], [26]. Here we
make use of DMD and Extended-DMD [26] because of their
ubiquity.

C. (Semi-)Conjugacy

As discussed in the previous section, in a suitably chosen
functional space, all eigenvalues of the Koopman operator
are obtained from the R principal ones. The key idea
in comparing algorithms then becomes one of comparing
principal eigenvalues. This is justified by utilizing the notion
of
(semi-)conjugacy.

Definition 1: Let T : M → M and S : N → N be
two discrete-time dynamical systems on sets M ⊂ Rm and
N ⊂ Rn, with the associated Koopman operators UT and



US . They are conjugate provided m = n and there exists a
smooth invertible mapping h : M → K, such that h ◦ T =
S◦h. In other words, UTh = S◦h. If n < m and h is smooth
but not invertible, then the mapping is called semi-conjugate.

Clearly, if T and S are semi-conjugate, then h(x∗) is a
fixed point of S if and only if x∗ is a fixed point of T . We
have the following Lemma.

Lemma 1: If T and S are conjugate and T is stable in the
basin of attraction to x∗, then they have the same principal
eigenvalues. If T and S are semi-conjugate, then the set of
principal eigenvalues of US is a subset of the set of principal
eigenvalues of UT .

Proof: Let λ, φ be an eigenvalue, eigenfunction pair of
US . Then

λφ[h(x)] = USφ[h(x)] = φ (S[h(x)]) = ...

... = φ (h[T (x)]) = UTφ(h).
(7)

Thus, λ is an eigenvalue of UT , associated with the eigen-
function φ ◦h. The converse to Lemma 1, that is, if UT and
US have discrete spectra that are equivalent, then T and S
are conjugate, can also be shown to be true [17].

III. RESULTS

Having developed a dynamical systems framework for
studying algorithmic equivalence, via comparing the spectra
of the Koopman operators associated with the algorithms
being applied to a given problem (Sec. II), we tested whether
standard numerical methods could properly identify instances
of (semi-)conjugacy. To do this, we made use of several of
the illustrative examples that were presented by Zhao et al.
(2021), examining equivalencies defined by various types of
mappings (i.e. linear/nonlinear, invertible/embedded) [1]. In
each case, we find that implementations of Koopman mode
decomposition can identify the underlying conjugacy, and
thus, provide a general framework for probing algorithmic
equivalency.

A. Equivalence by linear, invertible mappings

We begin by examining the toy Algorithms 1 and 2
[1]. Each algorithm’s behavior is determined by the choice
of the function f , as ∇f is an operation that occurs in
both algorithms. For any f , there exists an invertible, linear
mapping between the two algorithms’ outputs, such that the
two sequences are equivalent, assuming the initial conditions
have been properly set. Namely,

ξk1 = 2xk1 − xk2
ξk2 = −xk1 + xk2

(8)

defines a mapping between the output of Algorithm 1 (xki )
and the output of Algorithm 2 (ξki ). In this sense, the
two algorithms are “oracle equivalent” [1], where ∇f is
considered an oracle.

We examine the Koopman spectra of the two algorithms
applied to pairs of initial conditions, related via Eq. 8, for
different choices of the function f . Examples of f(x) = x2

and f(x) = − cos(x) are shown in Fig. 1.

Algorithm 1
for k = 0, 1, 2, ...,K do

xk+1
1 = 2xk1 − xk2 − 1

10∇f(2x
k
1 − xk2)

xk+1
2 = xk1

end for

Algorithm 2
for k = 0, 1, 2, ...,K do

ξk+1
1 = ξk1 − ξk2 − 1

5∇f(ξ
k
1 )

ξk+1
2 = ξk2 + 1

10∇f(ξ
k
1 )

end for

In both cases, we find that the Koopman spectra are nearly
exactly overlapping. Thus, as predicted from the theory
discussed in Sec. II, conjugacy via linear, invertible mapping
can be identified by the two algorithms having the same
Koopman eigenvalues.

While Algorithms 1 and 2 are conjugate by Eq. 8 for
both choices of f(x) we considered, the nature of this
conjugacy differs. When f(x) = x2, the two algorithms
are linear, as ∇f = 2x, and the matrices governing their
dynamics have the same eigenvalues, corresponding to the
same single attractor. Therefore, Algorithms 1 and 2 are
globally conjugate, as any two initial conditions will evolve,
with the same dynamics, to (0, 0).

In contrast, when f(x) = − cos(x), the algorithms are
no longer linear, as ∇f = sin(x), and there exist multiple
attractors. For instance, when 2x01 − x02 is small, Algorithm
1 converges to (0, 0), but when 2x01 − x02 is large, xk1
and xk2 grow approximately linearly. A similar transition
occurs for Algorithm 2. Therefore, Algorithms 1 and 2 are

Fig. 1. Conjugacy of Algorithms 1 and 2. Left column, trajectory of
state variables x1 and ξ1. Right column, corresponding Koopman spectra.
Top row, f = − cos(x). Bottom row, f = x2. The nearly identical spectra
correctly illustrates that the two algorithms are conjugate.



Fig. 2. Global and local conjugacy. Wasserstein distance of the Koopman
spectra when the initial condition for Algorithm 1 is fixed at x01 = x02 = 0.1
and the initial condition of Algorithm 2, ξ01 and ξ02 , is sampled over the
range [−2, 2] × [−2, 2]. Left, the Koopman spectra are nearly identical
for every pair of initial conditions when f(x) = x2. Right, the Koopman
spectra can be similar or different when f(x) = − cos(x), depending on
the initial conditions.

locally conjugate, as initializing them differently can lead to
trajectories in different dynamical regimes.

To illustrate this, and demonstrate that Koopman operator
theory can identify such differences in the behavior of the
conjugacies, we fix x01 = x02 = 0.1 (making 2x01 − x02 = 0
small), and vary (ξ01 , ξ

0
2) over the interval [−2, 2]× [−2, 2].

For each pair of (ξ01 , ξ
0
2), we evolve Algorithm 2, approxi-

mate the Koopman spectrum, and compute the Wasserstein
distance between it and the spectrum found when applying
Algorithm 1 to (x01, x

0
2) = (0.1, 0.1). The Wasserstein

distance is a metric originally developed in the context of
optimal transport, and provides a sense of how far apart two
distributions are. As expected, when f(x) = x2, all (ξ01 , ξ

0
2)

we evaluated led to the same dynamics of Algorithm 2 as
compared to Algorithm 1, with Koopman eigenvalues that
were separated by less than 10−15 (Fig. 2, left). However,
when f(x) = − cos(x), there is a region where the Wasser-
stein distance increases, as the dynamics of Algorithm 2
transition to a different attractor (Fig. 2, right).

These results highlight the fact that our Koopman frame-
work can provide a view on the relationship between two
algorithms that is broader than the binary classification of
whether they are conjugate or not. Given that the nature of
equivalence is an important factor to take into account when
classifying and comparing algorithms, this is a useful feature.

B. Equivalence by linear, embedded mappings

We next consider Algorithms 3 and 4 [1]. There exists a
linear, embedded mapping between their outputs. Namely,

ξk = −xk1 + 2xk2 (9)

defines a mapping of the two-dimensional output of Algo-
rithm 3 (xki ) to the one-dimensional output of Algorithm 4
(ξk).

From the theory developed in Sec. II, we can recognize Eq.
9 as describing a semi-conjugacy. We therefore expect that
the Koopman spectrum associated with the smaller system
(Algorithm 4) should be a subset of the spectrum associated
with the larger system (Algorithm 3). Indeed, we find this
to be the case for f(x) = x2 and f(x) = − cos(x) (Fig.

Algorithm 3
for k = 0, 1, 2, ...,K do

xk+1
1 = 3xk1 − 2xk2 + 1

5∇f(−x
k
1 + 2xk2)

xk+1
2 = xk1

end for

Algorithm 4
for k = 0, 1, 2, ...,K do

ξk+1 = ξk − 1
5∇f(ξ

k)
end for

3). In both cases, the spectra have the same eigenvalues
corresponding to decaying modes (i.e. |λ| < 1). However, the
eigenvalue corresponding to the exponentially growing mode
(i.e. |λ| > 1) is only present in the spectrum of Algorithm 3,
which indeed matches the unbounded growth of xk1 and xk2 .

C. Equivalence by nonlinear, invertible mappings

We next tackle an equivalence noted by Zhao et al. (2021)
that is given by a nonlinear, invertible mapping. This is a
non-trivial problem to identify, and cannot be done within a
linear control framework [1], [2].

Algorithm 5 is equivalent to Algorithm 4 via,

xk = exp(ξk). (10)

From the theory discussed in Sec. II, we expect that the
Koopman spectra of such conjugate systems should be equiv-
alent. We indeed find this to be true (Fig. 4).

Algorithm 5
for k = 0, 1, 2, ...,K do

xk+1 = xk exp(− 1
5∇f(log x

k))
end for

We note that, since we used a simple numerical scheme
to compute the Koopman mode decomposition on a small
set of data points, we do not see a perfect overlap of the
spectra. In particular, the smallest eigenvalues differ the
most between the two. Given the plethora of robust, precise
numerical methods, we imagine it would be possible to

Fig. 3. Semi-conjugacy of Algorithms 3 and 4. The spectrum of
Algorithm 4 is a subset of the spectrum of Algorithm 3, correctly implying
that the two systems are semi-conjugate, for both f(x) = x2 (left) and
f(x) = − cos(x).



Fig. 4. Conjugacy of Algorithms 4 and 5. The nearly overlapping spectra,
up to some differences in the smallest eigenvalues, correctly implies that
Algorithms 4 and 5 are conjugate.

achieve better overlap. Regardless, the fact that the largest
eigenvalues overlap suggests a clear connection between the
two algorithms. Given that any numerical approach will find
some non-zero difference, there will necessarily have to be
some discretion practiced by the user.

D. Equivalence by shifting

Because algorithms can perform the same sequence of
operations, but do so in differing orders, Zhao et al. (2021)
considered “shift equivalence”. By permuting the transfer
operators associated with each algorithm, it became possible
to identify shift equivalent algorithms under the linear con-
trol framework [1]. However, this required some additional
theory. We reasoned that our Koopman operator theoretic
approach may be able to identify shift equivalent algorithms,
without any new machinery.

To explore this, we considered Algorithms 6 and 7 [1]. The
two make use of the proximal operator, proxf . To evaluate
this operation numerically, we make use of the UNLocBoX
package [27]. The two algorithms are equivalent via the shift

ξk1 = xk3

ξk2 = xk+1
1 ,

(11)

which relates the initial conditions of Algorithm 7 (ξ0i ) to
iterates of Algorithm 6 (xki ), for k ≥ 0. After performing
such a shift, the two algorithms make the same calls on the
proximal operators.

Algorithm 6
for k = 0, 1, 2, ...,K do

xk+1
1 = proxf (x

k
3)

xk+1
2 = proxg(2x

k+1
1 − xk3)

xk+1
3 = xk3 + xk+1

2 − xk+1
1

end for

Looking at the sequence of outputs, xk1 and ξk1 , we see that
indeed, ignoring x01, the two have the same dynamics, for
different choices of f and g (Fig. 5 left column). Therefore,
we expect that the Koopman eigenvalues will be similar
between the two shifted systems. Computing the Koopman
spectra of Algorithms 6 and 7, we confirm that it is indeed

Algorithm 7
for k = 0, 1, 2, ...,K do

ξk+1
1 = proxg(−ξk1 + 2ξk2 ) + ξk1 − ξk2
ξk+1
2 = proxf (ξ

k+1
1 )

end for

Fig. 5. Shift equivalence of Algorithms 6 and 7. Left column, trajectories
of xk1 and ξk1 for choices of f = ∇|| · ||2 and g = || · ||2 (top row) and
f = log[det(·)] and g = || · ||2 (bottom row). Right column, corresponding
Koopman spectra. In both cases, the overlapping spectra correctly identify
the “shift” equivalence [1].

possible to identify this kind of equivalence with no changes
to our framework (Fig. 5, right column), as the Koopman
spectra are largely overlapping.

Note that, as long as a sufficient amount of data snapshots
are present, we can expect the two Koopman spectra to
converge [28], [29]. An insufficient amount of data could,
however, lead to differing decompositions. This could be
overcome by using methods designed for the sparse data
regime [30], [31].

IV. DISCUSSION

By viewing iterative algorithms applied to a given problem
as discrete-time dynamical systems [10], we developed a
framework for identifying equivalent algorithms via the
spectra of the associated Koopman operators. The key to
this approach relies on the fact that two dissipative systems
that are conjugate have the same Koopman eigenvalues [18].
Similarly, two dissipative systems that are semi-conjugate
have Koopman eigenvalues, where one is a subset of the
other.

That we were able to make comparisons between dynam-
ical systems in an applied setting using these mathematical
results illustrates the wide implications that the rigorous
theoretical development of Koopman operator theory can
have. Indeed, results connecting Koopman spectral objects



to geometric properties of state space are indispensable for
gaining insight when applying Koopman tools [8], [18]–[21].

Our method for identifying algorithmic equivalence neces-
sarily requires the computation of the Koopman eigenvalues
from data, which makes it necessary to have a sufficient
amount of data and an appropriate choice of numerical
scheme for a good approximation. Its conclusion of equiv-
alence can depend on the domain chosen, as in the case of
algorithms that are locally conjugate. This is in contrast to the
linear control based method developed by Zhao et al. (2021),
which was analytic and enabled identification of equivalences
from the equations defining the algorithms, independent of
initial conditions [1].

However, our framework avoids several of the limitations
of the linear control framework [1], [2]. First, it was possible
to identify nonlinear equivalences between algorithms. Sec-
ond, by considering just the Koopman eigenvalues, it was
possible to identify (semi-)conjugacy, unifying the several
different definitions of equivalence introduced by Zhao et
al. (2021). Third, it was possible to identify equivalence
without the underlying equations. As long as a sequence
of outputs from the algorithms are available, the Koopman
framework can be used, making it especially useful in the
case of proprietary software. Fourth, it can be used to distin-
guish between conjuagcies with different properties (such as
local and global conjugacy), an important distinction when
comparing algorithms. Finally, this was all possible solely
by viewing algorithms as discrete-time dynamical systems.
No additional considerations, such as control, were required.

Taken together, these result illustrate that Koopman oper-
ator theory is a useful framework with which to study algo-
rithmic equivalence, as well as algorithms more generally.
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