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INDUCING SOCIAL OPTIMALITY IN GAMES VIA ADAPTIVE

INCENTIVE DESIGN

CHINMAY MAHESHWARI1, KSHITIJ KULKARNI1, MANXI WU1,2, AND S. SHANKAR SASTRY1

Abstract. How can a social planner adaptively incentivize selfish agents who are learn-
ing in a strategic environment to induce a socially optimal outcome in the long run? We
propose a two-timescale learning dynamics to answer this question in both atomic and
non-atomic games. In our learning dynamics, players adopt a class of learning rules to
update their strategies at a faster timescale, while a social planner updates the incentive
mechanism at a slower timescale. In particular, the update of the incentive mechanism
is based on each player’s externality, which is evaluated as the difference between the
player’s marginal cost and the society’s marginal cost in each time step. We show that
any fixed point of our learning dynamics corresponds to the optimal incentive mechanism
such that the corresponding Nash equilibrium also achieves social optimality. We also
provide sufficient conditions for the learning dynamics to converge to a fixed point so
that the adaptive incentive mechanism eventually induces a socially optimal outcome.
Finally, we demonstrate that the sufficient conditions for convergence are satisfied in a
variety of games, including (i) atomic networked quadratic aggregative games, (ii) atomic
Cournot competition, and (iii) non-atomic network routing games.

1. Introduction

The design of incentive mechanisms plays a crucial role in many social-scale systems,
where the system outcomes depend on the selfish behavior of a large number of interacting
players (human users, service providers, and operators). The outcome arising from such
strategic interaction – Nash equilibrium – often leads to suboptimal societal outcome. This
is due to the fact that individual players often ignore the externality of their actions (i.e.
how their actions affect the cost of others) when minimizing their own cost. An important
way to address the issue of externality is to provide players with incentives that align
their individual goal of cost minimization with the goal of minimizing the total cost of the
society ([20, 14, 12, 2]).

The problem of incentive design is further complicated when the design faces a set of
learning agents who are repeatedly updating their strategies ([1, 6, 16]). Such a problem
is particularly relevant when the physical system has experienced a random shock, and
players are in the process of reaching a new equilibrium. Designing a socially optimal
incentive mechanism directly based on the convergent strategy of the learning agents is
challenging because such an equilibrium is typically difficult to compute in large-scale
systems. The question that then arises is: how can a social planner design an adaptive
incentive mechanism to influence players’ learning dynamics so that the strategy learning
under the adaptive mechanism leads to a socially beneficial outcome in the long run?

We propose a discrete-time learning dynamics that jointly captures the players’ strategy
updates and the designer’s updates of incentive mechanisms. Our learning dynamics can
be used for both atomic games and non-atomic games. The incentive mechanism designed

1 The authors are with the Department of Electrical Engineering and Computer Sciences, Uni-
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by the social planner sets a payment (tax or subsidy) for each player that is added to their
cost function in the game. In each time step, players update their strategies based on
the opponents’ strategies and the incentive mechanism in the current step, and the social
planner updates the incentive mechanism in response to players’ current strategies. We
assume that the incentive update proceeds at a slower timescale than the strategy update
of players. The slower evolution of incentives is in-fact a desirable characteristic for any
societal scale system, where frequent changes of incentives may lead to instability in the
system and may hamper participation by players. The slow evolution of incentives allows
players to consider the incentives as static while updating their strategies.

A key feature of our learning dynamics is that the incentive update in each time step is
based on the externality created by each player with their current strategy. In particular,
given any strategy profile, the externality of each player is evaluated as the difference
between the marginal cost of their strategy on themselves and the marginal social cost. In
a static incentive design problem, when all players are charged with their externality, the
change of their total cost – original cost in game plus the payment – with respect to their
strategy becomes identical to the change of social cost. Consequently, the induced Nash
equilibrium is also socially optimal [28, 7, 22]. In our learning dynamics, the social planner
accounts for the externality of each player evaluated at their current strategy, which evolves
with players’ strategy updates.

The externality-based incentive updates distinguish our adaptive incentive design from
other recent studies on incentive mechanisms with learning agents. The paper [23] studies
the problem of incentive design while learning the cost functions of players. The authors
assume that both the cost functions and incentive policies are linearly parameterized, and
the incentive updates rely on the knowledge of players’ strategy update rules instead of
just the current strategy as in our setting. Additionally, the paper [15] considers a two-
timescale discrete-time learning dynamics, where players adopt a mirror descent-based
strategy update, and the social planner updates an incentive parameter according to a
gradient descent method. The convergence of such gradient-based learning dynamics relies
on the assumption that the social cost given players’ equilibrium strategy is convex in
the incentive parameter. However, the convexity assumption can be restrictive since the
equilibrium strategy as a function of the incentive parameter is nonconvex even in simple
games.

We show that our externality-based incentive updates ensure that any fixed point of our
learning dynamics corresponds to a optimal incentive mechanism, such that the induced
Nash equilibrium of the game is also socially optimal (Proposition 3.1). This result is
built on the fact that at any fixed point of our learning dynamics, the strategy profile is
a Nash equilibrium corresponding to the incentive mechanism, and each player’s payment
equals to the externality created by their equilibrium strategy. Therefore, the equilibrium
strategy associated with this externality-based payment also minimizes the social cost.
Additionally, we present the sufficient conditions on the game such that the fixed point set
is a singleton set, and thus the socially optimal incentive mechanism is unique (Proposition
3.2).

Furthermore, we provide sufficient conditions on games that guarantee the convergence
of strategies and incentives induced by our learning dynamics (Theorem 3.3). Since the
convergent strategy profile and incentive mechanism corresponds to a fixed point that
is also socially optimal, these sufficient conditions guarantee that the adaptive incentive
mechanism eventually induces a socially optimal outcome in the long run.

In the proof of our convergence theorem, we exploit the timescale separation between the
strategy update and the incentive updates. We use tools from the theory of two-timescale
dynamical systems [3] to analyze the convergence of strategy updates and incentive updates
separately after accounting of time separation. In particular, the convergence of strategy
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updates can be derived from the rich literature of learning in games ([9],[24],[18], etc.)
since the incentive mechanism can be viewed as static in the strategy updates thanks
to the time separation. On the other hand, the convergence of incentive vectors can be
analyzed via the associated continuous-time dynamical system, in which the value of the
externality function is evaluated at the converged value of fast strategy update, which is the
Nash equilibrium. Our sufficient conditions are based broadly on two main techniques of
proving global stability of non-linear dynamical system: (i) cooperative dynamical systems
theory [11] and (ii) Lyapunov based methods [25].

Finally, we apply our general results to three classes of games: (i) atomic networked
quadratic games; (ii) atomic cournot competition; (iii) nonatomic routing games. In each
class of games, we present the adaptive incentive design based on the externality of players’
strategies. We also provide sufficient conditions on the game parameters and social cost
functions under which the adaptive incentive design eventually induces a socially optimal
outcome.

The article is organized as follows: in Sec. 2 we describe the setup of both atomic
and non-atomic game considered here. In addition, we also provide the joint strategy and
incentive update considered in this paper. We present the main results in Sec. 3 and the
applications of those results in three class of games in Sec. 4. We conclude our work in
Sec. 5.

Notations. For any vector x ∈ R
n, we use xj or xj to denote the j−th component of that

vector. Given a function f : Rn → R, we use Dxi
f(x) to denote ∂f

∂xi
(x), the derivative of

f with respect to xi for any i ∈ {1, 2, ..., n}. For any matrix A ∈ R
n×n we denote the set

of eigenvalues of A by spec(A). For any set A we use conv(A) to denote the convex hull of
the set. We use k to denote the discrete-time index and t to denote the continuous-time
index.

2. Model

We introduce both atomic and non-atomic static games in Sec.2.1. In Sec. 2.2, we
present the two-timescale dynamics of strategy learning and incentive design.

2.1. Static games.

2.1.1. Atomic Games. Consider a game G with a finite set of players I . The strategy of
each player i ∈ I is xi ∈ Xi, where Xi is a non-empty and closed interval in R. The strategy
profile of all players is x = (xi)i∈I , and the set of all strategy profiles is X :=

∏

i∈I Xi. The

cost function of each player i ∈ I is ℓi : X → R.1 For any x−i = (xj)j∈I\{i}, we assume
that the cost function ℓi(xi, x−i) is twice-continuously differentiable and strictly convex in
xi for all i ∈ I .

A social planner designs incentives by setting a payment pixi for each player i that
is linear in their strategy xi.

2 Here, pi represents the marginal payment for every unit
increase in strategy of player i. The value of pi can either be negative or positive, which
represents a marginal subsidy or a marginal tax, respectively.

Given the incentive vector p = (pi)i∈I , the total cost of each player i ∈ I is:

ci(x, p) = ℓi(x) + pixi, ∀ x ∈ X.(2.1)

1We measure the outcome of our games by costs instead of utilities. Equivalently, the utility of each player
is the negative value of the cost.
2Considering a linear payment is sufficient to ensure optimal incentive design in atomic games.
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A strategy profile x∗(p) ∈ X is a Nash equilibrium in the atomic game G with the
incentive vector p if

ci(x
∗
i (p), x

∗
−i(p), p) 6 ci(xi, x

∗
−i(p), p), ∀ xi ∈ Xi, ∀i ∈ I.

Recall that the cost ℓi(xi, x−i) is a continuous function, and is strictly convex in xi. Ad-
ditionally, the strategy set Xi is convex for each player i. Therefore, we know that Nash
equilibrium must exist and must be unique in G. Moreover, we can equivalently represent
a Nash equilibrium x∗ as a strategy profile that satisfies the following variational inequality
([8]):

〈J(x∗(p), p), x− x∗(p)〉 > 0, ∀ x ∈ X,(2.2)

where J(x∗(p), p) = (Ji(x
∗(p), p))i∈I , and

Ji(x
∗(p), p) = Dxi

ci(x
∗(p), p) = Dxi

ℓi(x
∗) + pi.(2.3)

Furthermore, a strategy profile x† ∈ X is socially optimal if x† minimizes the social
cost function Φ : X → R. We assume that the social cost function Φ(x) is strictly convex
and twice continuously differentiable in x. Then, the optimal strategy profile x† is unique.
Additionally, from the first order conditions of optimality, we know that x† minimizes the
social cost function Φ if and only if:

〈∇Φ(x†), x− x†〉 > 0, ∀ x ∈ X.(2.4)

Finally, given a strategy profile x ∈ X, we define the externality caused by player i

as the difference between the marginal social cost, and the marginal cost of player i with
respect to xi. That is,

ei(x) = Dxi
Φ(x)−Dxi

ℓi(x).(2.5)

2.1.2. Non-atomic Games. Consider a game G̃ with a finite set of player populations
Ĩ. Each population i ∈ Ĩ is comprised of a continuum set of players with mass Mi >

0. Individual players in each population can choose an action in a finite set Si. The

strategy of population i ∈ Ĩ is x̃i =
(

x̃
j
i

)

j∈Si

, where x̃
j
i is the fraction of individu-

als in population i who choose action j ∈ Si. Then, the strategy set of population i

is X̃i =
{

x̃i|
∑

j∈Si
x̃
j
i = Mi, x̃

j
i > 0,∀j ∈ Si

}

. The strategy profile of all populations is

x̃ = (x̃i)i∈Ĩ ∈ X̃ =
∏

i∈Ĩ X̃i. Given a strategy profile x̃ ∈ X̃ , the cost of players in

population i ∈ Ĩ for choosing action j ∈ Si is ℓ̃
j
i (x̃) which is assumed to be continuously

differentiable. We denote ℓ̃i(x̃) = (ℓ̃ji (x̃))j∈Si
as the vector of costs for each population

i ∈ Ĩ.
Given any x̃ ∈ X̃, a social planner designs incentives by setting a payment p̃

j
i for

players in population i who choose action j. Consequently, given the incentive vector

p̃ =
(

p̃
j
i

)

j∈Si,i∈Ĩ
, the total cost of players in each population i ∈ Ĩ for choosing action

j ∈ Si is given by:

c̃
j
i (x̃, p̃) = ℓ̃

j
i (x̃) + p̃

j
i ∀ x̃ ∈ X̃.(2.6)

A strategy profile x̃∗(p̃) ∈ X̃ is a Nash equilibrium in the nonatomic game G̃ with p̃ if

∀i ∈ Ĩ, ∀j ∈ Si, x̃
j∗
i (p̃) > 0, ⇒

c̃
j
i (x̃

∗(p̃), p̃) 6 c̃
j′

i (x̃
∗(p̃), p̃), ∀j′ ∈ Si.
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Similar to that in atomic games, we can equivalently represent the Nash equilibrium x̃∗(p̃)

in non-atomic game G̃ as a strategy profile that satisfies the following variational inequality
([24]):

〈c̃(x̃∗(p̃), p̃), x̃− x̃∗(p̃)〉 > 0 ∀ x̃ ∈ X̃,(2.7)

where c̃(x̃∗(p̃), p̃) = (c̃i(x̃
∗(p̃), p̃))i∈Ĩ .

Note that Nash equilibrium always exists in a population game G̃ [24, Theorem 2.1.1].
Under the assumption that the cost function c̃(x̃, p̃) is strictly monotone in x̃ (Assumption
2.1), Nash equilibrium x̃∗ is also unique [24].

Assumption 2.1. For every incentive vector p̃,
〈
c̃(x, p̃)− c̃(x′, p̃), x− x′

〉
> 0, ∀x 6= x′ ∈ X̃.

Analogous to the atomic games, a strategy profile x̃† ∈ X̃ is socially optimal if x̃†

minimizes a social cost function Φ̃ : X̃ → R. We assume that Φ̃(x̃) is strictly convex, and
twice continuously differentiable in x̃. Therefore, x̃† is unique, and satisfies the following
variational inequality constraints:

〈∇Φ̃(x̃†), x̃− x̃†〉 > 0, ∀ x̃ ∈ X̃.(2.8)

Finally, give any x̃ ∈ X̃ , we define the externality caused by players in population i

who play action j ∈ Si as the difference between the marginal social cost, and the cost
experienced by the players in population i who chooses action j, i.e.

ẽ
j
i (x̃) = D

x̃
j
i

Φ̃(x̃)− ℓ̃
j
i (x̃).(2.9)

2.2. Learning dynamics. We now introduce the discrete-time learning dynamics consid-
ered in this paper. For every time step k = 1, 2, ..., we denote the strategy profile in the
atomic game G (resp. non-atomic game G̃) as xk = (xi,k)i∈I (resp. x̃k = (x̃i,k)i∈Ĩ), where
xi,k (resp. x̃i,k) is the strategy of player i (population i) in step k. Additionally, we denote

the incentive vector as pk = (pi,k)i∈I (resp. p̃k = (p̃ji,k)j∈Si,i∈Ĩ
). The strategy updates and

the incentive updates are presented below:

Strategy update. In each step k + 1, the updated strategy is a linear combination of
the previous strategy in stage k (i.e. xk in G and x̃k in G̃), and a new strategy (i.e.

f(xk, pk) ∈ X in G and f̃(x̃k, p̃k) ∈ X̃ in G̃) that depends on the previous strategy and the
incentive vector in stage k. The relative weight in the linear combination is determined by
the step-size γk ∈ (0, 1).

xk+1 = (1− γk)xk + γkf(xk, pk)(x-update)

x̃k+1 = (1− γk)x̃k + γkf̃(x̃k, p̃k)(x̃-update)

We consider generic strategy updates (x-update) and (x̃-update) such that the new

strategy profile f(xk, pk) = (fi(xk, pk))i∈I and f̃(x̃k, p̃k) = (f̃i(x̃k, p̃k))i∈Ĩ can incorporate
a variety of strategy update rules. Two simple examples of such updates include:

(1) Equilibrium update: The strategy update incorporates a Nash equilibrium strategy
profile with respect to the incentive vector in stage k. That is, f(xk, pk) = x∗(pk)

and f̃(x̃k, p̃k) = x̃∗(p̃k).
(2) Best response update: The strategy update incorporates a best response strategy

with respect to the strategy and the incentive vector in the previous step, i.e.
fi(xk, pk) = BRi(xk, pk) = argmin

yi∈Xi

ci(yi, x−i,k, pk), f̃i(x̃k, p̃k) = B̃Ri(x̃k, p̃k) =

argmin
ỹi∈X̃i

ỹ⊤i c̃i(x̃k, p̃k).
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Incentive update. In each step k+1, the updated incentive vector is a linear combination
of the previous vector in step k (i.e. pk in G and p̃k in G̃), and the externality (i.e. e(xk)

in G and ẽ(x̃k) in G̃) based on the strategy profile in step k. The relative weight in the
linear combination is determined by the step size βk ∈ (0, 1).

pk+1 = (1− βk)pk + βke(xk);(p-update)

p̃k+1 = (1− βk)p̃k + βkẽ(x̃k);(p̃-update)

The incentive updates (p-update)-(p̃-update) modify the incentives on the basis of the
externality caused by the players. We emphasize that this update is adaptive to the
evolution of players’ strategies since the externality is evaluated based on players’ current
strategies. Moreover, the computation of each player’s externality only requires that the
social planner knows the gradients of its own costs and those of the players, evaluated at
the players’ current strategy profile.

The joint evolution of strategy profiles and incentive vectors (xk, pk)
∞
k=1 (resp. (x̃k, p̃k)

∞
k=1)

in the atomic game G (resp. non-atomic game G̃) is governed by the learning dynamics
(x-update) – (p-update) (resp. (x̃-update) – (p̃-update)). The step-sizes (γk)

∞
k=1 and

(βk)
∞
k=1 determine the speed of strategy updates and incentive updates. We make the

following assumption on step-sizes:

Assumption 2.2.

(i)
∑∞

k=1 γk =
∑∞

k=1 βk = +∞,
∑∞

k=1 γ
2
k + β2

k < +∞.

(ii) limk→∞
βk

γk
= 0.

In Assumption 2.2, (i) is a standard assumption on step-sizes that allow us to analyze
the convergence of the discrete-time learning dynamics. Additionally, (ii) assumes that
the incentive update occurs at a slower timescale compared to the update of strategies.

Since the assumption on stepsizes (Assumption 2.2 (ii)) ensures that the incentive
evolves on a slower timescale than the strategies, players may view the incentive mecha-
nism as approximately static (although not completely fixed) when updating their strate-
gies. One can show that with any fixed incentive mechanism, strategy updates with Nash
equilibrium being the new strategy always converges. On the other hand, although best
response updates, which we also consider, do not converge in all games, they converge
in many practically-relevant games such as zero sum games [10], potential games [26],
and dominance solvable games [19]. Additionally, our strategy updates (x-update) and
(x̃-update) can incorporate many other learning dynamics; their convergence properties in
static game environments have been extensively studied in the literature, in both atomic
and nonatomic games [17], [24], [9], [18].

We emphasize that the convergence of strategy updates with fixed incentive mechanism
is not the focus of our paper. Instead, our goal is to characterize conditions under which
the adaptive incentive updates (p-update) and (p̃-update) converge to a socially optimal
mechanism. We note that such convergence cannot be achieved in scenarios where the
strategy updates do not converge even with completely fixed incentive vector. Therefore,
we impose the following assumption that the strategy updates consider in our dynamics
converge to a Nash equilibrium with any fixed incentive vector.

Assumption 2.3. In G (resp. G̃), the updates (x-update) (resp. (x̃-update)) starting
from any initial strategy x1 (resp. x̃1) with (pk) ≡ p for any p (resp. (p̃k) ≡ p̃ for any p̃),
satisfies limk→∞ xk = x∗(p) (resp. limk→∞ x̃k = x̃∗(p̃)), where x∗(p) (resp. x̃∗(p̃)) is the
Nash equilibrium corresponding to p (resp. p̃).
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3. General results

In Sec 3.1 we characterize the set of fixed points of the dynamic updates (x-update)-
(p-update) and (x̃-update)-(p̃-update), and show that any fixed point corresponds to a
socially optimal incentive mechanism such that the induced Nash equilibrium strategy
profile minimizes the social cost. In Sec. 3.2, we provide a set of sufficient conditions that
guarantee the convergence of strategies and incentives in our learning dynamics. Under
these conditions, our learning dynamics designs an adaptive incentive mechanism that
eventually induces a socially optimal outcome.

3.1. Fixed point analysis. We first characterize the set of fixed points of our learning
dynamics (x-update)-(p-update), and (x̃-update)-(p̃-update)) as follows:

Atomic game G, {(x, p)|f(x, p) = x, e(x) = p} ,(3.1a)

Nonatomic game G̃,
{

(x̃, p̃)|f̃(x̃, p̃) = x̃, ẽ(x̃) = p̃
}

.(3.1b)

We can check that if the learning dynamics starts with a fixed point strategy and incen-
tive vector, then the strategies and incentive vectors remain at that fixed point for all time
steps. Moreover, under Assumption 2.3, we know that for any incentive vector p (resp. p̃),

a strategy profile that satisfies f(x, p) = x (resp. f̃(x̃, p̃) = x̃) in game G (resp. G̃) must
be a Nash equilibrium x∗(p) (resp. x̃∗(p)). Thus, from (3.1a) – (3.1b), we can write the
set of incentive vectors at the fixed point as follows:

Atomic game G, P † = {(p†i )i∈I |e(x
∗(p†)) = p†},

Nonatomic game G̃, P̃ † = {(p̃†i )i∈I |ẽ(x̃
∗(p̃†)) = p̃†}.

That is, at any fixed point, the incentive of each player is set to be equal to the externality
evaluated at their equilibrium strategy profile.

Our next proposition shows that the fixed point set P † (resp. P̃ †) is non-empty in G

(resp. G̃). Moreover, given any fixed point incentive parameter p† ∈ P † and p̃† ∈ P̃ †, the
corresponding Nash equilibrium is socially optimal.

Proposition 3.1. In G (resp. G̃), the set P † (resp. P̃ †) is non-empty. Additionally, any

p† ∈ P † (resp. p̃† ∈ P̃ †) is socially optimal in that x∗(p†) = x† (resp. x̃∗(p̃†) = x̃†).

This result is especially interesting from perspective of implementation because the
existence of the optimal incentives implies that for G there exists a linear incentive policy
(as in (2.1)) which is optimal. Moreover for G̃ there exists a constant incentive policy (as
in (2.6)) that is optimal.

Proof of Proposition 3.1 is based on Brouwer’s fixed point theorem. The boundedness of
the strategy space allows us to construct convex compact sets which maps to itself under
e(x∗(·)) (resp. ẽ(x̃∗(·))) in G (resp. in G̃).

Next, we provide sufficient conditions under which the fixed point set P † and P̃ † are
singleton.

Proposition 3.2. In atomic game G, the set P † is singleton if any one of the following
conditions holds:

(i) The equilibrium strategy profile x∗(p) is in the interior of the strategy set X for
any p

(ii) 〈e(x)− e(x′), x− x′〉 > 0 for all x 6= x′

In non-atomic game G̃, P̃ † is singleton if the externality function ẽ(·) satisfies Assumption
2.1 and condition (ii).
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Under the sufficient condition in Proposition 3.2, in G (resp. G̃) there exists a unique

incentive mechanism in P † (resp. P̃ †) such that players pay for their externality at equi-
librium. From Proposition 3.1, such a mechanism induces a socially optimal outcome.

3.2. Convergence to optimal incentive mechanism. The next result provides suffi-
cient conditions for strategies and incentives updates (x-update)-(p-update) and (x̃-update)-
(p̃-update) to converge to social optimality.

Theorem 3.3. Under Assumptions 2.2 and 2.3, the sequence of strategies and incentives
induced by the discrete-time dynamics (x-update)-(p-update) in G satisfies

lim
k→∞

(xk, pk) = (x†, p†)(3.3)

if at least one of the following conditions holds:

(C1) If ei(x
∗(0)) > 0, then limp→∞ ei(x

∗(p))−pi < 0 for all i ∈ I. If ei(x
∗(0)) 6 0, then

limp→−∞ ei(x
∗(p)) − pi > 0 for all i ∈ I.3 Moreover, ∂ei(x∗(p))

∂pj
> 0 for all p ∈ R

n

and all i 6= j.
(C2) There exists a continuously differentiable, positive definite and decrescent function

4 V (p) : Rn → R+ such that V (p†) = 0 and V (p) > 0 for all p 6= p†. Moreover:

∇V (p)⊤ (e(x∗(p))− p) < −ω(‖p− p†‖) ∀ p 6= p†,

where ω(·) is strictly increasing, and satisfies ω(0) = 0.

Analogously, the sequence of strategies and incentives in G̃ induced by (x̃-update) and
(p̃-update) satisfies limk→∞(x̃k, p̃k) = (x̃†, p̃†) if the externality function ẽ satisfies at least
one of (C1) and (C2).

Owing to Assumption 2.2, we utilize the timescale separation between the strategy
update (x-update) and the incentive update (p-update) to prove Theorem 3.3. Indeed,
the two-timescale stochastic approximation theory [3] suggests that the strategy update
(x-update) is a fast transient while the incentive update (p-update) is a slow component.
Therefore while considering the fast strategy update one should expect that slow incentive
updates are quasi-static. Consequently, Assumption 2.3 in game G along with Assumption
2.2 ensures that the tuple (xk, pk) converges to the set {(x∗(p), p) : p ∈ R

|I|} [3]. Thus for
sufficiently large values of k, the update xk closely tracks x∗(pk). Therefore, we consider
the following update to analyze the convergence of the slow incentive update (p-update):

pk+1 = (1− βk)pk + βke(x
∗(pk)).(3.4)

Since the step sizes {βk} are asymptotically going to zero and has infinite travel (Assump-
tion 2.2-(i)) we can approximate the updates in (A.8) by the following continuous-time
dynamical system:

ṗ(t) = e(x∗(p(t)))− p(t),(3.5)

Convergence of discrete-time updates (x-update)-(p-update) then hold if the flow of (A.9)
globally converges to P †.

Requirements (C1) in Theorem 3.3 are sufficient conditions for convergence of the tra-
jectories of (A.9) to the set P †. This condition is based on cooperative dynamical systems
theory [11]. Intuitively, condition (C1) demands that in the equilibrium if the players inflict
(resp. alleviate) some externality when no incentive are applied then there should exist
high enough prices (resp. subsidies) which can compensate for the externality. Moreover,

3p → ∞ means pi → ∞ for all i.
4A function V : Rn → R is positive definite if V (x) > α1(‖x‖) for some continuous, strictly increasing
function α1(·) such that α1(0) = 0, and α1(t) → ∞ as t → ∞. V is decrescent if V (x) 6 α2(‖x‖) for some
continuous, strictly increasing function α2(·) such that α2(0) = 0.
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it demands that higher prices (resp. subsidies) on other player increases the externality
inflicted (resp. alleviated) by a player.

Requirement (C2) in Theorem 3.3 on the other hand ensures convergence by positing
existence of a Lyapunov function [25] that is strictly positive everywhere except at P † and
decreases along the flow of (A.9).

Note that either one of the conditions (C1) or (C2) guarantees the convergence of the
flow of the slow system (A.9) to P †. This in addition to the convergence of the fast
strategy update (Assumption 2.3) leads to the convergence of the discrete-time dynamics
(x-update)-(p-update) [3, Chapter 6].

Thus, we have shown that there exists an incentive which induces an equilibrium which is
socially optimal and the externality based pricing update along with any strategy update,
satisfying requirements of Theorem 3.3, converges to the optimal incentive.

4. Applications

In this section, we apply our general results to three classes of games that are practically
relevant: (Sec 4.1) Atomic networked aggregative games; (Sec 4.2) Atomic Cournot games;
and (Sec 4.3) Non-atomic routing games. In each case, we show that our adaptive incentive
mechanism asymptotically induces a socially optimal outcome.

4.1. Atomic Networked Aggregative Games. We consider a finite set of players I
who are connected in a network. The strategy of each player i ∈ I is a real number xi ∈ R.
We represent the network that connects players by a matrix w = (wij)i,j∈I , where wij

captures the impact of player j’s strategy xj on player i’s cost. We assume that wii = 0
for all i ∈ I . The cost of each player i ∈ I given any strategy profile x = (xi)i∈I is a
quadratic function as follows:

ℓi(x) =
1

2
x2i − aixizi(x)

where ai > 0 and zi(x) =
∑

j∈I wijxj is the average strategy of player i’s neighbors

weighted by the network matrix w. That is, zi(x) captures the network effect of opponents’
strategies on player i.

Networked aggregative games are applicable in a variety of settings, where players’
strategies and costs are affected by those around them. Examples of such settings include
peer effects, investment in networked markets, and cross-neighborhood impacts of crime
[13].

A social planner designs an incentive mechanism that charges each player i with payment
pixi. The total cost of player i under strategy profile x and p is

ci(x, p) =
1

2
x2i − xiaizi(x) + pixi.

Let A = diag([a1, a2, ..., a|I|]
⊤). We assume that the matrix (I − Aw) is invertible and

let L = (I − Aw)−1. In the economics literature, the matrix (I − Aw)−1 is referred to as
the Leontief matrix, where the ij entry of this matrix captures how the payment of player
j affects the equilibrium strategy of player i ([21]).

For any p, we show that the aggregative game has a unique Nash equilibrium given by:

x∗(p) = −(I −Aw)−1p.(4.1)

Given x, the cost of the social planner is Φ(x) = 1
2

∑

i∈I(xi − ξi)
2 for ξi ∈ R, where

x† = (ξi)i∈I is the planner’s socially optimal strategy profile. Moreover, from (2.5), the
externality caused by player i given the strategy profile x is ei(x) = ξi + aizi(x).

We consider the learning dynamics, where players update their strategies using best
response. Given any strategy profile x and incentive p, the best response of player i is
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BRi(x−i, pi) = aizi(x) − pi and the best response vector BR(x, p) = (BRi(x−i, pi))i∈I .
Thus the strategy update is f(x, p) = BR(x, p) = Awx − p. Then, the discrete-time
leaning dynamics (x-update) – (p-update) can be written as follows:

xk+1 = (1− γk)xk + γk (Awxk − pk) ,(4.2a)

pk+1 = (1− βk)pk + βk (ξ +Awxk) ,(4.2b)

and the step-sizes {γk}
∞
k=1, {βk}

∞
k=1 satisfy Assumption 2.2.

We show that there exists a unique p† such that the induced equilibrium strategy profile
x∗(p†) equals to the socially optimal strategy x†. Moreover, we also provide sufficient
condition on the Leontief matrix under which our learning dynamics converges the unique
socially optimal incentive mechanism.

Proposition 4.1. The unique socially optimal incentive mechanism is p† = (I − Aw)ξ.
Furthermore if the real part of eigenvalues of (I−Aw) is positive, i.e. spec(L) ⊂ C

◦
+, then

the discrete-time learning dynamics (4.2a)-(4.2b) satisfy limk→∞(xk, pk) = (x†, p†).

From (4.1), we know that for any p, there exists a unique equilibrium strategy profile
x∗(p) that is linear in p. Then, we obtain the socially optimal incentive p† that satisfies
x∗(p†) = x†. Additionally, p† also satisfies that e(x†(p†)) = p†, and therefore p† is a
fixed point of the learning dynamics. To show the convergence results in Proposition
4.1 we verify the conditions in Theorem 3.3 holds. The condition spec(L) ⊂ C

◦
+ ensures

that Assumption 2.3 holds. Indeed, we show that the strategy update (4.2a) with fixed
incentives asymptotically track the flow of a continuous-time linear dynamical system.
The condition spec(L) ⊂ C

◦
+ ensures that the flow of continuous-time dynamical system

asymptotically converges to fixed points of (4.2a) with fixed incentives. Finally, we verify
that if spec(L) ⊂ C

◦
+ then K = −L ⊂ C

◦
− and there exists a Lyapunov function that

satisfies (C2) in Theorem 3.3. In particular, the Lyapunov function is given by

V (p) = (p − p†)⊤M(p − p∗)

where M is a matrix that satisfies K⊤M +MK = −I.5

4.2. Atomic Cournot Competition. A finite set of firms I compete in a single market.
The strategy of each firm i ∈ I is its production quantity xi. Given any strategy profile
x = (xi)i∈I , the price of the good is ξ(x) = θ − δ

∑

i∈I xi with θ, δ > 0. The per-unit
production cost of the good is ν. Then, the cost function of firm i ∈ I (written as negative
of the profit) is given by:

ℓi(x) = −xiξ(x) + νxi(4.3)

A social planner designs an incentive mechanism that charges each player i with payment
pixi. The total cost of firm i ∈ I given x and p is:

ci(x, p) = −xiξ(x) + (ν + pi)xi

The game has a unique Nash equilibrium given by: 6

x∗i (p) =
1

δ(|I|+ 1)



θ − ν − |I|pi +
∑

j 6=i

pj



(4.4)

The goal of the social planner is to minimize the aggregate cost of players while also
accounting for the environmental cost of good production, which is unpriced in equilibrium.
We model the environmental cost to be a quadratic function of production following [4].

5The existence of a matrix M is guaranteed by the Lyapunov theorem [5] as spec(K) ⊂ C
◦
−.

6We assume that θ is large enough such that x∗(p) > 0 for all p in a neighborhood of the socially optimal
incentive p†.
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Thus, the social cost function is Φ(x) =
∑n

i=1 ℓi(x)+λ
∑n

i=1 x
2
i where λ > 0 is a parameter

that determines the relative weight between the firm costs and environmental cost. Finally,
the externality (2.5) caused by of a firm i ∈ I is ei(x) = 2λxi + δ

∑

j 6=i xj.
We consider best response strategy updates. Given any x−i, the best response of firm

i ∈ I is:

BRi(x−i, pi) =
θ − δ

∑

j 6=i xj − ν − pi

2δ
.

Following (x-update) – (p-update), we can write the updates of strategies and incentives
as follows:

xi,k+1 = (1− γk)xi,k + γk

(
θ − δ

∑

j 6=i xj,k − ν − pi,k

2δ

)

,(4.5a)

pi,k+1 = (1− βk)pi,k + βk(δ
∑

j 6=i

xj,k + 2λxi,k).(4.5b)

and the step-sizes {γk}
∞
k=1, {βk}

∞
k=1 satisfy Assumption 2.2.

We can show that for any fixed p, the best response learning dynamics (4.5a) converges
to a Nash equilibrium x∗(p) associated with p. Indeed, we show that the strategy update
(4.5a) with fixed incentives asymptotically track the flow of a continuous-time linear dy-
namical system whose flow asymptotically converges to the Nash equilibrium x∗(p). Thus,
Assumption 2.3 is satisfied.

The next proposition shows that the optimal incentive p† is unique. Moreover, the
incentive vectors induced by (4.5b) converge to the socially optimal incentive p† if the
weight of environmental cost, λ, is sufficiently high.

Proposition 4.2. There exists a unique socially optimal incentive mechanism p† that sat-
isfies p† = e(x∗(p†)). Given p†, the induced equilibrium strategy profile is socially optimal,
i.e. x∗(p†) = x†. Moreover, the discrete-time learning dynamics (4.5a)-(4.5b) satisfy
limk→∞(xk, pk) = (x†, p†) if λ > δ.

Recall that λ is the weight of environmental cost in the social cost function, and δ is
the increase of firm cost with respect to the increase of production level. The sufficient
condition λ > δ states that if the social planner assigns higher weight to the environmental
cost compared to the per-unit increase of firm cost, then the adaptive incentive mechanism
can asymptotically induce a socially optimal outcome.

The proof of Proposition 4.2 follows similarly to that of Proposition 4.1. We show that
there is a unique incentive p† such that the corresponding Nash equilibrium as in (4.5a)
equals to the socially optimal strategy profile, and p† is a fixed point of the discrete-
time learning dynamics (4.5b). Moreover, we show that when λ > δ, we can construct a
Lyapnov function that satisfies (C2) in Assumption (2.3). Therefore, following Theorem
(3.3), we can conclude that the discrete-time learning dynamics converges to a socially
optimal outcome.

4.3. Non-atomic routing games. A traveler population with total demand of 1 make
routing decisions on a parallel-route network, where a single origin - destination pair is
connected by a finite set of routes S. The strategy of the traveler population is x̃ = (x̃j)j∈S ,
where x̃j is the mass of travelers who choose route j ∈ S. The population’s strategy set is
X̃ = {x̃|

∑

j∈S x̃
j = 1, x̃j > 0, ∀j ∈ S}.

Given any x̃ and any route j ∈ S, the travel time cost ℓj(x̃j) is a strictly-increasing
and convex function of the mass of travelers who take route j ∈ S. This reflects the
congestible nature of the traffic routes and the fact that the travel time increases faster as
more travelers take that route.
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A social planner designs a tolling mechanism p̃ = (p̃j)j∈S , where the toll price of route
j is p̃j. Given any x̃ and p̃, the total cost experienced by travelers who take route j is
c̃j(x̃, p̃) = ℓj(x̃j) + p̃j .

Given any toll vector p̃, the routing game has a unique Nash equilibrium x̃∗(p̃). The
goal of the social planner is to minimize the total cost of all routes in the network, i.e.
Φ̃(x̃) =

∑

j∈S x̃
jℓj(x̃

j). We can check that Φ̃(x̃) is strictly convex in x̃, and thus the

socially optimal strategy x̃† is unique. Finally, following from (2.9), the externality caused

by travelers on route j ∈ S is ẽj(x̃) = x̃j
dℓj(x̃j)
dx̃j .

We consider perturbed best response strategy updates. Given any x̃, the perturbed best
response strategy is

f̃ i(x̃, p̃) =
exp(−ηc̃i(x̃, p̃))

∑

j∈S exp(−ηc̃j(x̃, p̃))
,

where η evaluates the sensitivity of travelers’ route choices with respect to the costs. We
note that as η → ∞, the perturbed best response strategy reduces to a best response
strategy that only chooses routes with the minimal costs.

The discrete-time learning dynamics is:

x̃
j
k+1 = (1 − γk)x̃

j
k + γk

exp(−ηc̃j(x̃k, p̃k))∑

j∈S exp(−ηc̃j(x̃k, p̃k))
,(4.6a)

p̃
j
k+1 = (1 − βk)p̃

j
k + βkx̃

j
k

dℓj(x̃jk)

dx̃
j
k

.(4.6b)

and the step-sizes {γk}
∞
k=1, {βk}

∞
k=1 satisfy Assumption 2.2. Moreover, we can show that

for any fixed p̃, the perturbed best response dynamics (4.6a) converges to the perturbed
equilibrium. Indeed, due to Assumption 2.2-i) the discrete-time updates (4.6a), with fixed
incentive p̃, tracks the flow of a cooperative continuous-time dynamical system [11] whose
flows converges to the perturbed equilibrium. Thus Assumption 2.3 holds.

The next proposition shows that the optimal incentive p̃† is unique. Moreover, the
incentive vectors induced by (4.6b) converge to the socially optimal incentive p†.

Proposition 4.3. As η → ∞, the strategies and incentives induced by the discrete-time
learning dynamics (4.6a)-(4.6b) converge to a unique fixed point, i.e. limk→∞(x̃k, p̃k) =

(x̃∗(p̃†), p̃†), where x̃∗(p†) is a Nash equilibrium given p†, and p† satisfies ẽ(x̃∗(p̃†)) = p̃†.
Additionally, p̃† is the unique optimal incentive mechanism, and the corresponding Nash
equilibrium x̃∗(p†) = x̃†.

In the proof of Proposition 4.3, we first show that the externality function ẽ is monotonic
in x̃. Thus, the existence and uniqueness of fixed point toll price follows from Propositions
3.1 and 3.2. Additionally, we show that the value of externality in equilibrium ẽ(x̃∗(p))
satisfies (C1) in Theorem 3.3. Therefore, we can conclude that the discrete-time learning
dynamics converge to the socially optimal outcome.

5. Conclusion

We propose a joint strategy and incentive update scheme for atomic and nonatomic
games so that the emergent Nash equilibrium minimizes a social planner’s cost (or equiv-
alently maximizes social welfare). We assume that the planner, at each time-step, can
modify the costs of players by setting a payment. There are three key features of the pro-
posed scheme: first, the incentives are updated at a slower timescale as compared to the
players’ strategy update. Second, the incentive update is based on the externality caused
by the players’ strategy evaluated as the difference between players’ marginal cost and the
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planner’s marginal cost. Third, the incentive update is agnostic to the specific strategy
update deployed by players, and relies on the current strategy profile.

We show that the fixed point of the incentive and strategy update corresponds to an
optimal incentive which induces a Nash equilibrium that is socially optimal. We provide
sufficient conditions under which the proposed dynamic updates converge to its fixed points.
We study the behavior of the proposed incentive updates to three games of practical
significance: atomic networked quadratic aggregative games, atomic Cournot competition
and nonatomic network routing games by verifying the proposed sufficient conditions of
convergence.

Appendix A. Proofs

A.1. Proof of Proposition 3.1.

Proof. We provide a detailed proof for the setting of atomic games as the proof for the
non-atomic game follows similarly.
Atomic game G: We show that P † is non-empty. That is, there exists p† such that
e(x∗(p†)) = p†. Define a function θ(p) = e(x∗(p)). Thus, the remaining proof is based
on application of Brouwer’s fixed point theorem to show existence of the fixed points of
function θ(·).

We note that θ(p) is a continuous function based on the setup presented in Sec 2.

Furthermore, let’s define K := {θ(p) : p ∈ R
|I|} ⊂ R

|I|. We claim that the set K is
compact. Indeed, this follows by two observations. First, the externality function e(·) is
continuous. Second, the range of the function x∗(·) is X which is a compact space. These

two observations ensure that θ(p) = e(x∗(p)) is a bounded function. Let K̃ := conv(K) be
the convex hull of K, which in turn is also a compact set. Let’s denote the restriction of
function θ on the set K̃ as θ|K̃ : K̃ −→ K̃ where θ|K̃(p) = θ(p) for all p ∈ K̃. We note that

θ|K̃ a is continuous function from a convex compact set to itself and therefore Brouwer’s

fixed point theorem ensures that there exits p† ∈ K̃ such that p† = θ|K̃(p†) = θ(p†). This

concludes the proof about existence of p†.
Next, we show that incentive p† aligns Nash equilibrium with social optimality (i.e. for

any p† ∈ P †, x∗(p†) = x†). Fix p† ∈ P †. For every i ∈ I we have p
†
i = ei(x

∗(p†)). This

implies Dxi
ℓi(x

∗(p†)) + p
†
i = Dxi

Φ(x∗(p†)) for every i ∈ I . This implies

J(x∗(p†), p†) = ∇Φ(x∗(p†)).(A.1)

Next, from (2.2) we know that x∗(p†) is a Nash equilibrium if and only if

〈J(x∗(p†), p†), x− x∗(p†)〉 > 0, ∀ x ∈ X.(A.2)

Using (A.1) and (A.2) the following holds:

〈∇Φ(x∗(p†)), x− x∗(p†)〉 > 0, ∀ x ∈ X.(A.3)

Comparing (A.3) with (2.4) we note that x∗(p†) is the minimizer of social cost function Φ.
This implies x∗(p†) = x† as x† is the unique minimizer of social cost function Φ.

�

A.2. Proof of Proposition 3.2.

Proof. The proof is based on a contradiction argument.

(i) We make the following observation which are central to the proof:
(O1) We note that if x∗(p) ∈ int(X) for every p then the variational inequality

characterization (2.2) implies that J(x∗(p), p) = 0 for every p. As a result the
externality function (2.5) becomes e(x∗(p)) = ∇Φ(x∗(p)) + p.
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(O2) The strict convexity of the social cost function implies that

〈∇Φ(x)−∇Φ(y), x− y〉 > 0, ∀ x, y ∈ X such that x 6= y

Suppose there exists two distinct element p†, q† ∈ P †. We claim that x∗(p†) 6=
x∗(q†). Indeed, using (O1) and (2.3) the following holds:

(A.4)
p
†
i = −Dxi

ℓ(x∗(p†)), ∀ i ∈ I

q
†
i = −Dxi

ℓ(x∗(q†)), ∀ i ∈ I.

If x∗(p†) = x∗(q†) then (A.4) implies p† = q†, but these are assumed to be distinct.
Thus in the following proof we assume x∗(p†) 6= x∗(q†).

We note from (O1) that

0 = ∇Φ(x∗(p†)), 0 = ∇Φ(x∗(q†)).(A.5)

Substracting the two expressions in (A.5) and taking inner product with x∗(p†)−
x∗(q†) we see that

0 =
〈

x∗(p†)− x∗(q†),∇Φ(x∗(p†))−∇Φ(x∗(q†))
〉

(A.6)

We arrive at a contradiction by noting that x∗(p†) 6= x∗(q†) and (O2) imply that
RHS is strictly positive.

(ii) To begin the proof we define Dℓ(x) = (Dxi
ℓi(x))i∈I . Under this notation, we have

e(x) = ∇Φ(x)−Dℓ(x). The proof is based on the following observations:
(O3) We claim that 〈x∗(p1)− x∗(p2), p1 − p2〉 < 0 for any two distinct incentives

p1 6= p2. Indeed, from the variational inequality characterization of Nash
equilibrium (2.2) we know that

〈Dℓ(x∗(p1)) + p1, x1 − x̃∗(p1)〉 > 0, ∀x1 ∈ X

〈Dℓ(x∗(p2)) + p2, x2 − x̃∗(p2)〉 > 0, ∀x2 ∈ X

Picking x1 = x̃∗(p2) and x2 = x̃∗(p1), and adding the two inequalities in
preceding equation we obtain

〈x∗(p1)− x∗(p2), p1 − p2〉 6 −〈Dℓ(x∗(p1))−Dℓ(x∗(p2)), x
∗(p1)− x∗(p2)〉 6 0

where the last inequality follows due to the convexity of ℓ.
We prove the uniqueness by contradiction. Suppose there exists two incentives

p†, q† ∈ P † such that ẽ(x̃∗(p†)) = p† and ẽ(x̃∗(q†)) = q†. Then we have

p† = ∇Φ(x∗(p†))−Dℓ(x∗(p†))

q† = ∇Φ(x∗(q†))−Dℓ(x∗(q†)).

Subtracting the two expressions and taking inner product with x∗(p†)− x∗(q†) we
have
〈

x∗(p†)− x∗(q†), p† − q†
〉

=
〈

x∗(p†)− x∗(q†), e(x∗(p†))− e(x∗(q†))
〉

> 0.

But from (O3) we see that we arrive at a contradiction as
〈
x∗(p†)− x∗(q†), p† − q†

〉
6

0.

�
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A.3. Proof of Theorem 3.3.

Proof. To ensure the convergence of (xk, pk) to the fixed point (x†, p†) of (x-update)-
(p-update), we exploit the timescale separation introduced due to Assumption 2.2. The
proof is based on two-timescale dynamical systems theory described in [3]. Due to this
timescale separation the strategy update evolves faster than the incentive update. This
allows us to appropriately decouple the strategy and incentive update and analyze them
separately.

Note that we can equivalently write (x-update)-(p-update) as follows:

(A.7)

xk+1 = xk + γk (f(xk, pk)− xk)

pk+1 = pk + γk

(
βk

γk
(e(xk)− pk)

)

,

where limk−→∞
βk

γk
= 0 and limk−→∞ γk = 0. From two timescale dynamical systems theory

we know that under Assumption 2.3 the tuple (xk, pk) converges to the set {(x∗(p), p) : p ∈

R
|I|}. Thus for sufficiently large values of k, the update xk closely tracks x∗(pk). Therefore,

we consider the following update to analyze the convergence of the slow incentive update
(p-update):

pk+1 = (1− βk)pk + βke(x
∗(pk)).(A.8)

Since the step sizes {βk} are asymptotically going to zero and is non-summable (Assump-
tion 2.2-(i)) we can approximate the updates in (A.8) by the following continuous-time
dynamical system :

ṗ(t) = e(x∗(p(t)))− p(t),(A.9)

Convergence of discrete-time updates (x-update)-(p-update) then hold if the flow of (A.9)
globally converges to P †.

Requirements (C1) in Theorem 3.3 is a sufficient condition for convergence of the tra-
jectories of (A.9) to the set P †. This condition is based on cooperative dynamical systems
theory [11]. On the other hand requirement (C2) in Theorem 3.3 ensures convergence the
trajectories of (A.9) to the set P † by demanding existence of a Lyapunov function [25]
that is strictly positive everywhere except at P † and decreases along the flow of (A.9).

�

A.4. Proof of Proposition 4.1.

Proof. We first show that the set P † is singleton for the setup in Sec 4.17. Then we show
that the dynamic update (xk, pk) corresponding to (4.2a)-(4.2b) converges to the social
optimality (x†, p†).

Note that any element p† ∈ P † should satisfy p† = e(x∗(p†)) = ξ+Awx∗(p†). Moreover,
from (4.1) we know that x∗(p†) = Awx∗(p†) − p†. Succintly writing the preceding two
relations in matrix form gives us:

[
I −Aw

I I −Aw

]

︸ ︷︷ ︸

Γ

[
p†

x∗(p†)

]

=

[
ξ

0

]

.

We claim that Γ is an invertible matrix8 with the inverse as follows:

Γ−1 =

[
I −Aw Aw

−I I

]

7Note that we cannot directly use Proposition 3.1 as that required compactness of strategy space.
8Invertibility of I − Aw is a necessary condition for invertiblility of Γ.
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Thus (x∗(p†), p†) exists and is unique. Moreover p† = (I −Aw)ξ and x∗(p†) = −ξ = x†.
Next, to ensure that the dynamic update (xk, pk) corresponding to (4.1)-(4.2b) converges

to the fixed point (x†, p†) we use Theorem 3.3. It is sufficient to show that Assumption 2.3
and condition (C2) hold in order to use the results from Theorem 3.3 directly.

First, we show that Assumption 2.3 hold. That is, for any fixed incentive update (pk) ≡ p

the strategy update satisfies limk−→∞ xk = x∗(p). Indeed, due to Assumption 2.2, the
convergence properties of discrete time updates can be obtained by analysing the corre-
sponding continuous time dynamical system. That is, we consider the following continuous
time dynamical system corresponding to the strategy update:

ẋ(t) = −(I −Aw)x(t)− p.(A.10)

We note that the trajectories of (A.10) satisfy limt−→∞ x(t) = x∗(p). This is due to the
assumption that −(I −Aw) is Hurwitz9 [5]. Thus Assumption 2.3 holds.

Next, we show that condition (C2) is satisfied which then fulfils all the requirement of
Theorem 3.3. We claim that the function V (p) = (p− p†)⊤L(p− p†) satisfies (C2) where
L10 is a symmetric positive definite matrix that satisfies the following condition:

(I −Aw)−⊤M +M(I −Aw)−1 = I.(A.11)

Indeed, V (p†) = 0 and since L is a positive definite matrix, this means V (p) > 0 for all
p 6= p†. Furthermore, we compute

∇V (p)⊤(e(x∗(p))− p) = 2(p− p†)⊤L(e(x∗(p))− p),

=
(a)

2(p − p†)⊤L (ξ +Awx∗(p)− p) ,

= 2(p− p†)⊤L
(

−x∗(p†) +Awx∗(p)− p
)

,

=
(b)

2(p − p†)⊤L
(

−x∗(p†) + x∗(p)
)

,

=
(c)

−2(p − p†)⊤L(I −Aw)−1(p − p†),

=
(d)

−(p− p†)⊤
(

L(I −Aw)−1 + (I −Aw)−⊤L
)

(p− p†),

= −(p− p†)⊤(p − p†) < 0,

where (a) is by the definition of externality function (2.5), (b), (c) is by the Nash equilibrium
(4.1) and (d) is by (A.11).

This completes the proof. �

A.5. Proof of Proposition 4.2. Before stating the proof of Proposition 4.2 we present
the following two results which are crucial in the proof of Proposition 4.2. First, we prove
the Nash equilibrium takes the form stated in (4.4). Next, we present a technical lemma.

Below, we state the Nash equilibrium in Cournot competition in terms of incentives.

Lemma A.1 (Nash equilibrium). For any given incentive p, the Nash equilibrium is given
by

x∗(p) =
θ − ν

δ(|I|+ 1)
1−

1

δ
p+

1

δ(|I|+ 1)
11

⊤p

9A matrix A is called Hurwitz if spec(A) ⊂ C
◦
−.

10Note that the existence of such matrix L is guaranteed from Lyapunov theorem [5] as σ(I −Aw) ⊂ C
◦
+.
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Proof. In the setup of Sec 4.2 the variational inequality characterization of Nash equi-
librium (2.2) implies that for any given p, x∗(p) is a Nash equilibrium if and only if
J(x∗(p), p) = 0. Consequently, x∗(p) satisfies the following

2x∗i (p) +
∑

j 6=i

x∗j(p) =
θ − ν − pi

δ
.

Recasting this in the matrix form gives the following:






2 1 . . . 1
1 2 . . . 1
. . . . . . . . . . . .

1 1 . . . 2







︸ ︷︷ ︸

A







x∗1(p)
x∗2(p)
. . .

x∗n(p)






=







θ−ν−p1
δ

θ−ν−p2
δ
. . .

θ−ν−pn
δ






.(A.12)

Note that A = I + 11

⊤. Furthermore, by the Sherman-Morrison formula:

A−1 =
1

|I|+ 1







|I| −1 . . . −1
−1 |I| . . . −1
. . . . . . . . . . . .

−1 −1 . . . |I|






= I −

1

|I|+ 1
11

⊤.(A.13)

Therefore, by (A.12) we have :






x∗1(p)
x∗2(p)
. . .

x∗n(p)






=

1

δ(|I|+ 1)







θ − ν − |I|p1 +
∑

j 6=1 pj
θ − ν − |I|p2 +

∑

j 6=2 pj
. . .

θ − ν − |I|pn +
∑

j 6=n pj






.

This completes the proof. �

Next, we present a technical lemma that is crucial in the proof of Proposition 4.2.

Lemma A.2. Let Γ = (2λ − δ)I + δ11⊤ and Ω = −1
δ
I + 1

δ(|I|+1)11
⊤. If λ > δ then

spec(ΓΩ) ⊂ C
◦
−.

Proof. Note that

−ΓΩ =
1

δ(|I|+ 1)
((2λ− δ)I + δ11⊤)((|I|+ 1)I − 11

⊤)

=
1

δ(|I|+ 1)

(

(|I|+ 1)(2λ− δ)I − (2λ− δ)11⊤ + (|I|+ 1)δ11⊤ − |I|δ11⊤
)

=
1

δ(|I|+ 1)

(

(|I|+ 1)(2λ− δ)I − (2λ− 2δ)11⊤
)

From Gershgorin’s circle theorem11 we know that for the result to hold it is sufficient to
ensure

|(|I|+ 1)(2λ − δ)− (2λ− 2δ)| > (|I| − 1)|2λ − 2δ|(A.15)

In fact if λ > δ then (A.15) holds.
�

11Gershgorin’s circle theorem [27], which says that for a square matrix A ∈ R
n×n, each eigenvalue of A is

contained in at least one of the disks:

Di = {z ∈ C : |z −Aii| 6
∑

j 6=i

|Aij |}(A.14)

where Aii are the diagonal entries of A, and Aij are the off-diagonal entries. In our case, to ensure that
ΓΩ has eigenvalues on the open right half plane, we need to ensure that |Aii| −

∑
j 6=i

|Aij | > 0
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Finally, we present the proof of Proposition 4.2 below:

Proof of Proposition 4.2. We show that the set P † is singleton for the setup in Sec 4.112.
Then we show that the dynamic update (xk, pk) corresponding to (4.2a)-(4.2b) converges
to social optimality (x†, p†).

Note that any element p† ∈ P † should satisfy p† = e(x∗(p†)) =
(
(2λ− δ)I + δ11⊤

)
x∗(p†).

Moreover from Lemma A.1 we know that x∗(p†) = θ−ν
δ(|I|+1)1− 1

δ

(

I − 11

⊤

|I|+1

)

p†. Succintly

writing these two requirements in matrix form gives us:
[
(2λ− δ)I + δ11⊤ −I

δI I − 1
|I|+111

⊤

]

︸ ︷︷ ︸

B

[
x∗(p†)
p†

]

=

[
0

θ−ν
|I|+11

]

We claim that B is an invertible matrix. Indeed, lower diagonal is an invertible block by
(A.13) and the Schur complement of B with respect to that block is 2λI +2δ11⊤ which is
also invertible. Thus (x∗(p†), p†) exits and is unique.

Next, we use Theorem 3.3 to ensure that the dynamic update (xk, pk) corresponding
to (4.5a)-(4.5b) converges to the fixed point (x∗(p†), p†). It is sufficient to show that
Assumption 2.3 and condition (C2) hold. Before checking these conditions we define
Γ = (2λ− δ)I + δ11⊤ and Ω = −1

δ
I + 1

δ(|I|+1)11
⊤.

First, we show that Assumption 2.3 holds. That is, for any fixed incentive (pk) = p, the
strategy update satisfies limk→∞ xk = x∗(p). Indeed, due to Assumption 2.2, the conver-
gence properties of discrete time updates can be obtained by analysing the corresponding
continuous time dynamical system stated below:

ẋi(t) = −xi(t) +

(
θ − δ

∑

j 6=i xj(t)− ν − pi

2δ

)

(A.16)

We claim that the trajectories of (A.16) satisfy limt→0 x(t) = x∗(p). Indeed, the atomic
Cournot competition is a potential game with the following potential function for any p:

T (x, p) = −

∫ ∑|I|
i=1

xi

0
(θ − δz)dz +

|I|
∑

i=1

(ν + pi)xi,(A.17)

and (A.16) is the corresponding continuous time best response dynamics. Thus [26, The-
orem 2] ensures limt→∞ x(t) = x∗(p).

Next, we show that condition (C2) is satisfied, which fulfills the requirements of Theo-
rem (3.3). We claim that the function V (p) = (p− p†)L(p− p†) satisfies (C2), where L is
a symmetric positive definite matrix that satisfies:

(ΓΩ)⊤L+ L⊤(ΓΩ) = −I(A.18)

Note that the existence of L follows from the Lyapunov theorem [5] as from Lemma A.2
we know that −ΓΩ is a Hurwitz matrix.

Indeed, V (p†) = 0 and since L is positive definite, this means V (p) > 0 for all p 6= p†.
Furthermore, we compute:

∇V (p)⊤(e(x∗(p))− p) = 2(p − p†)⊤L(e(x∗(p))− p)

=
(a)

2(p − p†)⊤L
((

(2λ− δ)I + δ11⊤
)

x∗(p)− p
)

=
(b)

2(p− p†)⊤L
((

(2λ− δ)I + δ11⊤
)

(x∗(p)− x∗(p†)) + p† − p
)

= 2(p − p†)⊤LΓ(x∗(p)− x∗(p†))− 2(p − p†)⊤L(p− p†)

12Note that we cannot directly use Proposition 3.1 as that required compactness of strategy space.
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=
(c)

2(p − p†)⊤LΓΩ(p− p†)− 2(p− p†)⊤L(p− p†)

=
(d)

(p− p†)⊤(L(ΓΩ) + (ΓΩ)⊤L)(p − p†)− 2(p− p†)⊤L(p− p†)

= −(p− p†)(2L+ I)(p− p†)

where (a) is by the definition of the externality function e(x∗(p)), (b) is by adding and
subtracting p†, (c) is by the definition of the Nash equilibrium x∗(p), and (d) is by (A.18).
This completes the proof. �
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