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Abstract

Federated learning is a framework for distributed optimization that places emphasis
on communication efficiency. In particular, it follows a client-server broadcast model and is
particularly appealing because of its ability to accommodate heterogeneity in client compute
and storage resources, non-i.i.d. data assumptions, and data privacy. Our contribution is
to offer a new federated learning algorithm, FedADMM, for solving non-convex composite
optimization problems with non-smooth regularizers. We prove converges of FedADMM for
the case when not all clients are able to participate in a given communication round under
a very general sampling model.

1 Introduction

Federated learning (FL) [14, 20], a novel distributed learning paradigm, has attracted significant
attention in the past few years. Federated algorithms take a client/server computation model,
and provide scope to train large-scale machine learning models over an edge-based distributed
computing architecture. In the paradigm of FL, models are trained collaboratively under the
coordination of a central server while storing data locally on the edge/clients. Typically, clients
(devices and entities ranging from mobile phones to hospitals, to an internet of things [22, 11])
are assumed to be heterogeneous; each client is subject to its own constraints on available
computational and storage resources. By allowing data to be stored client-side, the FL paradigm
has many favorable privacy properties.

In contrast to “traditional” distributed optimization, FL framework has its own unique
challenges and characteristics. First, communication becomes problematic when the number of
edge devices/clients is large, or the connection between the central server and a device is slow,
e.g., when the mobile phones have limited bandwidth. Second, datasets stored in each client
may be highly heterogeneous in that they are sampled from different population distributions,
or the amount of data belonging to each client is unbalanced. Third, device/client heterogene-
ity can severely hinder algorithm performance; differences in hardware, software, and power
(connectivity) lead to varying computation speeds among clients, leading to global performance
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being dominated by the slowest agent. This is known as the “straggler” effect. Additionally,
the server may lose control over the clients when they power down or lose connectivity. It
is thus common for only a fraction of clients to participate in in each round of the training
(optimization) process, and federated optimization algorithms must accommodate this partial
participation.

A wealth of algorithms have been developed to address the aforementioned challenges. No-
tably, work in [20] proposed the now popular FedAvg algorithm, where each client performs
multiple stochastic gradient descent (SGD) steps before sending the model to the server for
aggregation. Subsequent efforts [14, 31, 34, 17, 26] provided theoretical analysis and further
empirical performance evaluations. Since the proposal of FedAvg, there has been a rich body
of work concentrating on developing federated optimization algorithms, such as; FedProx [28],
FedSplit [24], Scaffold [12], FedLin [21], FedDyn [1], FedDR [33] and FedPD [39].

We consider a general unconstrained, composite optimization models formulated as

1

n

n∑
i=1

fi(x) + g(x). (1)

No convexity assumptions on fi are made and g can be non-smooth. Of the previously men-
tioned federated algorithms, we restrict our attention to FedDR and FedPD. These algorithms
are designed to alleviate the unrealistic assumptions required by FedAvg in order to realize
desirable theoretical convergence rates. As described in [33], FedDR combines the nonconvex
Douglas-Rachford splitting (DRS) algorithm [16] with a randomized block-coordinate strategy.
FedDR provably converges when only a subset of clients participate in any given communication
round. In contrast, FedPD is a primal-dual algorithm which requires either full participation
or no participation by all clients at every per round. Unlike FedDR, FedPD cannot handle
optimization problems of the form of (1) for g 6≡ 0.

The key observation of this paper is to note that the updating rules of FedPD share a similar
form to those of the alternating direction method of multipliers (ADMM) [9], but specifies how
the local models are updated to satisfy the flexibility need of FL. Motivated by the fact that
ADMM is the dual formulation of DRS [36, 7], we provide a new algorithm called FedADMM.
Specifically, our contributions are:

1. By applying FedDR to the dual formulation of problem (1), we propose a new algorithm
called FedADMM, which allows partial participation and solves the federated composite
optimization problems as in [37].

2. When g ≡ 0 in problem (1), we find that FedADMM reduces to FedPD but requires only
partial participation.

3. We prove equivalence between FedDR and FedADMM and provide a one-to-one and onto
mapping between the the iterates of both algorithms.

4. We provide convergence guarantees for FedADMM using the equivalence established in
point 3.

Since FedADMM is the dual formulation of FedDR, it inherits all the desirable properties from
FedDR. First, it can handle both statistical and system heterogeneity. Second, it allows inexact
evaluation of users’ proximal operators as in FedProx and FedPD. Third, by considering g 6≡ 0
in (1), more general applications and problems with constraints can be considered [37].



1.1 Related Work

ADMM and DRS: DRS was first proposed in [5] in the context of providing numerical
solutions to heat conduction partial differential equations. Subsequently, it found applications in
the solution of convex optimization problems [19, 29] and later non-convex problems [16, 15, 32].
ADMM [10, 3] is a very popular iterative algorithm for solving composite optimization problems.
The equivalence between DRS and ADMM has been subject of a lot of work [8, 6, 36, 40]. It
was first established for convex problems where ADMM is equivalent to applying DRS to the
dual problem [8, 6]. Recently, these ideas were extended in [32] to show equivalence in the
non-convex regime. Inspired by the fact that FedDR can be viewed as a variant of nonconvex
DRS applied to the FL framework, we propose a new algorithm, FedADMM and further extend
the equivalence of these two algorithms to the FL paradigm.

Federated Learning: FedAvg was first proposed in [20]. However, it works well only
with a homogeneous set of clients. It is difficult to analyze the convergence of FedAvg for
the heterogeneous setting unless additional assumptions are made [17, 18, 13, 35]. The main
reason for this is that the algorithm suffers from client-drift [42] under objective heterogeneity.
To address the data and system heterogeneity, FedProx [28] was proposed by adding an extra
proximal term [23] to the objective. However, this extra term might degrade the training
performance so that FedProx doesn’t converge to the global or local stationery points unless
the step-size is carefully tuned. Another method called Scaffold [12] uses control variates (or
variance reduction) to reduce client-drift at the cost of increased communication incurred by
sending extra variables to the server. FedSplit [24] applied the operator splitting schemes to
remedy the objective heterogeneity issues, while it only considered the convex problems and
required the full participation of clients. As mentioned earlier, FedDR [33] was inspired from
DRS, and allowed partial participation. From the primal-dual optimization perspective, FedPD
[39] proposed a new concept of participation, which restricted its potential application on real
problems. It is also worthwhile to mention that FedDyn [1] is equivalent to FedPD [39] from [38]
under the full participation setting, but it allows partial participation. Unlike [37], FedPD and
FedDyn can’t solve non-smooth or constrained problems. Finally, we refer readers to [11] for a
comprehensive understanding of the recent advances in FL.

2 Preliminaries and Problem Formulation

We consider the canonical Federated learning optimization problem defined as

min
x∈Rd

{
F (x) = f(x) + g(x) ≡ 1

n

n∑
i=1

fi(x) + g(x)

}
(2)

where n is the number of clients, fi denotes the loss function associated to the i-th client. Each
fi is nonconvex and Lipschitz differentiable (see Assumptions 2.1 and 2.2 below), and g is a
proper, closed, and convex function and is not necessarily smooth. For example, g could be any
`p norm or an indicator function.

Assumption 1. F (x) is bounded below, i.e.,

inf
x∈Rd

F (x) > −∞ and dom(F ) 6= ∅.



Assumption 2. (Lipschitz differentiability) Each fi(·) in (2) has L-Lipschitz gradient, i.e.,

‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖

for all i ∈ [n] and x, y ∈ Rd.

The notation [n] above defines the set {1, 2, . . . , n}. All the norms in the paper are `2 norm.
We will frequently make use of the proximal operator [23]. Although typically defined for convex
functions, we make no such assumptions.

Definition 1. (Proximal operator) Given an L-Lipschitz (possibly nonconvex and nons-
mooth) function f , then the proximal mapping Rd → (−∞,∞] is defined as

proxηf (x) = arg min
y

{
f(y) +

1

2η
‖x− y‖2

}
. (3)

where parameter η > 0.

If f is nonconvex but L-Lipschitz, proxηf (x) is still well-defined with 0 < η < 1/L.

Definition 2. (Conjugate function) Let f : Rd → R. The function f∗ : Rd → R defined as

f∗(y) , sup
x∈dom f

(
yTx− f(x)

)
is called the conjugate function of f .

Note that the conjugate function is closed and convex even when f is not, since it is the
piecewise supremum of a set of affine functions.

Definition 3. (ε-stationarity) A vector x is said to be an ε-stationery solution to (2) if

E
[
‖∇F (x)‖2

]
≤ ε2,

where expectation is taken with respect to all random variables in the respective algorithm.

3 Douglas-Rachford Algorithm

3.1 Douglas-Rachford Splitting

Douglas-Rachford Splitting (DRS) [5] is an iterative splitting algorithm for solving the opti-
mization problems that can be written as

minimizex∈Rd f(x) + g(x). (4)

Although originally used for solving convex problems, it has been shown to work well on certain
non-convex problems with additional structure. DRS solves problem (4) by producing a series
of iterates (yk, zk, xk) for k = 1, 2, . . . given by

yk = proxηf (xk)

zk = proxηg (2yk − xk)
xk+1 = xk + α (zk − yk)

(5)



where α is a relaxation parameter. When α = 1, (5) is the classical Douglas-Rachford splitting
and when α = 2, (5) is a related splitting algorithm called Peaceman-Rachford splitting [25].

If f in problem (4) can decomposed as f(x) = 1
n

∑n
i=1 fi(x), then (5) can be modified so as

to run in parallel if we include a global averaging step. The resulting algorithm is given below:

yk+1
i = yki + α

(
x̄k − xki

)
, ∀i ∈ [n]

xk+1
i = proxηfi

(
yk+1
i

)
, ∀i ∈ [n]

x̂k+1
i = 2xk+1

i − yk+1
i , ∀i ∈ [n]

x̃k+1 = 1
n

∑n
i=1 x̂

k+1
i ,

x̄k+1 = proxηg
(
x̃k+1

)
.

(6)

A full derivation is given in [33]. Equation (6) is called full parallel Douglas-Rachford splitting
(DRS).

3.2 FedDR

Implicit in the full parallel DRS (6), is the fact that all users are required to participate at every
iteration. Instead of requiring all users i ∈ [n] to participate as in (6), work in [33] proposed
an inexact randomized block-coordinate DRS algorithm, called FedDR. Here, a subset Sk of
clients is sampled from a “proper” sampling scheme Ŝ (See Definition 4 below for details) at
each iteration. Each client, i ∈ Sk performs a local update (i.e., executes the first three steps
in (6)), then sends its local model to server for aggregation. Each client i /∈ Sk does noting.
The complete FedDR algorithm is shown in Alg 1.

Algorithm 1 FL with Randomized DR (FedDR) [33]

1: Initialize x0, η, α > 0,K, and tolerances εi,0 ≥ 0.
2: Initialize the server with x̄0 = x0 and x̃0 = x0

3: Initialize each client i ∈ [n] with y0
i = x0, x0

i ≈ proxnfi
(
y0
i

)
, and x̂0

i = 2x0
i − y0

i .
4: for k = 0, . . . ,K do
5: Randomly sample Sk ⊆ [n] with size S.
6: � User side
7: for each user i ∈ Sk do
8: receive x̄k from the server.
9: choose εi,k+1 ≥ 0 and update

10: yk+1
i = yki + α

(
x̄k − xki

)
,

11: xk+1
i ≈ proxηfi

(
yk+1
i

)
,

12: x̂k+1
i = 2xk+1

i − yk+1
i .

13: send ∆x̂ki = x̂k+1
i − x̂ki back to the server .

14: end for
15: � Server side
16: aggregation x̃k+1 = x̃k + 1

n

∑
i∈Sk ∆x̂ki

17: update x̄k+1 = proxηg
(
x̃k+1

)
18: end for



Convergence to an ε-stationary point of FedDR is guaranteed when the sampling scheme Ŝ
is proper and Assumption 1 and 2 hold [33].

Definition 4. Let p = (p1, p2, · · · , pn), where pi = P(i ∈ Ŝ). If pi > 0 for all i ∈ [n], we call
the sampling scheme Ŝ proper, i.e., every client has a nonzero probability to be selected.

Assumption 3. All partial participation algorithms in this paper use a proper sampling scheme.

From the analysis in [27], this assumption includes a lot of sampling schemes such as non-
overlapping uniform and doubly uniform sampling as special cases. The intuition behind proper
sampling is to ensure that on average every client has a chance to be selected at every iteration.

In FedDR there are three variables that get updated: x̄k, xki and yki . The variable x̄k denotes
the consensus/average variable to minimize the global model F , xki denotes the local variable
associated to fi, while yki measures the distance between the global variable x̄k and local model
xki . To account for the limitations on computation resources for local users, FedDR allows the
inexact calculation of the proximal step, i.e.,

xk+1
i ≈ proxηfi

(
yk+1
i

)
⇐⇒

∥∥∥xk+1
i − proxηfi

(
yk+1
i

)∥∥∥ ≤ εi,k+1.

Thus ≈ defines an ε-close solution. After local clients i ∈ Sk update their model and send them
back to the server, the server aggregates the updates to update the global model by executing
line 16 and 17 in Algorithm 1.

4 From FedDR to FedADMM

Our first contribution is to derive the FedADMM algorithm from FedDR.

4.1 An equivalent formulation

We begin by rewriting problem (2) as the equivalent constrained problem:

min
x∈Rnd,x̄

{
F (x) =

1

n

n∑
i=1

fi(xi) + g(x̄)

}
s.t. Indx = 1x̄

(7)

where x =
[
xT1 , x

T
2 , · · · , xTn

]T ∈ Rnd, Id is the d× d identity matrix, and 1 = [Id · · · Id]T . Here
x̄ should be interpreted as the global consensus variable.

Forming the Lagrangian of (7) and using the definition of the conjugate function, the dual
formulation of (7) is

max
z∈Rnd

{
F ∗(z) = −f∗(−Indz)− g∗(1T z)

}
(8)

where z =
[
zT1 , z

T
2 , · · · , zTn

]T ∈ Rnd is the vector of dual variables. Problem (8) is clearly
equivalent to

min
z1,z2,··· ,zn

{
1

n

n∑
i=1

f∗i (−zi) + g∗

(
n∑
i

zi

)}
. (9)



Before proceeding to develop an algorithm for solving (9), we first rewrite the full parallel
DRS algorithm 6. Changing the execution order of (6) and choosing α = 1 give

x̂ki = 2xki − yki , ∀i ∈ [n]

x̃k = 1
n

∑n
i=1 x̂

k
i , ∀i ∈ [n]

x̄k = proxηg
(
x̃k
)
,

xk+1
i = proxηfi

(
yki + x̄k − xki

)
, ∀i ∈ [n]

yk+1
i = yki + x̄k − xki , ∀i ∈ [n].

(10)

Introducing the change of variables wki = xki − yki , we have the following parallel DR algorithm

x̂ki = xki + wki , ∀i ∈ [n]

x̃k = 1
n

∑n
i=1 x̂

k
i , ∀i ∈ [n]

x̄k = proxηg
(
x̃k
)
,

xk+1
i = proxηfi

(
x̄k − wki

)
, ∀i ∈ [n].

wk+1
i = wki + xk+1

i − x̄k, ∀i ∈ [n]

(11)

Remark 1. Note that (6),(10) and (11) are essentially the same parallel algorithm under a
change of execution order and variables.

4.2 FedDR-II

From section 3, we observe that the only difference between full parallel DRS and FedDR is that
FedDR only requires a subset of clients to update their variables, while full parallel DRS requires
full participation. Similarly, by only considering partial participation in (11), we introduce the
intermediate FedDR-II algorithm. We now describe each step of a single epoch of FedDR-II:

1. Initialization: Given an initial vector x0 ∈ dom(F ) and tolerances εi,0 ≥ 0. Initialize
the server with x̄0 = x0. Initialize all users i ∈ [n] with w0

i = 0 and x0
i = x0.

2. The k-th iteration: (k ≥ 0) Sample a proper subset Sk ⊆ [n] so that Sk represents the
subset of active clients.

3. Client update (Local): For each client i ∈ Sk, update x̂ki = xki + wki . Clients i /∈ Sk do
nothing, i.e. 

x̂ki = x̂k−1
i

xki = xk−1
i

wki = wk−1
i

4. Communication: Each user i ∈ Sk sends only x̂ki to the server.

5. Server update: The server aggregates x̃k = 1
n

∑n
i=1 x̂

k
i , and then compute x̄k = proxηg

(
x̃k
)
.

6. Communication (Broadcast): Each user i ∈ Sk receives x̄k from the server.



7. Client update (Local): For each user i ∈ Sk, given εi,k+1 ≥ 0, it updates{
xk+1
i ≈ proxηfi

(
x̄k − wki

)
wk+1
i = wki + xk+1

i − x̄k.

Each user i /∈ Sk does nothing, i.e. {
wk+1
i = wki

xk+1
i = xki

Remark 2. FedDR and FedDR-II are equivalent because they are partial participation version
of (6) and (11) respectively.

4.3 Solving the dual problem using FedDR-II

In this subsection, we use FedDR-II to solve the dual problem (9), introducing a new algorithm
called FedADMM. We call this algorithm FedADMM because it is derived from applying FedDR-
II to the dual problem (9). Let us define the augmented Lagrangian functions associated to (7)
as

Li(xi, x̄k, zi) = fi (xi) + g(x̄k) +
〈
zki , xi − x̄k

〉
+
η

2

∥∥∥xi − x̄k∥∥∥2
(12)

where η denotes penalty parameter. Finally, we define ∆x̂ki = x̂k+1
i − x̂ki . With everything

defined, FedADMM is shown in Algorithm 2.

Algorithm 2 Federated ADMM Algorithm (FedADMM)

1: Initialize x0, η > 0,K, and tolerances εi,0(i ∈ [n]).
2: Initialize the server with x̄0 = x0

3: Initialize all clients with z0
i = 0 and x0

i = x̂0
i = x0.

4: for k = 0, . . . ,K do
5: Randomly sample Sk ⊆ [n] with size S.
6: � Client side
7: for each client i ∈ Sk do
8: receive x̄k from the server.
9: xk+1

i ≈ arg min
xi

Li
(
xi, x̄

k, zki
)

10: zk+1
i = zki + η

(
xk+1
i − x̄k

)
♦Dual updates

11: x̂k+1
i = xk+1

i + 1
ηz

k+1
i

12: send ∆x̂ki = x̂k+1
i − x̂ki back to the server

13: end for
14: � Server side
15: aggregation x̃k+1 = x̃k + 1

n

∑
i∈Sk ∆x̂ki

16: update x̄k+1 = proxg/η
(
x̃k+1

)
17: end for

When g ≡ 0, the server-side steps 15-16 of FedADMM reduce to the single step:

x̄k+1 = x̃k+1 = x̃k +
1

n

∑
i∈Sk

∆x̂ki =
1

n

n∑
i=1

x̂k+1
i .



In this case, the updating rules of FedADMM are essentially the same as FedPD in [39]. Both
compute the local model xk+1

i by first minimizing (12), followed by updating the dual variable
λk+1
i , and then aggregating x̂k+1

i to achieve the global model x̄k+1. However, FedADMM allows
for partial participation (only chooses a subset of clients to update) while FedPD requires all
clients to update at each communication rounds, making it less practical and applicable in real
world scenarios.

Note that FedADMM can handle the case where g 6≡ 0 whereas FedPD didn’t consider
this more general formulation. Just like step 11 (approximately evaluating proxηfi) in FedDR,

FedADMM obtains the new local model xk+1
i by inexactly solving (12). Note that we do not

specify how to (approximately) solve the proximal steps or Langrangian minimization step in
(either) algorithm. Various oracles are specified in [39].

5 Theoretical Analysis

We now present the main theoretical results of the paper. Namely, an equivalence between
FedDR and FedADMM. Based on this, we leverage the FedDR convergence results [33] to show
that FedADMM converges under partial participation.

We say that two iterative optimization algorithms are “equivalent” if they produce sequences
(xk)k≥0 and (yk)k≥0 such that there exists a unique linear mapping between the two sequences.
More general equivalence classes are defined and studied in [41].

Theorem 1. (Equivalence between FedDR and FedADMM) Let (xki , z
k
i , x̄

k)k≥0 be a
sequence generated by FedADMM with penalty parameter η, and (ski , u

k
i , û

k
i , v̄

k) a sequence gen-
erated by FedDR with parameter 1

η . Then FedADMM and FedDR are equivalent.

Proof. For each triplet (xki , z
k
i , x̄

k) at the k-th iteration of FedADMM with stepsize η, define
ski = xki − zki /η
uki = xki
ûki = xki + zki /η

v̄k = x̄k

and


sk+1
i = xk+1

i − zk+1
i /η

uk+1
i = xk+1

i

ûk+1
i = xk+1

i + zk+1
i /η

v̄k+1 = x̄k+1

Then (ski , u
k
i , û

k
i , v̄

k) and (sk+1
i , uk+1

i , ûk+1
i , v̄k+1) satisfy the updating rule of FedDR

sk+1
i = ski + (v̄k − uki ), ∀i ∈ Sk,
uk+1
i = proxrfi

(
sk+1
i

)
, ∀i ∈ Sk,

ûk+1
i = 2uk+1

i − sk+1
i , ∀i ∈ Sk,

v̄k+1 = proxrg(
1
n

∑n
i=1 û

k+1
i ),

where r = 1/η and when i /∈ Sk 
sk+1
i = ski ,

uk+1
i = uki ,

ûk+1
i = ûki

where the same sampling realizations Sk are used at each iteration for both algorithm.



We have

ski + (v̄k − uki ) = xki − zki /η + (x̄k − xki )
= xk+1

i − zki /η + x̄k − xk+1
i

(a)
= xk+1

i − zk+1
i /η = sk+1

i

where (a) is due to the dual updates (line 10) in FedADMM algorithm. Moreover,

uk+1
i = xk+1

i = arg min
xi

Li
(
xi, x̄

k, zki

)
= proxrfi(x̄

k − zki /η)

(b)
= proxrfi(s

k+1
i )

where (b) uses the fact that x̄k − zki /η = ski + (v̄k − uki ) = sk+1
i .

Finally, note that
ûk+1
i = 2uk+1

i − sk+1
i = xk+1

i + zk+1
i /η,

which gives

v̄k+1 = x̄k+1 (c)
= proxrg

(
n∑
i=1

(
xk+1
i +

1

η
zk+1
i

))
= proxrg(

1

n

n∑
i=1

ûk+1
i ) (13)

where (c) comes from the FedADMM updating rule (line 11-16 in Alg 2).

Since we have proved the equivalence of FedDR and FedADMM for arbitrary (nonconvex)
problems, FedADMM will directly inherit the convergence properties of FedDR, specifically at
rate O( 1

k ). The explicit convergence rate of FedADMM is characterized in the following theorem
which is a direct application of Theorem 3.1 in [33].

Theorem 2. Suppose that Assumptions 1, 2, and 3 hold and γ1, γ2, γ3, γ4 > 0 are constants. Let(
xki , z

k
i , x̂

k
i , x̄

k
)
k≥0

be generated by Alg 2 (FedADMM) using penalty parameter η that satisfies

η >
4L (1 + 2γ4)√

9− 16γ4 (1 + 4γ4)− 1
.

Then when g ≡ 0, the following holds

1

K + 1

K∑
k=0

E
[∥∥∥∇f (x̄k)∥∥∥2

]
≤
C1

[
F
(
x0
)
− F ?

]
K + 1

+
1

n(K + 1)

K∑
k=0

n∑
i=1

(
C2ε

2
i,k + C3ε

2
i,k+1

)
where η̂ = 1/η, β, ρ1, and ρ2 are defined as

β =
p̂[2−(Lη̂+1)−2L2η̂2−4γ4(1+L2η̂2)]

2η̂(1+γ1)(1+L2η̂2)
> 0

ρ2 = 2(1+η̂L)2

γ4η̂
+

(1+η̂2L2)
η̂

+
[2−(Lη̂+1)−2L2η̂2−4γ4(1+L2η̂2)]

2η̂(1+L2η̂2)γ1

ρ1 = ρ2 +
(1+η̂2L2)

η̂



and the constants are

C1 =
2(1 + η̂L)2 (1 + γ2)

η̂2β
, C2 = ρ1C1, C3 = ρ2C1 +

(1 + η̂L)2 (1 + γ2)

η̂2γ2
.

and p̂ = min {pi : i ∈ [n]} > 0 in Assumption 3.

Corollary 1. If the accuracy sequence εi,k (for all i ∈ [n] and k > 0) at Step 8 in Alg 2 satisfies
1
n

∑n
i=1

∑K+1
k=0 ε2i,k ≤ D for a given constant D > 0 and all K ≥ 0. Then, FedADMM needs

K =

⌊
C1

[
F
(
x0
)
− F ?

]
+ (C2 + C3)D

ε2

⌋
≡ O

(
ε−2
)

iterations to achieve 1
K+1

∑K
k=0 E

[∥∥∇f (x̃k)∥∥2
]
≤ ε2, where x̃K is randomly selected from

{x̄0, x̄1, · · · , x̄K}. In other words, after K = O(ε−2) iterations, x̃K is an ε-stationary solu-
tion of problem (2) when g ≡ 0.

Remark 3. Our convergence analysis can be easily extended to g 6≡ 0, as long as we change
the suboptimal condition into the gradient mapping as in [33]. To make 1

n

∑n
i=1

∑K+1
k=0 ε2i,k ≤ D

hold, interested readers could refer to Remark 3.1 in [33].

Remark 4. Although FedADMM is a partial participation version of FedPD when g ≡ 0,
its communication complexity is still O(ε−2), which matches the lower bound (up to constant
factors) in [39].

6 Numerical Simulations

To demonstrate the equivalence of FedDR and FedADMM, we conduct diverse simulations
on both synthetic and real datasets. It is worthwhile to mention that our goal is to show
the equivalence of the algorithms, not to compare their performance with other algorithms.
Performance profiling of FedPD and FedDR can be found in [33, 39]. We have not attempted
to optimize any hyperparameters. All the experiments run on Google Colab with default CPU
setup.
Datasets: We first generate synthetic non-iid datasets by following the same setup as in [30] and
denote them as synthetic-(α, β). Here α controls how much local models differ from each other
and β controls how much the local data at each device differs from that of other devices. We
run the experiments by using the unbalanced datasets: synthetic-(0, 0), synthetic-(0.5,
0.5) and synthetic-(1, 1). We then compare FedADMM with FedDR on the FEMNIST
data set [4]. FEMNIST is a more complex 62-class Federated Extended MNIST dataset. It
consists of handwritten characters including: numbers 1-10, 26 upper-and lower-case letters
A-Z and a-z from different writers and is also separated by the writers, therefore the dataset is
non-iid.
Models and Hyper-parameters: For all the synthetic datasets, we use the model described
in [33]: a neutral network with a single hidden layer. The network architecture is 60× 32× 10
corresponding to input layer× hidden layer × output layer size. For FEMNIST data, we use
the same model as [4], which consists of 2 convolutional layers and two fully connected layers,
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Figure 1: Identical performance of FedDR and FedADMM in terms of training accuracy and cross-entropy training loss of
FEMNIST dataset

with 62 neurons in the output layer matching the number of classes in the FEMNIST dataset.
For all the experiments, we use η = 1 and α = 1. As in [39], we choose stochastic gradient
descent as a local solver with 300 local iterations to solve the step 11 in FedDR and the step 9
in FedADMM. The mini-batch size in calculating the stochastic gradient is 2 and the learning
rate is 0.01. We stress that we do not attempt to optimize these parameters.
Implementation: We use the uniform sampling scheme to select the clients in each round.
The total number of clients is 30 and we set the number of active clients in each round as 10.
To provide a fair comparison, we use the same random seeds across all algorithms.

After running multiple experiments on different datasets and models, from figure 1 and 2,
we could observe that the training accuracy and loss of FedDR and FedADMM coincide at each
iteration, which verifies our theoretical analysis in section 5.

7 Conclusion

We have developed a new federated learning algorithm, FedADMM, for finding stationary points
in non-convex composite optimization problems. Current work is focused on incorporating
convex constraints into the algorithm, proposing an asynchronous algorithm, asyncFedADMM,
and applying it to non-localizable model predictive control problems where communication
efficiency is necessary [2].
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