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Abstract— Combining efficient and safe control for safety-
critical systems is challenging. Robust methods may be overly
conservative, whereas probabilistic controllers require a trade-
off between efficiency and safety. In this work, we propose a
safety algorithm that is compatible with any stochastic Model
Predictive Control method for linear systems with additive
uncertainty and polytopic constraints. This safety algorithm
allows to use the optimistic control inputs of stochastic Model
Predictive Control as long as a safe backup planner can ensure
safety with respect to satisfying hard constraints subject to
bounded uncertainty. Besides ensuring safe behavior, the pro-
posed stochastic Model Predictive Control algorithm guarantees
recursive feasibility and input-to-state stability of the system
origin. The benefits of the safe stochastic Model Predictive
Control algorithm are demonstrated in a numerical simulation,
highlighting the advantages compared to purely robust or
stochastic predictive controllers.

I. INTRODUCTION

This work has been accepted to the IEEE 2022 Conference on Decision and Control.

Designing controllers for safety-critical systems requires
considering two major challenges. Safety must be ensured
for a system subject to uncertainty, and the controller should
reduce conservatism to enable efficient system behavior,
i.e., maximizing desired objectives. As it is possible to
define safety via input and state constraints, Model Predictive
Control (MPC) is a suitable method to control safety-critical
systems subject to uncertainty.

Robust Model Predictive Control (RMPC) handles system
uncertainty in a robust, but conservative way [1], where
tube-based MPC is the most common approach [2], [3].
Stability and recursive feasibility guarantees are possible
if the uncertainty bound is known initially. RMPC has
successfully been applied to safety-critical applications such
as automated driving [4], autonomous racing [5], and robotic
manipulation [6].

Stochastic Model Predictive Control (SMPC) reduces con-
servatism by employing chance constraints [7], [8]. Chance
constraints allow for a small probability of constraint viola-
tion, reducing the impact of unlikely worst-case uncertainty
realizations. Multiple SMPC approaches exist to determine a
tractable reformulation of the probabilistic chance constraint,
e.g., analytical reformulations based on normal distributions
[9], sampling based approaches [10], [11], affine disturbance
feedback approaches [12], or tube-based approaches [13].
Applications to safety-critical systems mainly focus on au-
tomated driving [14]–[17]. However, whereas applying these
SMPC approaches yields efficient trajectories, safety is not
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guaranteed as the chance constraint allows for a non-zero
collision probability.

Safety within SMPC is specifically addressed in [18] for
automated vehicles. This failsafe SMPC approach uses a
failsafe backup predictive controller, which guarantees that
the next SMPC input may be safely applied, ensuring safe
SMPC trajectories for automated driving. Further approaches
have recently been proposed to address safety within MPC.
A combination of MPC and control barrier functions allows
considering safety similarly to how Lyapunov functions are
used for stability [19], [20]. However, guaranteeing recursive
feasibility in the presence of uncertainty remains a challenge.
An MPC approach to minimize constraint violation proba-
bility is proposed in [21], but the method is only applicable
if norm-based constraints can be employed. In [22], [23]
a predictive safety filter is proposed to guarantee safety
in probability for reinforcement learning. This is achieved
by enforcing that only those reinforcement learning-based
inputs may be applied, which allow for satisfaction of a soft-
constrained optimal control problem (OCP).

In this work, we propose an SMPC safety algorithm for
linear systems with additive uncertainty and polytopic con-
straints. This general safety algorithm significantly extends
the approach in [18], which only considered one specific
SMPC approach designed for automated vehicles. The safety
algorithm of this work guarantees safety (satisfying all
constraints) by employing a backup controller, which ensures
that applying the first optimized SMPC input allows still
finding a safe backup trajectory in the following step. The
key contributions are as follows.
• We provide a safety algorithm compatible with any

SMPC for linear systems with additive uncertainty and
polytopic constraints. Furthermore, the risk parameter
of the SMPC does not influence safety, and no terminal
constraint is required in the SMPC OCP.

• We guarantee recursive feasibility of the safety algo-
rithm and, in contrast to [18], we ensure input-to-state
stability of the system origin.

With the proposed safety algorithm of this work, for a
given safety-critical application and based on desired con-
trol objectives, the most suitable SMPC approach can be
chosen. This choice may be made independently of required
properties, which are later ensured by the proposed safety
algorithm. The proposed method combines advantages of
stochastic and robust predictive control. These advantages
of the proposed safe SMPC algorithm are demonstrated in
a simulation example, including comparisons to pure SMPC
and pure RMPC.

This work is structured as follows. Section II introduces
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the problem. The safe SMPC framework and its properties
are presented in Sections III and IV. A simulation example
and conclusive remarks are given in Sections V and VI.

Notation: Regular letters indicate scalars, bold lowercase
letters denote vectors, and bold uppercase letters are used
for matrices, e.g., a, a, A, respectively. The closed interval
between integers a and b is denoted by Ia,b. Absolute values
and norms are indicated by |a| and ||a||, respectively, where
we consider the weighted norm ||a||2A = a>Aa. A function
γ is of class K if γ is positive definite and strictly increasing.
A function α is of class K∞ if α is of class K and
unbounded. Within an OCP, the state xt+k|t denotes the
prediction for step t + k obtained at time step t. We define
the set addition A ⊕ B := {a + b | a ∈ A, b ∈ B} and set
subtraction A	 B := {x ∈ Rn | {x} ⊕ B ⊆ A}.

II. PROBLEM SETUP

We consider a linear, discrete-time system

xt+1 = Axt + But + Gwt = f(xt,ut,wt) (1)

with states xt ∈ Rnx , inputs ut ∈ Rnu , and uncertainties
wt ∈ Rnw at time step t, as well as the known matrices A,
B, and G with appropriate dimensions. System (1) is subject
to input constraints ut ∈ U and state constraints xt ∈ X .

Assumption 1 (Uncertainty): The uncertainty wt is inde-
pendent and identically distributed and bounded by wt ∈ W .

The general task is to drive the state of system (1) to the
origin while keeping inputs low. In MPC, this is achieved by
repeatedly solving an OCP P(xt), i.e.,

min
Ut

J(xt,Ut) (2a)

s.t. xt+k+1|t = f(xt+k|t,ut+k|t,wt+k|t) (2b)
ut+k|t ∈ U , k ∈ I0,N−1 (2c)
xt+k|t ∈ X , k ∈ I1,N (2d)

with the finite input sequence Ut = (ut|t, ...,ut+N−1|t) and
the objective function

J(xt,Ut) =

N−1∑
k=0

l
(
xt+k|t,ut+k|t

)
+ Vf(xt+N |t) (3)

with prediction horizon N , stage cost l, and the terminal cost
function Vf. At each time step t, the first element ut = ut|t
is applied to the system. This may be expressed as a control
law ut = u(xt).

Considering uncertainty in the state constraint (2d) may
lead to overly conservative results. This conservatism is
reduced by chance constraints of the form

Pr
(
xt+k|t ∈ X

)
≥ β (4)

with risk parameter β. Replacing robust constraints in RMPC
by chance constraints yields an SMPC OCP. However, while
conservatism is reduced, a small probability of constraint
violation is allowed, i.e., the lower the risk parameter β, the
higher the probability of constraint violations.

A. Property Definitions
If MPC is employed in safety-critical applications, three

properties are required. First, safety must be ensured. Second,
if the MPC OCP is feasible at a time step, a solution must
also exist at the next time step, known as recursive feasibility
of the OCP. Third, the closed-loop system behavior must be
stable. Definitions to ensure these properties are given in the
following.

Definition 1 (Safety): The state xt0 of system (1) is safe at
time step t0 if it is guaranteed that there exist inputs ut, t ≥
t0 such that the constraints ut ∈ U and xt ∈ X are satisfied
for all t ≥ t0.

Definition 2 (Safe Input Sequence): An input sequence
Ut = (ut, ...,ut+N−1), ut+i ∈ U ∀i = I0,N−1 is safe
for system (1) if consecutively applying the individual input
elements yields the safe state sequence (xt+1, ...,xt+N )
with individual safe states xt+i ∀i = I1,N according to
Definition 1.

Definition 3 (Recursive Feasibility): The MPC OCP (2)
for system (1) is recursively feasible if the existence of an
admissible solution Ut implies the existence of an admissible
solution Ut+1 for all t ∈ N.

Definition 4 (Robustly Positively Invariant Set): A set X0

is robustly positively invariant for a system f(x,w) if
f(x,w) ∈ X0 for all x ∈ X0 and all w ∈ W .

Definition 5 (Input-to-State Stability [12]): The origin of
a system f(x,w) is input-to-state stable (ISS) with region of
attraction X0 ⊆ Rnx that contains the origin if X0 is robust
positively invariant and if there exist a continuous function
V : X0 → R≥0 and functions α1, α2, α3 ∈ K∞, γ ∈ K such
that for all x ∈ X0 and w ∈ W

α1(||x||) ≤ V (x) ≤ α2(||x||) (5a)
V (f(x,w))− V (x) ≤ −α3(||x||) + γ(||w||). (5b)

Then, function V is called an ISS Lyapunov function. If the
origin of a system is ISS, it is guaranteed that the change
in V is bounded as long as the uncertainty is bounded.
If the uncertainty is zero, the origin of an ISS system is
asymptotically stable with region of attraction X0.

B. Problem Statement
The aim of this work is to design a general SMPC algo-

rithm that exploits the advantage of reduced conservatism in
SMPC while ensuring the previously described properties.

Objective 1: The SMPC algorithm (2) for system (1),
where the chance constraint (4) replaces the hard con-
straint (2d), must maximize the control objective (3) while
guaranteeing safety (Definition 1), recursive feasibility (Def-
inition 3), and stability (Definition 5).

In the following, we propose an SMPC algorithm in-
cluding a safe backup (predictive) controller that ensures
satisfaction of all requirements listed in Objective 1.

III. SAFE STOCHASTIC MPC
A. General Safe SMPC Algorithm

SMPC allows for a certain probability of constraint viola-
tion. Therefore, in order to use SMPC in a safe way, it needs
to be ensured that applying an SMPC input is safe.



Fig. 1: Safe SMPC algorithm.

We propose a general safe SMPC algorithm that consists
of an SMPC part and a backup predictive controller. This
safe SMPC algorithm, shown in Figure 1, yields an input
ut at each time step t, which is determined based on the
following two modes:
• Stochastic mode (with OCP Ps(xt))
• Backup mode (with OCP Pb(xt))

We now present details on the two OCPs and on which mode
to apply.

1) SMPC Optimal Control Problem: We consider the
general SMPC OCP Ps(xt) with horizon N given by

min
U s

t

J(xt,U
s
t ) (6a)

s.t. xt+k+1 = f(xt+k|t,u
s
t+k|t,wt+k|t) (6b)

us
t+k|t ∈ U , k ∈ I0,N−1 (6c)

Pr
(
xt+k|t ∈ X

)
≥ β, k ∈ I1,N (6d)

yielding the optimal input sequence U s
t
∗ =

(us∗
t|t, ...,u

s∗
t+N−1|t) with the SMPC control law

us(xt) = us∗
t|t. Any SMPC method may be used to

reformulate the chance constraint (6d) into a tractable
formulation, depending on the uncertainty distribution.

2) Backup MPC Optimal Control Problem: We con-
sider a backup MPC controller with horizon N b and OCP
Pb(xt) with cost function Jb(xt,U

b
t ), yielding the optimal

cost Jb∗ = Jb(xt,U
b
t
∗) with input sequence U b

t
∗ =

(ub∗
t|t, ...,u

b∗
t+N b−1|t), and control law ub(xt) = ub∗

t|t, result-
ing in the closed-loop system

xt+1 = f
(
xt,u

b(xt),wt

)
(7)

for system (1). Various backup controllers are possible in this
algorithm, given that they fulfill the following assumption.

Assumption 2 (Backup MPC): The backup MPC OCP
Pb(xt), with value function Jb∗ and control law ub(xt), is
chosen such that Pb(xt) is recursively feasible, xt ∈ X and
ut ∈ U for all t, and such that the origin of the closed-loop

system (7) is ISS with region of attraction X0, where X0 is
robust positively invariant for all wt ∈ W .

Various MPC schemes exist that fulfill Assumption 2, as
discussed in Section III-B.

The safe SMPC algorithm only applies SMPC inputs if
it is guaranteed that the backup OCP Pb(xt) may still be
solved at the next time step. Applying the first SMPC input
us(xt) to the nominal system yields the next nominal state

xs
t+1 = Axt + Bus(xt). (8)

It is guaranteed that the backup OCP is feasible for any first
step uncertainty wt ∈ W if

xs
t+1 ∈ X0 	W (9)

where X 0 = X0 	W , which ensures that xs
t+1 ∈ X0.

3) Safe SMPC Modes: We are now able to propose two
different modes within the safe SMPC algorithm, evaluated
at time step t.

Stochastic Mode: The control law ut = us(xt) is
applied if the SMPC OCP is feasible and if (9) is fulfilled,
i.e., U s

t
∗ 6= ∅ and xs

t+1 ∈ X 0.
Backup Mode: If the SMPC OCP is infeasible or if (9)

is not satisfied, i.e., U s
t
∗ = ∅ or xs

t+1 /∈ X 0, the backup
MPC OCP is solved and the control law ut = ub(xt) is
applied.

Note that in the stochastic mode, only one OCP is solved,
while the backup mode requires solving two OCPs.

B. MPC Details

The proposed algorithm allows considering any SMPC
approach to solve (6), e.g., SMPC with exact chance con-
straint reformulations based on normal distributions, affine
disturbance feedback SMPC, or sampling-based SMPC. A
suitable SMPC method may be chosen depending on the
type of uncertainty and the type of system.

Assumption 2 allows employing various MPC schemes
for the backup controller, which enables application of a
wider class of backup controllers compared to [18]. The
most intuitive choice are RMPC approaches that guarantee
recursive feasibility and stability for a bounded uncertainty.
The backup MPC can also be based on other approaches,
such as MPC based on reachability analysis [24] or the
failsafe MPC idea described in [18]. It is even possible to
consider recursively feasible SMPC approaches as backup
controllers, e.g., [13], if Assumption 2 may be satisfied.

IV. PROPERTIES

In the following, we show that the proposed SMPC
algorithm is recursively feasible, safe, and ISS.

A. Recursive Feasibility

Based on Definition 3, we first prove recursive feasibility
of the OCP of the safe SMPC algorithm described in
Section III-A.

Theorem 1 (Recursive Feasibility): Let Assumptions 1
and 2 hold and let the system input ut be determined based
on the proposed safe SMPC algorithm in Section III-A. Then,



for an admissible u0, obtaining a solution ut is feasible for
all t > 0.

Proof: The proof is based on showing that at any time
step t it is guaranteed that an admissible input ut is applied
at t and an admissible input ut+ may be obtained at the next
time step t+ = t+ 1.

If U s
t
∗ 6= ∅ and xs

t+1 ∈ X0 	W , ut = us(xt) exists and
xs
t+1 ∈ X0, which guarantees that a solution U b∗

t+1 exists for
Pb(xt+1).

In the backup mode, U b∗
t exists for Pb(xt) as xt ∈ X0

and Assumption 2 ensures that Pb(xt+1) remains feasible.
Hence, all possibilities are covered. This holds for all t ∈

N, i.e., admissible inputs are guaranteed at subsequent time
steps, which concludes the proof.

Note that no terminal constraint is necessary for the SMPC
OCP to ensure recursive feasibility of the overall algorithm.
Based on guaranteed recursive feasibility of the safe SMPC
algorithm, safety and stability are now discussed.

B. Safety

We require that the safe SMPC algorithm described in
Section III-A is safe. Based on Definition 1, this requirement
demands that all constraints are met at all time steps, which
we show in the following.

Theorem 2 (Safety): Let Assumptions 1 and 2 hold and
let the system input ut be determined based on the proposed
safe SMPC algorithm in Section III-A. Then, for a safe initial
state x0, safety according to Definition 1 is guaranteed for
t > 0.

Proof: The proof is based on Theorem 1; hence, it is
guaranteed that one of the two modes is applicable at each
time step t. In the stochastic mode, ut ∈ U and (9) ensures
that xt ∈ X for all wt ∈ W . The backup mode guarantees,
by design, that ut ∈ U and xt ∈ X for all wt ∈ W . Hence,
in both modes it is guaranteed that xt ∈ X and ut ∈ U ,
which holds for all t ∈ N as the proposed SMPC algorithm
is recursively feasible.

As shown, safety is ensured by the backup predictive
controller and (9), despite SMPC allowing for constraint
violations in the open-loop prediction.

C. Stability

In MPC, stability is often proved by showing that the
value function is decreasing for subsequent time steps, also
known as the descent property. These proofs are based on the
MPC idea of a moving horizon, where the previously planned
input sequence remains valid and only one additional input
element is added to the input sequence for the next time
step. For the proposed safe SMPC algorithm, however, this
assumption does not hold. Since switching between different
modes is possible, the predicted input and state trajectories
may vary at each time step. We tackle this challenge by using
an ISS result from [12, Lemma 22], which we repeat in the
following lemma.

Lemma 1 (Lipschitz ISS Lyapunov Function [12]): Let
f : X0 ×W → Rnx be Lipschitz continuous on X0 ×W .
Let X0 ∈ Rnx contain the origin and be a robust positively

invariant set for the function f(x,w). Let there exist a
Lipschitz continuous function V : X0 → R≥0 such that for
all x ∈ X0

α1(||x||) ≤ V (x) ≤ α2(||x||) (10a)
V (f(x,0))− V (x) ≤ −α3(||x||) (10b)

with functions α1, α2, α3 ∈ K∞. Then, V is an ISS Lya-
punov function and the origin is ISS for system f(x,w)
with region of attraction X0.

Lemma 1 ensures that the origin of a system subject to
uncertainty is ISS if the undisturbed system is asymptotically
stable and the system is Lipschitz continuous with respect to
state x and uncertainty w.

Assumption 3 (Backup MPC Cost): The cost function Jb

is selected according to (3). The stage cost is chosen as
l
(
xt+k|t,ut+k|t

)
= ||xt+k|t||2Q + ||ut+k|t||2R with Q =

Q> � 0, R = R> � 0, and the nominal states xt+k|t. The
terminal cost Vf(xt+N |t) is chosen as a Lyapunov function
in a terminal set Xf for the undisturbed closed-loop system
xt+1 = (A + BK)xt such that for all xt ∈ Xf

Vf((A+BK)xt)−Vf(xt) ≤ −x>t (Q+K>RK)xt (11)

where K is a stabilizing feedback matrix.
We can now formulate the ISS property of a system

controlled with the proposed algorithm.
Theorem 3 (ISS for Safe SMPC): Let Assumptions 1-3

hold and let the system input ut be determined based on
the proposed safe SMPC algorithm in Section III-A. Then,
for x0 ∈ X0, the origin is ISS for system (1) and xt ∈
X0, t > 0.

Proof: We prove ISS by showing that V (xt) = Jb∗ is
an ISS Lyapunov function for (1) where V (.) satisfies (10a)
and (10b). Any input prediction in either of the two modes
can be described by u′t+k|t = ub

t+k|t − ũt+k|t, k ∈ I0,N−1
where ũt+k|t represents the offset between the backup MPC
input element ub

t+k|t and the input element obtained in
the safe SMPC algorithm u′t+k|t. As u′t+k|t and ub

t+k|t
are bounded, ũt+k|t is bounded, allowing to define the
new bounded uncertainty w̃t+k|t = (ũ>t+k|t,w

>
t+k|t)

>. This
yields the closed loop system

f(xt,ut,wt)= Axt + But + Gwt (12a)
= Axt + Bub(xt)−Bũt + Gwt (12b)
= Axt + Bub(xt) + [−B,G]w̃t (12c)

which can be abbreviated by f ′(xt, w̃t).
Function f ′ is continuous and f ′(0,0) = 0. With As-

sumption 3, it holds that V (·) is positive definite and contin-
uous on X0. Hence, based on [25, Lemma 4.3], functions
α1, α2 ∈ K∞ exist such that α1(||xt||) ≤ V (xt) ≤
α2(||xt||), i.e., (10a) is fulfilled.

Due to Assumption 2, V (xt) = Jb∗ is an ISS Lyapunov
function for the undisturbed system with w̃t = 0, i.e.,
V (f ′(xt,0)) − V (xt) ≤ −α3(||xt||). With Jb designed
according to Assumption 3 and a bounded X0, Jb∗ is Lips-
chitz continuous. Hence, Lemma 1 is fulfilled and V (·) is an
ISS Lyapunov function for f ′(xt, w̃t) with xt ∈ X0, i.e., it



holds that V (f ′(xt, w̃t))−V (xt) ≤ −α3(||xt||)+γ(||w̃t||).
Hence, the origin is ISS with the safe SMPC algorithm.

Note that tuning the risk parameter in the SMPC OCP
does not impact recursive feasibility, safety, or stability. This
allows choosing a risk parameter that yields the most efficient
behavior.

V. NUMERICAL RESULTS

We analyze the proposed algorithm in a numerical ex-
ample, based on [13] and elaborate on the advantages over
SMPC and RMPC. Simulations are carried out in Matlab
where the set calculations are done with the Mutli-Parametric
Toolbox 3 [26] and the MPC routine is based on [27].

A. Simulation Setup

We consider the discrete-time system

xt+1 =

[
1 0.0075

−0.143 0.996

]
xt +

[
4.798
0.115

]
ut +

[
1 0
0 1

]
wt

(13)
with x = (x1, x2)> and the normally distributed uncertainty
w ∼ N (0,Σw), wt ∈ W where Σw = diag(0.06, 0.06)
and W = {wt | ||wt||∞ ≤ 0.07}. The input is bounded by
|ut| ≤ 0.2 and we employ the state constraint x1 ≤ 2.8.
Additionally, we define |x1| ≤ 10 and |x2| ≤ 10 to obtain
a bounded set X , however, in the following simulation only
x1 ≤ 2.8 is regarded. The initial state is x0 = (−1.3, 3.5)>.

For the SMPC OCP, we approximate the uncertainty with
the non-truncated normal distribution w ∼ N (0,Σw) and
split the state into a deterministic and a probabilistic part
xt = zt +et, yielding an adapted input ut = Kxt +νt with
a stabilizing feedback matrix K and the new input decision
variable νt. The state constraint is considered as the chance
constraint Pr (x1 ∈ 2.8) ≥ β with β = 0.8. The normal
distribution w allows for the chance constraint reformulation

x1,k≤ 2.8− γcc,k (14a)

γcc,k=
√

2[1, 0]>Σe
k[1, 0] erf−1(2β − 1) (14b)

with the inverse error function erf−1(.) and the error covari-
ance matrix Σe

k+1 = ΦΣe
kΦ> + Σw with Σe

0 = diag(0, 0)
and Φ = A + BK.

For the backup MPC, we use an RMPC approach accord-
ing to [28], satisfying Assumption 2. This approach yields
the tightened state constraint x1 ≤ 1.72 and tightened input
constraint −0.018 ≤ ut ≤ 0.025. The terminal constraint Xf
is chosen to be a maximal robust control invariant set.

For SMPC and RMPC, we employ a sampling time ∆t =
0.1, a horizon N = N b = 11, and we use the stabilizing
feedback gain K = [−0.29, 0.49].

For both the SMPC and RMPC OCP, we use the cost ac-
cording to Assumption 3 with Q = diag(1, 10) and R = 1.

We choose Vf(x) = ||x||2Qf
with Qf =

[
1.91 −5.06
−5.06 39.54

]
,

which satisfies the discrete-time algebraic Riccati equation.

Fig. 2: Simulation results for the autonomous system, RMPC,
SMPC, and safe SMPC, all without uncertainty.

method avg. cost avg. violations per run

RMPC 3.56e3 0

SMPC 0.88e3 0.89

safe SMPC 1.13e3 0

TABLE I: Comparison.

B. Simulation Results

We first analyze the resulting trajectories of a simulation
with zero uncertainty using the proposed safe SMPC algo-
rithm as well as pure RMPC and SMPC, where β = 0.8. The
pure RMPC and pure SMPC are based on the backup RMPC
controller and the SMPC controller described in Section V-A,
respectively. The results are shown in Figure 2.

Whereas the autonomous system with ut = 0 violates the
constraint x1 ≤ 2.8, pure SMPC moves as close towards
the state constraint as the constraint tightening γcc,k allows.
Considering worst-case uncertainty yields tighter state and
input constraints for pure RMPC, requiring more steps to
reach the origin. The safe SMPC approach is initially similar
to pure SMPC, as x1 is far from the state constraint. Once (9)
is not satisfied anymore, the safety mechanism is triggered
and the backup mode becomes active. For the following
steps, the input of the safe backup RMPC is applied until
it is possible that SMPC inputs satisfy (9) again.

The procedure of the safe SMPC approach is illustrated in
Figure 3, showing the resulting trajectories of 10 simulation
runs subject to uncertainty. Switching to the backup RMPC
inputs ensures that the state constraint is never violated.

Analyzing 100 simulation runs of each safe SMPC, pure
RMPC, and pure SMPC with Nsim = 80 simulation steps
highlights the advantages of the proposed method. The
results are given in Table I. The cost is determined by

Jsim =

Nsim∑
k=1

‖xk‖2Q + ‖uk−1‖2R . (15)



Fig. 3: Resulting safe SMPC trajectories for 10 simulation
runs with uncertainty.

Whereas SMPC yields the lowest cost, constraint viola-
tions occur. RMPC avoids constraint violations but the cost is
significantly increased. Safe SMPC guarantees constraint sat-
isfaction with only slightly higher cost compared to SMPC,
combining the advantages of SMPC and RMPC. In summary,
the proposed algorithm ensures robustness when constraints
are active, but allows reducing the conservative behavior of
the backup controller when constraints are inactive.

VI. CONCLUSION

The proposed safe SMPC algorithm offers the possibility
to combine optimistic SMPC planning with a safety guaran-
tee. In addition, recursive feasibility and stability is guaran-
teed, without the need of an SMPC terminal constraint.

The proposed algorithm is not limited to SMPC. Instead of
using SMPC, other controllers, e.g., learning-based methods,
can be used. This would allow ensuring safety and stability
for learning-based controllers.

ACKNOWLEDGEMENT

The authors thank Francesco Borrelli and Sarah Buhlmann
for the collaboration and valuable discussions. This work
was supported by a fellowship within the IFI program of
the German Academic Exchange Service (DAAD) and the
Bavaria California Technology Center (BaCaTeC) grant 1-
[2020-2].

REFERENCES

[1] A. Bemporad and M. Morari. Robust model predictive control: A
survey, pages 207–226. Springer London, London, 1999.

[2] W. Langson, I. Chryssochoos, S.V. Raković, and D.Q. Mayne. Robust
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putationally efficient robust model predictive control framework for
uncertain nonlinear systems. IEEE Transactions on Automatic Control,
66(2):794–801, 2021.
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and fast tracking on a robot manipulator: Robust mpc and neural
network control. IEEE Robotics and Automation Letters, 5(2):3050–
3057, 2020.

[7] A. Mesbah. Stochastic model predictive control: An overview and
perspectives for future research. IEEE Control Systems, 36(6):30–44,
Dec 2016.

[8] M. Farina, L. Giulioni, and R. Scattolini. Stochastic linear model
predictive control with chance constraints – a review. Journal of
Process Control, 44(Supplement C):53 – 67, 2016.

[9] M. Farina, L. Giulioni, L. Magni, and R. Scattolini. An approach
to output-feedback mpc of stochastic linear discrete-time systems.
Automatica, 55:140–149, 2015.

[10] L. Blackmore, M. Ono, A. Bektassov, and B.C. Williams. A proba-
bilistic particle-control approximation of chance-constrained stochastic
predictive control. Trans. Rob., 26(3):502–517, June 2010.

[11] G. Schildbach, L. Fagiano, C. Frei, and M. Morari. The scenario
approach for stochastic model predictive control with bounds on
closed-loop constraint violations. Automatica, 50(12):3009 – 3018,
2014.

[12] P.J. Goulart, E.C. Kerrigan, and J.M. Maciejowski. Optimization over
state feedback policies for robust control with constraints. Automatica,
42(4):523–533, 2006.

[13] M. Lorenzen, F. Dabbene, R. Tempo, and F. Allgoewer. Constraint-
tightening and stability in stochastic model predictive control. IEEE
Transactions on Automatic Control, 62(7):3165–3177, July 2017.

[14] A. Carvalho, Y. Gao, S. Lefevre, and F. Borrelli. Stochastic predictive
control of autonomous vehicles in uncertain environments. In 12th
Int. Symposium on Advanced Vehicle Control, Tokyo, Japan, 2014.

[15] G. Cesari, G. Schildbach, A. Carvalho, and F. Borrelli. Scenario model
predictive control for lane change assistance and autonomous driving
on highways. IEEE Intelligent Transportation Systems Magazine,
9(3):23–35, Fall 2017.
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