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Lyapunov Analysis of Least Squares Based Direct Adaptive
Control
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Abstract—Adaptive control strategies usually are designed
based on gradient methods for the sake of simplicity in
Lyapunov analysis. However, least squares (LS)-based param-
eter identifiers, with proper selection of design parameters,
exhibit better transient performance than the gradient-based
ones, from the aspects of convergence speed and robustness
to measurement noise. On the other hand, most of the
LS-based adaptive control procedures are designed via the
indirect adaptive control approaches, due to the difficulty
in integrating an LS-based adaptive law within the direct
approaches starting with a certain Lyapunov-like cost function
to be driven to (a neighborhood of) zero. In this paper,
a formal constructive analysis framework is proposed to
integrate the recursive LS-based parameter identification with
direct adaptive control. To this end, a Lyapunov-like function
is proposed for the analysis to achieve adaptive laws, which
guarantee the exponential convergence of the parameters.
Application of the proposed procedure in adaptive cruise con-
trol design is studied through Matlab/Simulink and CarSim
simulations, validating the analytical results.

I. INTRODUCTION

Stability and convergence analysis of adaptive controller
schemes has traditionally been based on Lyapunov stability
notions and techniques [[1]-[5] . Lyapunov-like functions
are selected in the design of adaptive control schemes to
penalize the magnitude of the tracking or regulation error
but at the same time to facilitate designing an adaptive law
to generate the parameter estimates used by the control law.
Adaptive control designs targeting to drive a Lyapunov-
like function to zero mostly lead to gradient based adaptive
laws with constant adaptive gain. On the other hand, it is
well observed that least-squares (LS) algorithms have the
advantage of faster convergence; hence, LS based adaptive
control has potential to enhance convergence performance
in direct adaptive control approaches as well [2], [6]-[9].

Despite wide use of gradient based online parameter
identifiers, LS adaptive algorithms with forgetting factor are
developed to be capable of faster settling and/or being less
sensitive to measurement noises. Such properties have been
justified by various simulation and experimental results [|6],
[7], [10]-[12]. LS-based online parameter identification has
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been used for achieving better convergence and robustness
to measurement noises in indirect adaptive control schemes
as well as integrated direct/indirect adaptive control proce-
dures [8]], [Oll, [13[I-[21]].

In addition to the existing mathematical LS based adap-
tive control design studies, there are some publications
in the recent literature on real-time applications, includ-
ing those on robotic manipulators [10], [11], [22], [23],
unmanned aerial vehicles [12], [24]], [25]], and passenger
vehicles [26]-[32]. Most of the existing studies on LS based
adaptive control follow the indirect approach as opposed
to the direct adaptive control. One reason for this is that
constructive Lyapunov analysis of direct adaptive control
is complicated for producing an LS based adaptive control
scheme.

This paper proposes a constructive analysis framework
for recursive LS (RLS) online parameter identifier based
direct model reference adaptive control (MRAC). In the
literature, [[1]], 2] considered the possible use of LS based
online parameter identifiers in direct MRAC. However, the
proof and the Lyapunov analysis were not provided in
detail. Several techniques have been developed to robustify
the LS based online parameter identifiers with respect to the
loss of adaptation or parameter bursts related to the gain
(covariance) matrix becoming arbitrarily small or arbitrarily
large, including use of parameter projection, resetting,
saturation, and forgetting factor [33]]. The role of forgetting
factor is extensively investigated in [34] and [|6], where it
is demonstrated that without forgetting factor the parameter
estimates converge to the real values only asymptotically
(and typically slower), whereas with forgetting factor the
convergence becomes exponentially fast, which leads to
specific design procedures for different applications. For
instance, a composite LS method is provided in [11]], where
a Lyapunov-like function with time-varying gain matrix
is utilized. However, the design in [[11] is for a specific
system model suitable for robot manipulators, which limits
the applicability of the proposed procedure as is.

Constructive Lyapunov analysis of RLS parameter identi-
fier based direct adaptive control, which is used to build the
adaptive control laws, is studied in this paper. The main dif-
ference from the gradient based approaches is replacement
of the constant adaptation gain with a time varying adaptive
gain (covariance) matrix. For a systematic construction of
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the direct MRAC scheme with time-varying adaptive gain,
a Lyapunov-like function is constructed through which an
LS parameter identification based direct adaptive control
scheme is established to guarantee asymptotic stability.
The proposed procedure is utilized in an adaptive cruise
control (ACC) application case study to demonstrate the
transient performance, validate the analytical results, and
compare the performance with the gradient based adaptive
controllers through a set of Matlab/Simulink and CarSim
simulations.

The paper is organized as follows. Section II is dedicated
to background on direct MRAC design. Section III provides
Lyapunov-like function composition and analysis. Compar-
ative simulation testing and analysis of the ACC application
case study is presented in Section IV. Final remarks of the
paper are given in Section V.

II. BACKGROUND: DIRECT MODEL REFERENCE
ADAPTIVE CONTROL

In model reference adaptive control (MRAC), desired
plant behaviour is described by a reference model which is
often formulated in the form of a transfer function driven
by a reference signal. Then, a control law is developed
via model matching so that the closed loop system has
a transfer function equal to the reference model [1]]—[4].
Consider the SISO LTI plant

Xp(t) = Apxp(t) +Bpup(t),
yp( ) :Cpxp( )a

with state x, € R", input u, € R, output y, € R, and system
matrices Ay, B),,C, of appropriate dimensions. The transfer
function of the plant is given by

Zy(s)

Gp(s) =kp--
P(s) pRP (S) )
where k), is the high frequency gain, and Z,(s) and R,(s)
are monic polynomials. Assume that the plant (I) is min-

imum phase, i.e, Z, (s) is Hurwitz. Consider the reference
model

xm(t) = Amxm(t> —‘,—er(l‘),
Y (t) = Coim (1),

which is fed by the reference input signal r € R. The
transfer function of the reference model (3) is given by

Zn(s)
Ru(s)’
where k,, is the high frequency gain, and Z,(s) and
R, (s) are monic polynomials. The MRAC task [1], [2] is
to generate the control signal u, so that all the closed-
loop system signals are bounded and the plant output y,
tracks the reference model output y,,, under the following
assumptions:

x(0) = xo, W

2)

xm(o) = Xm0>

3)

Win (S) =k, 4)

Assumption 1. Plant Assumptions.

i Z,(s) is a monic Hurwitz polynomial.
ii Upper bound n of the degree n, of Ry(s) is known.
ili Relative degree n* =n,—my, of G,(s) is known, where
my, denotes the degree of Z,(s).
iv sign(k,) is known.

Assumption 2. Reference Model Assumptions

i Zy(s),Rm(s) are monic Hurwitz polynomials of degree
qm, Dm, respectively.

ii Relative degree ny, = py — qm of Wi(s) is the same as
that of G,(s), i.e, n* =ny,.

Consider the fictitious feedback control law [1]], [2]

a(s) a(s)
(S) P+ (s)yp+ 3yP+COr7 ()
where
o= Ll
0o— 7 >
kp
a(s) 2 oy o(s) =[s"2,5" 3, s, 1] for n>2,
a(s) =0 for n=1

A(s) is an arbitrary monic Hurwitz polynomial of degree
n—1 containing Z,(s) as a factor, i.e.,

A(s) = Ao(5)Zn(s)

implying that Ag(s) is monic and Hurwitz. The fictitious
ideal model reference control (MRC) parameter vector
0*=[6;7 657 6; «c;]" is chosen so that the transfer
function from r to y, is equal to W,,(s). The closed-loop
reference to output relation for the MRC scheme above is
derived in [[1]], [2] as

yp = Ge(s)r, (6)

where

cikpZy A
AA—6;ToR, —k,Zy(05T o0+ 60;A)

G. =

The ideal MRC parameter vector 6* is selected to match
the coefficients of G, (s) in (@) and W, (s) in @). A state-
space realization of the 1deal MRC law @ is given by [1]],

(2]
(t) +g"‘p(t)7
(t) +8yp(t), @(0)=0, (7)



where @, € R,

* * * 1T T
0 :[BIT 92T 05 Co] ) w—[ahT sz Yp "] )
— -2 _111—3 _Afn—4 _AO

1 0 0 0
F— 0 1 0 0 7

0 0 1 0
A(s) = 5" Ayas" 2+ Ais+ Ag = det(sI - F),
g=1[10 0.

The MRAC scheme for the actual case where the plant pa-
rameters are unknown is derived by following the certainty
equivalence approach and modifying as
@y (1) = Fo +gup(t), @(0) =0,
(1) = Fan(t)+gyp(t), @2(0)=0, (8)
up(t) = 6" (1) (1),
where 0(¢) is the online estimate of the unknown ideal
MRC parameter vector 8*. The adaptive law to generate

0(¢) can be formed considering the following composite
state space representation of the closed-loop system [2]:

Yo(t) = AgYe(t) 4 Beup (1),

9)
ypt) = CLY (o),
where Y. = [x}, ol ,0]]7,
A, 0 0 B,
Ap=| 0 F 0|, B.=|g|, cl=[cl, 0, 0].
¢Cy 0 F 0

The system equation (@) can also be expressed as [2]

YVe(t) = AYe(t) + Bechr(t) + Be(uy(t) — 07 (1)),

(10
yplt) = CIX(1),
where
Ap,+B,0;Cr B,6;T  B,6;"
A, = g63*C§ F+g0;T  g6;T
gCh 0 F
Consider the fictitious system
Y, (1) =AY (t) + Becyr(t),
( ) c ( ) c“0 ( ) (11)

Vm (t) = CCTYm(t)a
which is obtained by substituting (7) in (I0). Noting that the
ideal MRC law guarantees the matching of the closed-
loop r-to-y, transfer function with the reference model
transfer function W, (s), the r-to-y,, transfer function of (1)
satisfies

Wu(s) =CI(sI —A.)"'B.cj. (12)

Furthermore, since and (L1) are state-space repre-
sentations of the same stable transfer function W,(s),

ym(t) —¥m(t) converges to zero exponentially fast. Hence,
defining the output tracking error e; =y, — yj;, €éxponential
convergence of the tracking error y, —y,, to zero is equiv-
alent to exponential convergence of e; to zero. Moreover,
defining the state mismatch vector e =Y, —Y,, € R¥~2 and
subtracting (T1) from (I0) we obtain

é(t) =Ace(t) +Bc(up(t) — O*Tw(t)), e(0) = ey,
., (13)
eg=C,e.
Hence, we have
e1 =Wu(s)p*(u, — 0" w), (14)

where p* = 1/c{. Further, substituting (§) into (13), we

obtain B
é=Ace+B.0"w,
’ (15)
e1=C.e,

where
0(t)=0()—6".

III. LYAPUNOV-LIKE FUNCTION COMPOSITION AND
ANALYSIS FOR LEAST-SQUARES BASED DIRECT MRAC

(16)

In the typical direct adaptive control designs of the litera-
ture, which are gradient adaptive law based, the Lyapunov-
like function is chosen as

6'r-16

~ _eTPCe+ 07
5 P

V] (97 e) = 3
where 6 = 6 — 6*, 6* and 0, respectively, are the ideal
MRC and actual MRAC parameter vectors defined in
Section II, P. = P! is a positive definite matrix satisfying
certain conditions to be detailed in the sequel, and I' =T"7
is a constant positive definite adaptive gain matrix. P, is
selected to satisfy the Meyer-Kalman-Yakubovich Lemma
[2]] algebraic equations

a7

PAAATP. = —qq" -
PCBCCS =C,,

\
cloc (18)

where ¢ is a vector, L, = LCT >0, and v, > 0 is small
constant. The time derivative V; of V; along (T3)),(T8) is
T, T .
Vi= _¢ q2q ¢_ %eTLCe—l—eTPCBCcSp*éTa)—i—éTl“*l 6|p*|.
(19)
Since e! P.B.cj;= e C. = ey and p* = |p*|sgn(p*), defining
the gradient based adaptive law

6 = —Twesgn(p*) (20)
leads to
T, T
V] = _¢ qzq ¢ %ETLCE <0, 2n

noting that 6 = 6. The equations and imply that
V,0,0 € £, and e € % N .%.. Further,since the reference



model system @ is stable, we have Y,, € .Z.. Hence we
also have Y, = Y,, +e, ,, = C!'Y,, € Z.. By (1),(8),(T0), this
further implies that x,,y,,®1, 0, u, = 07 © € L, i.e., all
the signals in the closed-loop plant are bounded. Moreover,
since é € %, based on Barbalat’s Lemma, lim;_, . e(t) =
0. Hence, the tracking error ey =y, — ¥, = CCT e converges
to zero as time goes to infinity.

With the gradient based adaptive law (20) with constant
adaptive I" gain, fast adaptation can be achieved only by
using a large adaptive gain to reduce the tracking error
rapidly. However, introduction of a large adaptive gain I
in many cases leads to high-frequency oscillations which
adversely affects robustness of the adaptive control law.

Unlike the gradient based adaptive law (20) with constant
adaptive gain I', generation of a time varying adaptive law
gain matrix P(z) that is adjusted based on identification
error during estimation process, would allow an initial large
adaptive gain to be set arbitrarily and then to be driven
to lower values to adaptively achieve the desired tracking
performance.

For generation of the time varying gain P(¢), an efficient
systematic approach is use of LS based adaptive laws,
which are observed to have the advantage of faster conver-
gence and robustness to measurement noises [2]], [6[]—[Sl.
Next, we propose a formal constructive analysis framework
for integration of recursive LS (RLS) based parameter
identification to direct adaptive control, following the steps
above, but constructing a new Lyapunov-like function to
replace (I7), aiming to formally establish am adaptive
control scheme law that involves the control structure (8)
and an RLS based alternative of the adaptive law (20).

Aiming to replace the constant adaptive gain I" with
a time-varying gain matrix P(z), consider the following
Lyapunov-like function in place of (I7):

~ el (t)Pe(t) BT ()P~ (1)0(r)

Va2(0,e,t) = 3 + 3 lp*l,  (22)

where P(t) is uniformly positive definite. The time deriva-
tive V5 of V; along the solution of (22) is

T,.,T

. V, ~
Vo= ¢ qzq e—?CeTLCe—i—eTPCBCcfjp*GTa)
23
INTd(Pil)~ * AT p—1 ;| ~% ( )
+50 = —6lp*|+ 67 6lp7],
where
d(p~! .
(P7) _ _prippt, (24)

dt

If P(¢) is updated according to the RLS adaptive law with
forgetting factor,

P=BP-Poo’P, (25)

where 8 > 0 is the forgetting factor (scalar design coeffi-
cient), then [24) becomes

dP) -1 T
——==—pP oo .
dt PP+
Substituting into (23)), we obtain
e'qq"e v
- ——e
2 2
~ < 1 <~
+6TP716|p* |+ EcoTeeTm|p*|.

(26)

Vy = TLce+e1P*éTa)—§éTP71§|p*|

27)
Defining the adaptive law
. 1 ~
0 = —Pwe;sgn(p*) — 5Pwﬂﬁ)w, (28)
where P(t) is updated via (23), noting that 6 =0, and
substituting into (27)), we obtain
1 r

. V.
Vo = —Ee que— ?‘eTLce—

leading to the following theorem, which summarizes the
stability properties of the LS based direct MRAC scheme

@.25).28).

Theorem IIL.1. The RLS parameter estimation based
MRAC scheme @®),(23), 28) has the following properties:

i. All signals in the closed-loop are bounded and track-
ing error converges to zero in time for any reference
input r € L.

ii. If the reference input r is sufficiently rich of order 2n,
i€ %L, and Zy(s),R,(s) are relatively coprime, then
 is persistently exciting (PE), viz.,

1~ -
507PTIBBIp" <0, (29)

t+Ty
/ o(t)o’ (t)dt > aTol, 0, Ty >0, Vt>0,
’ (30)
which implies that P,P~' € £, and 0(t) — 0" as t —
oo, In the case of B =0 (pure-RLS), 6 — 6" and e; — 0
as t — oo. When B > 0, which is RLS with forgetting

factor, the parameter error ||0|| = ||0 — 6*|| and the
tracking error ey converges to zero exponentially fast.
Proof.

i. e€%,0,0,€ %, and é € Z,. Therefore, all signals
in the closed loop plant are bounded. In order to
complete the design, we need to show tracking error
e1 converges to the zero asymptotically with time.
Using (22), @29), we know that e,e; € %. Using,
0,0, € % in (I3), we have é,¢é; € L. Since
é,61 € £, and e] € %, the tracking error e; goes
to zero as ¢ goes to infinity.

ii. Considering pure-RLS, when B = 0, from (23) we
have P = —Po®’P < 0. So, P(t) is non-increasing
ie., P(t) < PRy. As P(t) = PT(¢) > 0, it has a limit i.e.,



lim, .. P(t) = P, where P = P is a positive constant
matrix. Furthermore, (23)) results in

P(t) = Py— /OtP(r)waP(r)dr

1
< Anin(Po) — Ain (Fo) oo’ dt,
—Tp
where A, (Py) is the minimum singular value of Py.
By Theorem 3.4.3 of [2], if r is sufficiently rich of
order 2n then the 2n dimensional regressor vector ®
is PE. Because @(¢) is PE, we have

P(t) < Amin(Po) (1 — aTp)l. 31)

As a result,
(32)

So, P(t) € % in pure-LS method. On the other hand,
([@9)) results in V5(r) < 0. Therefore, V,0 € %, and
e € N L. Since e =Y. — Y, and y,,(t) = CL Y, (1),
Yo, 9m,Ye € Lo that gives use xp,yp, 01, € L.
Moreover, we have u, = 0T @ and 0,0 € Z.; there-
fore, u, € Z.. So, all the signals in the closed-loop
plant are bounded. Moreover, since é € %, based
on Barbalat’s Lemma, lim,_, . e(t) = 0. Hence, the
tracking error e; =y, — 3 = CCTe converges to zero
as time goes to infinity.

Now, we consider RLS with forgetting factor, in which
B >0.Let Q=P ! and (26) can be rewritten as

0=-B0+owo’.

and the solution becomes
t
0(t) = e P10y + / BN o) (T)dT. (34)
0
Since w(?) is PE,

o(r) > /T ;e—3<f—f>w(r)mT(f)dr

P<P(t)<nl

(33)

t
> age‘/”"/ Pyl (t)ar G
Ty

> ﬁleiﬁTol, vt > T,

where B; = dpoTy, and op, 0, Tp > 0 are design
constants, given in (30). For 1 < Ty,

Q(t) 2 e P10y > Ayin(Qo)e P01 > oI Vi >0,
(36)
where 7y, = min{%TTo,lmm(Qo)}e_ﬁTO. Since  is PE,

r
0(t) < 0o + o /0 e BDaz <yl By >0. (37)

where 13 = Apax(Qo) + % > 0. Using (36) and (37),
we obtain

B U<P T (t)=0(1)<%'L (38)

Therefore, P(t),Q(t) € Z... Based on (29) and (T8,

we have

. 1 . ~
Va(t) < —Amin(Ac)e” Pee = 5 BOP~16]p"].  (39)

where Ain(Ac) is the singular value of A.. Therefore,
considering oy = min(Amin(Ac), %[3 ) results in

Va(t) < —ap(e" Pe— P 16|p*|) = —aoVa(t). (40)

So, we have

Vi(t) < e %'V5(0). (41)

which implies exponential convergence of 6 and the
tracking error e;(r). Exponential convergence is in-
teresting from the adaptive control point of view,
as it provides fast adaptation and robustness against
noise and external disturbances, which are inevitable
in practical applications.

O

Comparing two adaptive laws in (20) and (28), we can
clearly see the effect of time varying covariance matrix
reflected as an additional term to the similar part of (20).

IV. A SIMULATION CASE STUDY

For the application of RLS based adaptive control, ACC
case study is considered, and all three procedures, gradient
method, pure-RLS (PRLS) (8 = 0) and RLS (§ > 0) are
simulated to scrutinize the efficacy of RLS method. A
basic ACC scheme is given in Fig. [l ACC regulates the
following vehicle’s speed v towards the leading vehicle’s
speed v; and keeps the distance between vehicles x, close
to desired spacing s;. The control objective in ACC is to

v vy
/N Xr LN
S

) Sa

Figure 1: Leading and following vehicles.

make the speed error close to zero as time increases. This
objective can be expressed as

vi—0, 8§—0, t— oo, (42)

where v, = v; —v which is defined as the speed error or
sometimes relative speed, & = x, — sy is the spacing error.
The desired spacing is proportional to the speed since the
desired spacing between vehicles is given as

54 = S0+ hv (43)



where sq is the fixed spacing for safety so that the vehicles
are not touching each other at zero speed and % is constant
time headway. Control objective should also satisfies that
Amin <V < @pay, and small |]. First constraint restricts
ACC vehicle generating high acceleration and the second
one is given for the driver’s comfort. For ACC system,
a simple model is considered approximating the actual
vehicle longitudinal model without considering nonlinear
dynamics which is given by

v=—av+bu+d, (44)

where v is the longitudinal speed, u is the throttle/brake
command, d is the modeling uncertainty, ¢ and b are
positive constant parameters. We assume that d,dv;,v; are
all bounded. MRAC is considered so that the throttle
command u forces the vehicle speed to follow the output
of the reference model
Am

Vin = sta, (V[ —|—k5),
where a, and k are positive design parameters.We first
assume that a,b, and d are known and consider the control
law as follows:

(45)

u=kiv,+k36 +k3, (46)
. am—a amk avi—d
Ki==0— kh="pm B=—p— @7

Since a,b, and d are unknown, we change the control law
as

M=klvr+k25—|—k3, (48)

where k; is the estimate of k] to be generated by the
adaptive law so that the closed-loop stability is guaranteed.
The tracking error is given as

b
—— (kv — k36 — k3 +u).

s+ an
Substituting the control law in (@8) into (@9), we obtain

(49)

e=v—v, =

(k1v, + ka8 +k3), (50)

e =
am

where k; = k; — k} fori=1,2,3. In order to find the adaptive
law, consider the Lyapunov function and its time derivative
[2] as

62 3 b .
V=—+Y =k %>0b>0, (51)
) - - - 3 b s
V =—ane’ +be(kyv, +k8+k)+ Y ?k,-ki. (52)
=117

Therefore, the following gradient based adaptive laws are
applied to ACC

ki = Pr{—yiev,},
ky = Pr{—peé},
i{3 = Pr{i’}/?’e}v

(53)

where the projection operator keeps k; within the lower and
upper intervals and 7; are the positive constant adaptive
gains. These adaptive laws lead to

(54)

V= famez.

By projection operator, estimated parameters are guaranteed
to be bounded by forcing them to remain inside the bounded
sets, V implies that e € %, in turn all other signals in the
closed loop are bounded. We apply RLS based adaptive
law to (3I) and obtain following equations to be used in
simulations

¥ (mps)

2, Tollor 2 vehicle RIS
— — i follo
o, following vehicle gradient

L L L
o 2 4 o 85 1 12

RLS
— — PRLS
gradicnt

speed error (mps)
&
[T

RLS
— — PRLS

seperation error (m)

gradicnt

o 2 4 o 8 1 12
t (sec)

Figure 2: ACC comparison results, speed tracking and
separation error in Matlab/Simulink.

) = Pr{¢P;
6 = Pr{oPic}, 55
P=BP—Pp¢"P,
with
e=V—vp,
T
0= [kh k27 k3] ) (56)
T
Vr o) 1
(P:{s+am’ Fan m} )

where P; are the diagonal elements of P covariance matrix,
i=1,2,3.

For gradient based adaptive law, y; = 50,7 = 30,73 =40
constant gains are given. For RLS based algorithm § =0.95
and P(0) = 10073 are given. For both RLS and gradient
schemes, a Gaussian noise is applied (¢ = 0.05). Simula-
tion results from Matlab/Simulink for throttle system are
given in Fig. 2} Fig. 2] shows the vehicle following for
both gradient based adaptive law and RLS based adaptive
law. The speed error in velocity tracking shows the better



performance for RLS adaptive law. Furthermore, it can be
inferred from this figure that the RLS provides exponential
convergence.

— — PRLS

== gradient

] 2 4 6 a8 10 12

——RLS
— — PRLS
— — gradient

— — PRLS

— — gradient

] 2 4 6 a8 10 12

Figure 3: ACC adaptive parameters in Matlab/Simulink.

The adaptive parameters are illustrated in Fig. [ It is
shown that these parameters are achieved adaptively based
on the system specifications and they are all stable.

20 )
151 )
Q
Eqof o N

s — — u lead vehicle speed
51 P ~ v following vehicle speed by RLS
o I I I I I
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Figure 4: RLS based ACC results in CarSim.

We also implemented RLS based adaptive control al-
gorithm in (33) to CarSim for more realistic results. The
vehicle parameters used in CarSim are as follows: m =

567.75 kg, R=03 m, [ = 1.7 kgmz, B=0.01 kg/s. The
adaptive gains for both gradient and RLS are used the same
as in Matlab/Simulink. CarSim results for RLS based ACC
can be found in Fig. @ Results demonstrate the ability of
the following vehicle equipped with RLS based adaptive
law on dry road by adjusting the speed and the distance
between the leading vehicle and itself.

V. CONCLUSIONS

In this paper, a constructive Lyapunov analysis of RLS
based parameter estimation direct adaptive control is pro-
posed. A systematic representation of designing a time
varying adaptive gain (covariance) matrix is proposed via
Lyapunov analysis, where it is analytically demonstrated
that the adaptive parameters converge to the actual ones
exponentially fast. The simulation results on an ACC model
via Matlab/Simulink, and the comparative achievements,
with respect to gradient based method and pure-LS proce-
dure, validate the analytical gains. Moreover, it is shown
that LS-based approach outperforms the others. Further-
more, a realistic vehicle software, CarSim, is utilized to
scrutinize the applicability of the proposed method on a
real ACC system.
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