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Abstract— Evolution of disease in a large population is a
function of the top-down policy measures from a centralized
planner, as well as the self-interested decisions (to be socially
active) of individual agents in a large heterogeneous population.
This paper is concerned with understanding the latter based
on a mean-field type optimal control model. Specifically, the
model is used to investigate the role of partial information on an
agent’s decision-making, and study the impact of such decisions
by a large number of agents on the spread of the virus in the
population. The motivation comes from the presymptomatic
and asymptomatic spread of the COVID-19 virus where an
agent unwittingly spreads the virus. We show that even in a
setting with fully rational agents, limited information on the
viral state can result in an epidemic growth.

I. INTRODUCTION

Social behavior of individual agents ultimately drives
the case count in an epidemic. Decisions of an individual
agent are mediated by the top-down policy guidelines, e.g.,
lockdown mandates or social distancing guidelines. However,
these decisions are also a function of: (i) the agent’s risk-
reward trade-off based on the agent’s health condition, age,
and information from media on transmissibility and lethality
of the virus (e.g., omicron variant is more transmissible but
less deadly than the delta variant), (ii) aggregate positivity
rate in the local population, and (iii) the agent’s assessment
of its own epidemiological status.

This paper is a continuation of prior work from our group
on modeling an agent’s decision-making in an epidemic
based on mean-field game (MFG) formalisms [1]. The pri-
mary focus of the current paper is to investigate the role
of agent rationality and information on agent behavior. The
motivation comes from the following thought experiment:
On the planet of Vulcan, the agents are both perfectly
rational and perfectly informed. Because an agent has perfect
information, it immediately knows its epidemiological status.
And because an agent is perfectly rational, it knows to self-
quarantine if infected. Therefore, the rational choice of a
susceptible (non-infected) agent is to carry on with normal
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life. This is because it can count on rational choices of
perfectly informed others.

Unfortunately in reality, on the planet of Earth, we con-
tinue to experience waves of infection which are doubtlessly
caused by emergence of variants but surely exacerbated
by our own actions which are often less than rational and
certainly almost always based on incomplete information. A
case in point is the role played by the presymptomatic and
asymptomatic spread of the COVID-19 virus [2]-[5].

The contributions of this paper are as follows. Apart from
the development of the model, we derive several qualitative
insights into an agent’s actions in the midst of an epidemic.
Specifically, these insights are related to: (i) the risk-reward
tradeoff of a susceptible agent, and (ii) the evolution of belief
of an active agent who does not show symptoms. The result-
ing decision-making and its effect on the disease outbreak
in the population are discussed at length. These qualitative
insights are drawn from quantitative results presented as part
of Props. 3] f] and [5] and as illustrated in Figs. The
discussion appears in Sec. [V-D}

Closely related to our work are [6], where an agent’s
decision variable is its rate of contact with others, and [7],
[8], where an agent strives to follow a prescribed rate of
contact based on government guidelines. Other MFG-style
modeling of epidemics appears in [9]-[13]. The novelty of
our work comes from the inherent partial observability of
viral status and differences in cost structures. These factors
are crucial for modeling the asymptomatic spread of an
epidemic.

The remainder of the paper is organized as follows. The
problem formulation appears in Sec. |lI| where the two main
questions of the paper are also introduced. The answers
to these questions are based on the analysis of the HIB
equations derived in Sec. The analysis is presented in
Sec. together with qualitative answers to the two main
questions. These answers conclude this paper and spur the
development of the MFG formalism. This formalism, which
will be studied in detail as part of future work, is presented
in Sec. [Vl The proofs appear in the Appendix.

II. PROBLEM FORMULATION
A. Model for a Single Agent

Dynamics: The epidemiological state of a single agent is
modeled as a Markov process X = {X; € X : t > 0}
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Fig. 1: (a) Epidemiological states and the associated transition graph. (b) Model for running cost: It is assumed that the
economic reward of « is smaller than the altruistic cost of 1 for an asymptomatic (x = a) or symptomatic (z = i) agent.

with state-space X' := {s,a,i,r,d}. Fig. [I| depicts the tran-
sition graph along with a description of the epidemiological
meaning of each of the five states. Notably, there are two
types of infected states: (i) asymptomatic state, denoted
as a; and (ii) symptomatic state, denoted as i. In either
of these states, an agent is infectious, i.e., able to infect
other agents. The modeling distinction is that, in partially
observed settings, an asymptomatic agent may not know its
true state but a symptomatic agent does. Note that unlike
our previous paper [1], the transition graph now includes an
edge from a to r. This is more realistic, but significantly
complicates modeling and analysis. Broadly, there are two
types of transitions:

1) On the subset {a,i,r,d}, the transition rate depends only
upon the agent attribute 6, which here represents the age of
the agent. For example, an older symptomatic agent has a
longer expected recovery time (smaller A*®) than a younger
one.

2) The transition from s — a depends upon three factors: (i)
the intrinsic infectivity of the virus, (ii) the agent behavior
(level of social activity), and (iii) the behavior of the infected
agents in the population. The following equation is used to
model the effect of these three factors:

rate[s — a] = n+ \* B; U

where 1 > 0 is a small baseline rate (useful for regularizing
the problem) and A** is the virus transmissibility parameter.
The process U is referred to as the agent’s control input,
and models the agent’s activity level: With U; = 0 (resp.,
U; = 1) the agent is isolated (resp., normally active) at time
t (Fig. 2). The process  models the average activity level
of the infected agents (Eq. (I)).

The two main questions driving this work are as follows:
(i) How does a single agent choose its control input U?
and (i) How does that choice (made by agents) affect the
evolution of disease in a large heterogeneous population?
To answer these questions, we adopt an optimal control
framework.

Optimal control objective: In the following, 5 is a given
deterministic process. The control objective for a single agent
is to choose its activity U to minimize

T
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Fig. 2: A qualitative representation of the control input.
Agents choose their activity levels based on their own viral
status and the disease level within the population.

where v > 0 is a discounting rate (assumed to be much
smaller than the transition rates), T = T'(w) = inf{¢t > 0 :
X¢(w) € {d,r}} is the random stopping time when the agent
either recovers (X7 = r) or the agent dies (X1 = d); by
convention, inf ) = co. The cost function is of the following
form:

c(z,u) = c(x) + (*(x) —r(z))u

where (), ¢(-), and 7(-) model the health cost, altruistic
cost, and economic reward, respectively (Fig. [1| (b)). The
altruistic cost models an agent’s desire to help the greater
good and has the effect of inducing an infected agent to
isolate. Of course, an agent’s choice is mediated by its
information, the structure of which is described next.

Information structure: There are two settings of the prob-
lem: (i) the fully observed case, and (ii) the partially observed
case. In the partially observed setting, the observation pro-
cess Y :={Y; € {0,1,2} : ¢ > 0} is defined as

Vi = lix,=i + 2 lix,=aq)

Therefore, an infected agent who is also asymptomatic (in
state @) does not observe its epidemiological status until it
begins to show symptoms (in state ).

B. Model for the Mean-Field

To fully specify the problem, we need to define the model
for the agent’s attribute 6 and the process [, henceforth



referred to as the mean-field process. The probability mass
function of the attribute 6 is denoted by p(-). Denote by
pt(x,u;0) the joint distribution of the state-action pair
(X¢,Uy) at time ¢, conditioned on the attribute 6. At time ¢,
the average activity level of infected agents is

Bt ::Zp(e) Z /upt(x,u;ﬁ)du (1)
0

z€{a,i} 0
which we define to be the mean-field process.

C. Function Spaces

The filtration of the Markov process X is denoted by F :=
{Fi : t > 0} where F; := o(X;). The filtration of the
observation process Y is denoted by Y := {); : t > 0}
where ), := o({Y; : 0 < s < t}). In the two settings of the
problem, the spaces of admissible control inputs, denoted by
U in each case, are as follows:

(fully obsvd.) U = L%(]0,00); [0, 1])
(part. obsvd.) U = L3,([0,00); [0, 1])

i.e., an admissible control input U is a [0, 1]-valued stochastic
process adapted to F in the fully observed case, and adapted
to ) in the partially observed case. The use of the common
notation I/ should not cause any confusion because the two
cases are treated in separate subsections. The process  is
assumed to be deterministic. The function space for 3 is
M = LQ([Ov 00); [0, 1]).

III. OPTIMALITY EQUATIONS FOR A SINGLE AGENT

A. Fully Observed Case
For each x € X and ¢ > 0, the value function is

Xt:Qf)

2

where at the two terminal states + = d and © = r,ithe
value function is given by known constants v:(d) = ¢(d)

and v;(r) = ¢(r).

For the fully observed problem, complete characterizations
of the value function and the optimal control are described
in the following proposition. This result is a minor extension
of a similar result appearing in our prior paper [1] (for A\**
and 1 = 0) and therefore its proof is omitted.

= gy
f

T
E (/ e 160X, Uy) ds 4+ e T (X))
t

Proposition 1: Suppose o < 1. For = € {a,i,r,d}, the
value function v¢(z) and the optimal control law v (z) are
stationary as tabulated in Table |II For state s, the value
function v (s) solves the HIB equation

~ S5+ (1 )

=né(a) + min (A5, ($(a) - vi(s)) — o) u

€[0,1]

Remark 1: The optimal control for both asymptomatic
and symptomatic agents is zero. This is entirely because

state x value function v ()

(@) + XM G () + ARG (r)
a AF AL AAR =:
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optimal control

(a) | U =r(@) =0
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r #(r) (given)

d é(d) (given)

TABLE I: Fully observed case.

o < 1. Recall that o is a model for economic reward per
unit time. The assumption « < 1 means that the economic
reward (o) is outweighed by the altruistic cost (1).

B. PFartially Observed Case

The partially observed problem is first converted to a fully
observed one by introducing the belief state, as in [14], [15],
which at time ¢ is denoted by

T o= [m(s) mla) m@) m(r) m(d)]
where m(x) := P([X¢ = 2] | V&) for z € X. Since the
events [X; = i] and [X; = d] are both contained in )}, 7,
is not an arbitrary element of the probability simplex in R®.
Let P! denote the set of pmfs on {s,a,r} and let P? =
{0, 0, 0a}. Then, the state-space for the belief is P! U P2
For ¢t > 0 and p € P! U P2, the value function is

vy () = min
Yy

T
- (/ e (X, Ussa)ds + e T o(Xr) | mp = ”)
t

There are two cases to consider: (i) when p € P2, and (ii)
when p € P\ {6, }. In the first case, when p € P2, the
problem reduces to the fully-observed setting, and the value
function is given by

vr(8a) = ¢(d), vi(6) = O(r), vi(di) = o(F)
The optimal control for the agent in the symptomatic state
(mp = &) is U™ = 1py(6;) = 0.

For the second case, when p € P!\ {4,}, a nonlinear filter
is used to obtain the evolution of the belief. For this purpose,
consider first the random variable 7 = 7(w) = inf{t > 0 :
Xt(w) =i}. Now, 7 is a Yy-stopping time and

m = [m(s) m(a) O m(r) 0]

Let Sy := m(s), Ay := m(a) and Ry := m(r) for t < 7.
Then the stochastic process {(S;, A, Ry) € [0,1]® : S; +
A+ Ry = 1,0 <t < 7} evolves according to the nonlinear
filter

for t< T

ds
Ttt = (7)\SABtUt -n + AtAAI) St (33)
dA

dtt = (AN*BU 4+ 1) Sy + Ay (=AY — M+ XV A4,) (3b)
dR

dtt = A (W 4+ MRy) (3c)



which is derived from the general form detailed by [16].
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Fig. 3: A susceptible agent’s risk-reward diagram. The line

AS2¢(a)B = a is where the risk equals the reward.

We identify P! with the domain D := {(s,a) € [0,1]? :
s+ a < 1} where s is the value of Sy and a is the value
of A;. For an arbitrary element o = [s,a,0,1 — s — a,0] in
P1L, we denote the value function with respect to the (s,a)-
coordinates as

di(s,a) == v(p),

The following proposition provides the HIB equation whose
derivation appears in Appendix

(s,a)e D, t>0

Proposition 2: The value function ¢;(s, a) solves the HIB
equation

(—% + 7¢t) (s,a) = (Lg¢)(s,a) + u?[é’?u Mils, aju
4

together with boundary conditions

Gi(s,a) — de(s,1 —s —a) = (2a+ s — 1) (¢(a) — &(r))
(5a)
$:(0,a) = ad(a) + (1 — a)(r) (Sb)

where the formulae for the linear operators £ and M appear
in Appendix

In the remainder of this paper, it is assumed that a unique
solution for the HIB equation exists and yields a well-posed
optimal control law, denoted as 1;(s,a) for (s,a) € D.

IV. ANALYSIS OF THE DECISION-MAKING BY AN AGENT

In this section, an analysis of the HJB and the nonlinear
filter equations is given. The analysis is used to develop
insights into the decisions of a single agent in an epidemic
(given $3). To aid the analysis, it is assumed that 3, =
for all £ > 0 (i.e. stationary). The main results are described
in the form of three propositions (Props. B}f3) and illustrated
with accompanying figures (Fig. B} [7). The section concludes
with a qualitative discussion of an agent’s decision-making
in Sec.

A. Risk-Reward Tradeoff for a Fully Observed Susceptible
Agent

Proposition 3 (Stationary Solution): Suppose o < 1, v >
0. 6() > 0, f = f. Set p* = =2 (1 + g). Then
the optimal control for a susceptible agent is stationary and
described by the following cases:

1) If 3 < B, then the optimal control U™ = t)(s) = 1

and the optimal value v; (s) = %’%

2) If B > [, then the optimal control U™ = ¢4 (s) = 0

and the optimal value v(s) = L d(a).

Remark 2: A susceptible agent’s decision is best under-
stood using a risk-reward diagram depicted in Fig. [3] The
horizontal axis of this diagram is the economic reward per
unit time (a). The vertical axis is the potential health cost
(value function ¢(a)). The diagram helps show that the
optimal decision for an agent is to be active if the reward
is greater than the risk. For any given o and ¢(a), the risk-
reward analysis reveals a critical threshold 3 above which
the agent ceases to be active. It is noted that the critical
threshold scales inversely with the product A**¢(a). This is
useful in several ways for analysis:
1) An older agent will have a greater potential health cost
#(a) and therefore a smaller critical threshold 3.

2) A more contagious (high \**) variant may still have a
larger critical threshold, if it is significantly less severe
(low ¢(a)). For instance, the omicron variant is two
times more transmissible (2x greater A\**) than the
delta variant [17]. However, the potential health cost
#(a) of the omicron is also smaller (because it is less
lethal).

B. Threshold Optimal Policies for Partially Observed Case

In our prior paper [1], we derived the following result for
the solutions of the HIB equation in a special case:
Proposition 4: Suppose B, = 3, So+ Ag = 1, and \*® =
0. Then, fort <7, S + A; = 1, and
1) If 3 > B, then the optimal control law (-, a) = 0.
2) For each fixed § < 5w < Bt there exists a A" =
AM(B3) such that for all A > A", the optimal control
law is of threshold type:

1 if 0 <a < ghresh
0 if a™h <g<1

— athrosh

0.50 B
=== a
0.25
______________ -
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Fig. 4: Plot of a™" and & as a function of /3.
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Fig. 5: Stationary optimal control policies for the partially observed case; a = 0.9 and 3/ = 0.1,0.8, 1.1 for the three
plots. Purple region is U°"" = 0 and the green region is U°"* = 1. The islands are numerical artifacts.

where the threshold a™" € (0,1). Furthermore
AAB/AM < g™t The function A*(3) is monotonic

in its argument and limz 4 A" (3) = 0.

With A*® > 0, an analytical treatment has so far not
been possible. However, numerical evidence suggests that the
policies are also of threshold type even with A** > 0. Three
such numerically obtained stationary policies are depicted
in Fig. 5] The policies were computed using the method of
lines numerical algorithm described in Appendix From
these numerically computed policies, a threshold of aesh
is identified such that an agent becomes inactive for A; >
a™eh (see Fig. [5). By identifying the thresholds for different
choices of § < £, a plot of a™*" as a function of % is
obtained as depicted in Fig. [l As 3 1 B, the threshold
a™esh | 0 and the agent ceases to be active.

C. Belief of an Active Agent who Shows No Symptoms

The analysis thus far has revealed two important insights
captured by the critical value for 3 and the threshold for a:
1) A susceptible agent in the fully observed case is active
if 3 is small enough (3 < /).
2) In the absence of symptoms, a partially observed agent
is active if its belief A; is small enough (A; < a™eh).
Therefore, to determine the actions of an agent in the
partially observed case, it becomes important to understand
the evolution of the process {A; : 0 < ¢ < 7}. This is the
subject of the following proposition.

SA 2
Proposition 5: Set @ := %1 Suppose t < 7, and

Sp=1 (agent starts out as susceptible)
Us=1 Vs<t (agent has been active upto time t)
Then,

At<(_1, OSt<T

Moreover if \* =0, then A; T a@ as ¢t — oo.

A numerical illustration of the result of this proposition
appears as part of Fig. [f] The most important point about
this plot is that the agent’s belief that it is asymptomatic

scales as n + O().
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Fig. 6: Evolution of A; for an active agent who starts out as
susceptible.

D. Qualitative Discussion

We are now ready to provide a qualitative answer to
the two primary questions we had raised: (i) How does
a single agent choose its control input U?; and (ii) How
does that choice (made individually and independently by
many agents) affect the evolution of disease in a large
heterogeneous population?

The answer to the first question is as follows:

1) In the fully observed setting, a susceptible agent is
active if 3 < . In this setting, an asymptomatic
agent isolates (Table [[).

2) In the partially observed setting, an agent’s decision is
based on its belief (S;, A;, R;). An agent who starts
out as susceptible and active has a belief 4; < a =
n+0(B) (Fig.lg).

3) For small values of 8 < [, the quantity a < a
(Fig. @). Therefore, an agent’s optimal decision is to
continue to be active. This is illustrated in Fig. [7] for
B/Bcrit =0.5.

The answer to the second question is as follows:

thresh
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Fig. 7: The trajectory of Fig. EI (for A*® > 0) depicted on
the simplex. An agent’s optimal decision is to remain active,
unless it starts to show symptoms.

1) Even though an individual agent’s conditional proba-
bility A; is small at any time ¢ < 7, the law of large
numbers (LLN) dictates that in a large population with
N agents, E(A;) fraction of agents are asymptomatic
with high probability.

2) The basic reproduction number R, (pronounced R
nought) is defined as % where T" is the average
time until removal (in our settings, either showing
symptoms x = i or recovery x = r) and T° is
the average time between infectious contacts. For our
model, this ratio is ﬁg:ﬂ = R,.

3) If R, > 1 then for small values of /3, optimal actions
of individual agents (to remain active) still causes an
epidemic.

The above is an example of rational irrationality where ratio-
nal choices of individual agents lead to irrational outcomes
for the population [18], [19]. It is notable that the irrationality
here is entirely a consequence of the lack of information
(with full information, asymptomatic agents isolate).

A limitation of these arguments is that the analysis is rather
qualitative and moreover relies on the assumption of a given
stationarity 3; = /3. Indeed, this is not necessarily true in
the case of an epidemic: The process [ is non-stationary
and also a result of the individual actions of many agents.
This motivates the need for a more refined analysis based on
a mean-field game model as described next.

V. MEAN-FIELD GAME MODEL

In this section, we consider a population of heterogeneous
agents. As already noted, p:(z, u; ) is the joint distribution
of the state-action pair (X3, U;) at time ¢, conditioned on the
attribute 6. The marginal pmf p;(x;#) evolves according to
the mean-field equations:

dp:
dt

dpe
d

1
@®=—Wm/lw@wﬁw—wmﬂ)ww
0

(z;0) = (A‘Lpt)(ac;ﬁ)7 z € {i,a,r,d} (6b)

from a given initial condition pg(z;6); AT is the adjoint of
the generator A of the Markov process X.

Each agent in the population chooses its control according
to the optimal control law );(-; §) obtained from solving the
HIJB equation (the notation denotes the dependence on the
attribute 6). In the two cases,

(fully obsvd.)
(part. obsvd.)

Uy = (X3 0)
U = (45 0)

where 7, = P(X; | )4) is the belief state; the use of the
common notation ¢ (+;6) should not cause any confusion
because the two cases are treated in separate subsections.

The following operators are of interest (see Sec. [[I-C| for
definition of function space M and U):

1) The operator ¥ : M — U, defined as
¥(8) = arg min J(U; )
Ueld

2) The operator E : U — M, defined according to (6)
where f3 is obtained using (T).
Assuming that the two operators are well-defined, we
have:

Definition 1: A mean-field equilibrium (MFE) is a fixed
point 8 such that Z(¥(3)) = (8).

A. Fully Observed Case

For the fully observed problem, a complete characteriza-
tion of the MFG equilibrium is described in the following
proposition. The result is a minor extension of a similar result
appearing in our prior paper [1] (for A*® and = 0) and
therefore its proof is omitted.

Proposition 6: The unique mean-field equilibrium is

Bi=0 VYV t>0

This result represents a mathematical expression of the
thought experiment described in Sec. [l Its main utility
is to set up the problem whereby the effects of some of
the underlying assumptions — perfect rationality and perfect
information — can be investigated. As with the preceding
sections, the main focus of the MFG modeling is in the
partially observed settings, which is the subject of the
following subsection.

B. Partially Observed Case
Consider the space of probability distributions on the
belief space P! U P2. The random vector (S;, A;) is well-

defined on the set [t < 7], and we denote by p.(s,a) its
density for 0 < s <1, s+a < 1:

P(ls<Si<s+ds|Nfa< Ay <a+ da]N[t <))

=pi(s,a)dads, t>0

Assumption 1: The density pi(s,1—s) = p(s,0) = 0 for
allt >0, s€[0,1].

Under Assumption [I]that an agent uses the optimal control
Uy = U™ = 9,(S;, Ay) for 0 < t < 7, the density process
{pi(s,a) € [0,00) : 0 <s<1,s+a<1,t>0} solves the



FPK equation whose derivation, along with the expressions
for fy(s,a,t) and f,(s,a,t), appears in Appendix

Opt 9
E(&a) = _%(fs(sv a, t)pi(s, a))

— % (f,,(s7 a, t)p:(s, a)) —aXpe(s,a)  (7)

where pg(s,a) is the initial density (assumed given). By
using the tower property,

pi(a) = P([X; =a])
= E(m(a)) = E(A¢lpery) = /0 /0 api(s,a)dads

and therefore we have

dpt . Al vt D IR .
— @) =X api(s,a)dads — (A + A®)pe(i)

(8a)
d
L) = (A'p) (@), € frd) (8b)
where expression for A" is obtained from the transition
graph.

With a heterogeneous population, the notation p;(s, a;6)
is used to denote the density conditioned on the attribute 6.
The mean-field process is then consistently obtained as

1 1-s
B ZZQ:P(H)/O /0 ay(s,a;0)pi(s,a;0)dads  (9)

This completes the derivation of the system of equations
for the partially observed MFG: Eq. (7)-(8) is the forward
FPK equation. Eq. @) is the backward HIB equation. Eq. (9)
defines the consistency relationship that links the two equa-
tions. Its solution is an MFE (satisfies Defn. [T).

The thrust of the ongoing work is to obtain numerical solu-
tions of the MFG equations and use it to explain differences
between the data from the omicron and delta waves.
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APPENDIX
A. Proof of Proposition 3]
With 3; = [3, the HIB equation for v;(s) is

)+ (1 mun(s)
=nd(a) + min (X5 (¢(a) —vi(s)) - @) u

We investigate its stationary solutions v:(s) = ¢(s) in which
case the stationary HJB equation is

(v +n)o(s) = né(a)

+ min
u€l0,1]

(X8 (6(a) — 4(s)) — ) u

=:M

(10)

We have the following two cases:
A3 B+m)d(a)—a

3 a n 7 _
. Ifﬁ < W(l‘i’;), then ¢(S) = N By
solves the HIB equation with the minimizing choice of
u = 1, because

__\SAQ 7q3(a)+04 )_
M=)\ 6</\5A6+'y+77 a<0

= MBa + ya + na > A\ Byo(a) + N Ba

— a ’]7
¢$ﬂ<»%@)0+7>
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o If B> pese (1 + g), then ¢(s) = ~1-¢(a) solves
the HJB equation with the minimizing choice of u = 0,
because N

Y+
B. Proof of Proposition
Because Ay = 0, and the solution is continuous as a
function of time ¢, it suffices to show that
NAB 41 dA,
A = <0
¢ P dt
Setting A; = )‘Sé\éf' 1 on the righthand side of (E]),
dA; - NAB 1 — MR
— = (\* Si— 14+ ———
a2 (A*B+mn) ( t + W

The desired conclusmn follows because S; + A; < 1 and

therefore S; — 1 + A ’@+" <0if Ay = Sé\ﬁ#n-

C. Derivations

Let P := P! U P2 The belief process 7 := {m; € P :
t > 0} is a Markov process [20, Theorem 1.7]. The HJB
equations and FPK equations are easily derived once we
obtain the infinitesimal generator of the process.

Infinitesimal generator: Consider a smooth test function
v : P — R. Let 4 € P. The infinitesimal generator (for the
general time-inhomogeneous case) is

(Afv)(p) = lim

5t10

E(v(mretot)|me = p) — v(p)

ot

There are two cases to consider:

e If ;1 € P2, upon identifying the measures {&;, &, 54} with
the states {i,r,d}, the generator is the same as the generator
for the Markov process.

o If € P\ {4}, then using the coordinates (s, a) for P!,
uw=1[s,a,0,1—s—a,0] for a € [0,1]. With 7m; = p, in the
asymptotic limit as d¢ — 0,

pt esfs(s, a,t)ot

Terst = S +eafa(s,a,t)0t +o(5t) wp. (1 —ardt) + o(dt)
0; w.p. aAMdt + o(dt)
where
fs(sya,t) = (=X Bru —n 4+ aX™) s
fa(s,a,t) = (A2 Bru+n) s+ a (=AY = A + A\a)

and ¢, = [1,0,0,—1,0], ¢, = [0,1,0,—1,0]. Denoting
v(p) = d)(s,a), the generator is then easily calculated to
be

(AF0) () = (s, 0) 90 (5 0) + fals,8) oo (5, )
8(5,0)

+ aX"(v(&;) —
where the superscript u denotes the fact that f(s,a,t),

fa(s,a,t), and therefore also the generator, depends also
upon u. The subscript ¢ denotes the fact that the generator is

for a time-inhomogeneous Markov process (because 3 may
depend upon time).

Derivation of the HJB equation: The HJB equation (See
Sec.IIl.7 of [21]) is

3vt
ot
In order to calculate j(c(-,u;a)), we need to assume a

running cost for state r. If we assume c(r,-;-) = vo(r),
then we get

— (1) +yve(p) = gl[(l]n (Afve(p) + ple(-,us a)))

o0
/ C(r7 7') _’Ytdt (b( )
0
as desired. Let

L= (15— a)yd(r) +aX" (6(i) — ¢)

Al 8¢ Al Al AR 8¢
+ (aX 77)5—85 + (ns + a(aA™ — AM = AM) %0
O Oy
R SA _
Mi(s,a) :=a— (s+a)a+ A Bts(aa 83)
Thus for ;1 = [s,a,0,1 — s —a,0] and vs(1) = ¢¢(s,a), the

HJB equation (@) is obtained because

pleue)) = (1—s— a)*yq}(r) + s(—au) + a(l — a)u
=1 =s-a)yp(r) + (a = (s + a))u

The boundary conditions (3) follow from the observation that

¢t(57a)
T
= s min E(/
UEL%_— t

X, = ) T ad(@) + (1 -5 — a)(r)

e e(Xy, U a)ds + e ¢(X1)

Derivation of the FPK equation: We derive the adjoint of
the generator A" where dependence on ¢ is suppressed for
notational ease. Let p be a measure on P. On P, p has
density p(s,a). Consider p(A“v) = [ A%v(p)p(dp) =

[ [ o s+ a2

+aN ((8) — (s, ))] dads — p(&)(A™ + AP)u(5;)

p(6) AR (8,) + p(6a) Av(0g) (11)
First note that

l—a o -~
[ psafs0%E ds = ps. )kl apols.
0

- / e a)% (p(s, @) fi(s,0)) ds
0

where boundary terms vanish because f;(0,a) = 0 and p(1—
a,a) = 0 (Assumption . One can also write

o 8(,25 a=1—s
| psais0fE da=ps.a)fi(s (s, 0l)
0 a

- / B (s, a>%(p(sy a)fa(s,a)) da
0



where boundary terms vanish because p(s,1—s) = p(s,0) =
0 (Assumption [T). Using these two results, one can rewrite
the righthand side of as

_ ' ksé(s’a) g(p(s,a)fs(s,a))+£(p(57a)fa(57a))
L el "

+ aX"p(s, a)} dads + v(6,) A®p(6) + v(da) A" p(da)

+o(8) < /0 1 /0 (s a) dads — (A )\ID)p((Si))

D. Numerical Algorithm

The HJB equation (@) is numerically solved using the
method of lines. In this method, the spatial coordinate
(s,a) € D is discretized over a finite grid. The partial
derivatives J¢;/0s and O¢;/0a are approximated using a
finite difference approximation at each point on the grid. The
time variable ¢ is treated as a continuous variable and after
spatial discretization, the resulting ordinary differential equa-
tions are numerically integrated (backward in time) using a
standard numerical procedure. For this purpose, a sufficiently
large terminal time 7" is chosen with the following terminal
condition:

ag(a) + (1 — a)o(r) a< i3
or(s,0)={or(s1-s—a)
+(2a+s-1) ((b(a) — ¢(r)) a > 1%5

The algorithm was used to compute the stationary solutions
depicted in Fig. ]
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