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Abstract— Satisfaction of state and input constraints is one
of the most critical requirements in control engineering appli-
cations. In classical model reference adaptive control (MRAC)
formulation, although the states and the input remain bounded,
the bound is neither user-defined nor known a-priori. In
this paper, an MRAC is developed for multivariable linear
time-invariant (LTI) plant with user-defined state and input
constraints using a simple saturated control design coupled
with a barrier Lyapunov function (BLF). Without any restric-
tive assumptions that may limit practical implementation, the
proposed controller guarantees that both the plant state and the
control input remain within a user-defined safe set for all time
while simultaneously ensuring that the plant state trajectory
tracks the reference model trajectory. The controller ensures
that all the closed-loop signals remain bounded and the trajec-
tory tracking error converges to zero asymptotically. Simulation
results validate the efficacy of the proposed constrained MRAC
in terms of better tracking performance and limited control
effort compared to the standard MRAC algorithm.

I. INTRODUCTION

Modern control applications are characterized by physical,
safety and energy limitations that can often be translated
into state and input constraints on the plant dynamics. With-
out accounting for their effect during control design, these
constraints are often met using an ad-hoc approach. While
conventional adaptive control techniques manage to control
systems under parametric uncertainty, they fail to adhere to
user-defined constraints. This challenge is exacerbated for
safety critical systems where safety is of utmost importance.
A particular versatile class of adaptive controllers is model
reference adaptive controllers (MRAC) that aim to control
systems with parametric and matched uncertainties by track-
ing a user-defined stable reference model system [1]–[4].
Although the control law ensures asymptotic tracking, the
bound on the tracking error is typically not known a-priori.
Moreover, classical MRAC does not allow for user-defined
constraints on the state and the input. Large magnitude of
control effort might exceed actuator’s saturation limit and
cause deterioration of the process. Hence, constraining the
plant states and input within known user-defined bounds
while meeting satisfactory performance objectives is a prob-
lem of practical interest.
Several control approaches have been proposed that either
partially or fully address these challenges. The state con-
strained tracking control problem has been dealt with using
model predictive control [5], [6], optimal control theory
[7], [8], invariant set theory [9], [10], reference governor

Poulomee Ghosh and Shubhendu Bhasin are with Department of
Electrical Engineering, Indian Institute of Technology Delhi, New
Delhi, India. (Email: Poulomee.Ghosh@ee.iitd.ac.in,
sbhasin@ee.iitd.ac.in)

approach [11], [12] etc. Most of these techniques involve
solving an optimization problem at every time instant which
can be computationally expensive. To deal with these prob-
lems, various tools like Barrier Lyapunov Function (BLF)
[13], Control Barrier Function(CBF) [14] etc. have been
utilized to guarantee safety. The safety certificate of CBF was
introduced in [14] where CBF and control Lyapunov function
(CLF) are unified through quadratic programs (CBF-CLF-QP
approach) to ensure safety in terms of forward invariance
of set [15], [16]. For CBF-CLF-QP approach, although the
controller guarantees safety, the system trajectory doesn’t
essentially converge to the origin. A generalized approach of
BLF was presented in [13], [17] to satisfy safety constraints
for output feedback control systems. In [18], BLF is used
with model reference adaptive controller for constraining
trajectory tracking error and adaptive gains within user-
defined sets where the estimate of the controller parameters
is assumed to be very close to the actual value. An alter-
native approach to ensure safety is the state transformation
technique using BLF. An adaptive tracking controller is
developed in transformed state space using BLF to guarantee
performance bound in [19]. Although BLF-based controllers
ensure that user-defined state constraints are met, they usu-
ally result in large control effort when the states approach
the boundary of the constrained region, often violating the
actuator’s operating limits.
Constraining the input to account for actuator saturation lim-
its is another issue of practical concern that has been tackled
extensively in literature, especially using various saturated
functions e.g. hyperbolic tangent, sigmoid etc. [20]–[24]. An
adaptive controller is developed in [25], [26] for a single-
input single-output (SISO) LTI plant in the presence of input
constraints. In [27], an adaptive tracking control method has
been investigated for MIMO nonlinear systems where an
auxiliary design system was introduced to deal with input
constraints.
All the aforementioned approaches either involve state or
input constraints. Few control approaches exist that constrain
both state and input for uncertain systems. MPC [28]–[30]
is a popular control approach where both state and input
constraints can be included in the optimization routine, albeit
at the cost of computational complexity. Further, limited
or imperfect model knowledge often leads to conservative
results. A recent work [31] develops an MRAC law that
places user-defined bounds on state and input. The result,
however, is achieved by developing an auxiliary reference
model that complicates the analysis and design of adaptive
laws.
The main contribution of the work is the development
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of MRAC for multivariable LTI systems while satisfying
safety constraints on both the state and the input. To this
end, a saturated controller with BLF-based adaptation laws
are designed. Inspired by [25], the design of the saturated
controller is intuitive and simple, while the classical MRAC
adaptation laws are modified based on BLF to ensure that
the states and the input always lie in a user-defined safe
region. Closed-loop signals are guaranteed to be bounded
and the trajectory tracking error can be proved to converge
to zero asymptotically. The adaptation rate being unchanged,
the proposed controller shows better tracking performance
than the classical MRAC while simultaneously guaranteeing
the safety constraints.
This paper is organized as follows. Section II presents
the problem formulation and preliminaries of standard
MRAC framework, section III elucidates proposed BLF-
based methodology which satisfies state and input con-
straints. To justify the preeminence of the proposed con-
troller, simulation results and comparative analysis are shown
in section IV while section V comprises of conclusion and
future works.

II. PROBLEM FORMULATION

Throughout this paper R denotes the set of real numbers,
Rp×q denotes set of p× q real matrices, the identity matrix
in Rp×p is denoted by Ip and ‖.‖ represents the Euclidian
vector norm and corresponding equi-induced matrix norm.

A. Problem Statement

Consider a linear time-invariant system

ẋ(t) = Ax(t) +Bu(t) (1)

where x(t) ∈ Rn denotes the system state, u(t) ∈ Rm

denotes the control input, A ∈ Rn×n is the unknown system
matrix, and B ∈ Rn×m is the input matrix, assumed to
be full rank and known. The pair (A,B) is assumed to be
stabilizable.
A reference model is considered as

ẋr(t) = Arxr(t) +Brr(t) (2)

where xr(t) ∈ Rn is the state of the reference model,
r(t) ∈ Rm is a bounded piecewise continuous reference
input, Ar ∈ Rn×n, Br ∈ Rn×m are known. It is assumed
that Ar is Hurwitz i.e. for every Q = QT > 0, there exists
P = PT > 0 such that AT

r P + PAr +Q = 0.

State Constraint: For any positive constant β, the
system states should remain within a user defined safe set
given by Ωx := {x ∈ Rn : ‖x‖ ≤ β}.

Input Constraint: Magnitude of the control input
should remain bounded in a safe set given by
Ωu := {u ∈ Rm : ‖u‖ ≤ umax}, where umax is a
user-defined positive constant.

Assumption 1: For any β > 0, there exist positive con-
stants α1, α2 ∈ R such that

‖xr(t)‖ ≤ α1 < β (3)
‖ẋr(t)‖ ≤ α2 (4)

Assumption 2: There exists a feasible control policy u(t)
that satisfies both the input and state constraints for all time.

Control Objective: The control objective is to design
an input u(t), such that x(t) tracks xr(t) i.e. e(t) ,
x(t) − xr(t) → 0 as t → ∞ while both the input and
the state constraints are satisfied. Using Assumption 1, the
state constraints can be transformed to the constraint on the
tracking error: ‖e(t)‖ < kb, ∀t ≥ 0, where kb ∈ R is a
positive constant given by kb = β−α1, i.e. ‖e(t)‖ < kb =⇒
‖x(t)‖ ≤ β.

B. Classical MRAC

Consider the classical certainty equivalence adaptive con-
trol law

u = K̂xx+ K̂rr (5)

where K̂x(t) ∈ Rm×n and K̂r(t) ∈ Rm×m are estimates
of the controller parameters Kx and Kr, respectively which
satisfy the matching conditions given in Assumption 2.

Assumption 3: There exists controller parameters Kx ∈
Rm×n and Kr ∈ Rm×m such that the following matching
conditions are satisfied.

A+BKx = Ar

BKr = Br (6)
Using (5) and (6) , the closed-loop error dynamics can be
obtained as

ė = Are+BK̃xx+BK̃rr (7)

where K̃x(t) , K̂x(t)−Kx ∈ Rm×n and K̃r(t) , K̂r(t)−
Kr ∈ Rm×m denote the parameter estimation errors.

The classical adaptive update laws are given as [1]

˙̂
Kx = −ΓxB

TPexT

˙̂
Kr = −ΓrB

TPerT (8)

where, Γx ∈ Rm×m and Γr ∈ Rm×m are positive definite
adaptation gain matrices. using Lyapunov analysis, we can
prove that all the closed-loop signals remain bounded and the
trajectory tracking error converges to zero asymptotically [1],
[2].
Note that, actuator limits and state constraints are typically
not considered in the classical MRAC design, rather they are
often imposed in an ad-hoc manner during implementation.
The focus of the work is to consider both input and state
constraints in the MRAC design procedure and rigorously
show boundedness of closed-loop signals and provide stabil-
ity guarantees.



III. PROPOSED METHODOLOGY

A. Input Constraint Satisfaction Using Saturated Control
Design

Consider the linear time-invariant plant given in (1) and
reference model given in (2). Consider an auxiliary control
input v(t) ∈ Rm as

v(t) = K̂xx+ K̂rr (9)

where v(t) , [v1(t), . . . , vm(t)]T . Inspired by [25], the
saturated feedback controller is designed for the vector case
as

ui(t) =

{
vi(t) if |vi(t)| ≤ umax√

m
umax√

m
sgn(vi(t)) if |vi(t)| > umax√

m

, i = 1, . . . ,m

(10)

where u(t) , [u1(t), . . . , um(t)]T . The closed-loop error
dynamics is given as

ė = Are+BK̃xx+BK̃rr +B∆u (11)

where ∆u(t) ∈ Rm is defined as the difference between
actual control input and auxiliary control input : ∆u(t) ,
u(t) − v(t). To mitigate the effect of the disturbance term
B∆u(t), consider an auxiliary error signal e1(t) with the
following dynamics

ė1 = Are1 +K1(t)∆u e1(t0) = 0 (12)

where K1(t) ∈ Rn×m is time-varying controller parameter.
Let ed(t) be the difference between the actual and auxiliary
error signals: ed(t) , e(t) − e1(t). The error dynamics of
ed(t) is given by

ėd = Ared +BK̃xx+BK̃rr +Kd∆u (13)

where Kd(t) , B −K1(t).

B. State Constraint Satisfaction using BLF

To ensure state constraint satisfaction, a BLF is introduced
[13].

Assumption 4: The initial conditions x(0) are chosen
such that the initial trajectory tracking error is bounded as
‖e(0)‖ < kb.

Lemma 1: For any positive constant kb, let Ωe := {e ∈
Rn : ‖e‖ < kb} ⊂ Rn and Ψ := RN × ζ ⊂ RN+n be open
sets. Consider the system dynamics given by

µ̇ = f(t, µ) (14)

µ := [eT , ξT ]T ∈ Ψ, where ξ := [K̃x, K̃r,Kd,K1] is the
augmentation of the unconstrained states and the function f :
R+×Ψ→ RN+n is measurable for each fixed µ and locally
Lipschitz in e, piecewise continuous and locally integrable
on t. Suppose, there exists positive definite, decrescent,
quadratic candidate Lyapunov function V2(ξ) : RN → R and
continuously differentiable, positive definite, scalar function

V1(e) : Ωe → R, defined in an open region containing the
origin such that

V1(e)→∞ ‖e‖ → kb (15)

The candidate Lyapunov function can be written as V (µ) =
V1(e)+V2(ξ). Given Assumption 3, if the following inequal-
ity holds

V̇ =
∂V

∂µ
f ≤ 0 (16)

then e(t) ∈ Ωe∀t. Proof: For the proof of Lemma 1,
see [13].
To ensure constraint satisfaction on the trajectory tracking
error, consider a BLF

V1(e) ,
1

2
log

k
′2
b

k
′2
b − eTPe

(17)

defined on the set Ω
′

e : {e ∈ Rn : eTPe ≤ k′2

b }, where k
′

b =

kb
√
λmin{P}. If eTPe → k

′2

b , i.e. when the constrained
state e(t) approaches the boundary of the safe set, the BLF
V1(e) → ∞, guaranteeing the safety of the system. The
unconstrained states involve continuously differentiable and
positive definite quadratic functions.

Consider the candidate Lyapunov function V (µ) : ξ×R→
R as,

V (µ) =
1

2

[
log

k
′2

b

k
′2
b − eTPe

+ eTd Ped + tr(K̃T
x Γ−1x K̃x)

+ tr(K̃T
r Γ−1r K̃r) + tr(KT

d Γ−1d Kd) + tr(KT
1 Γ−11 K1)

]
(18)

where Γd ∈ Rn×n and Γ1 ∈ Rn×n are positive-definite
matrices. Taking the time-derivative of V along the system
trajectory

V̇ =
1

2(k
′2
b − eTPe)

[
eTP (Are+BK̃xx+BK̃rr +B∆u)

+ (Are+BK̃xx+BK̃rr +B∆u)TPe

]
+

1

2

[
eTd P (Ared +BK̃xx+BK̃rr + kd∆u)

+ (Ared +BK̃xx+BK̃rr +Kd∆u)TPed

]
+ tr(K̃T

x Γ−1x
˙̂
Kx) + tr(K̃T

r Γ−1r
˙̂
Kr)

+ tr(KT
d Γ−1d K̇d) + tr(KT

1 Γ−11 K̇1) (19)



Substituting B = Kd +K1 in (19),

V̇ =
1

2(k
′2
b − eTPe)

[
eT (AT

r P + PAr)e+ eTBPK̃xx

+ eTBPK̃rr + eTP (Kd +K1)T ∆u+ xT K̃T
x B

TPe

+ rT K̃T
r B

TPe+ ∆uT (Kd +K1)TPe

]
+

1

2

[
eTd (AT

r P

+ PAr)ed + eTd PBK̃xx+ eTd PBK̃rr + eTd PKd∆u

+ xT K̃T
x B

TPed + rT K̃T
r B

TPed + ∆uTKT
d ed

]
+ tr(K̃T

x Γ−1x
˙̂
Kx) + tr(K̃T

r Γ−1r
˙̂
Kr) + tr(KT

d Γ−1d K̇d)

+ tr(KT
1 Γ−11 K̇1) (20)

Adaptive update laws are defines as

˙̂
Kx = −

[
ΓxB

TPexT

k
′2
b − eTPe

+ ΓxB
TPedx

T

]
˙̂
Kr = −

[
ΓrB

TPerT

k
′2
b − eTPe

+ ΓrB
TPedr

T

]
K̇d = −

[
ΓdPe∆u

T

k
′2
b − eTPe

+ ΓdPed∆uT
]

K̇1 = − Γ1Pe∆u
T

k
′2
b − eTPe

(21)

which yields

V̇ = −1

2

(
eTQe

k
′2
b − eTPe

+ eTdQed

)
≤ 0 (22)

which is a negative semi-definite function.
Theorem 1: Consider the linear time-invariant plant (1)

and reference model (2). Given Assumptions 1-3, the pro-
posed controller (9), (10) and the adaptive laws (21) ensure
that the following properties are satisfied.

(i) The plant states remain within the user-defined safe set
given by Ωx := {x ∈ Rn : ‖x(t)‖ ≤ β}.

(ii) The control effort is bounded within a user-defined safe
set given by Ωu := {u ∈ Rm : ‖u‖ ≤ umax}.

(iii) All the closed loop signals remain bounded.
(iv) The trajectory tracking error converges to zero asymp-

totically i.e. e(t)→ 0 as t→∞.
Proof: (i) V (µ) in (18) is positive definite and V̇ (µ) ≤

0 from (22), which implies that V (µ(t)) ≤ V (µ(0)) ∀t ≥ 0.
As V (µ) is defined in the region Ω

′

e := {[eT , ξT ] ∈ Ψ :
eTPe ≤ k′2

b }, it can be be inferred from Lemma 1 that

eTPe ≤ k
′2

b (23)

=⇒ eTPe ≤ λmin{P}k2b (24)

Now, for any positive-definite matrix P ,

eTPe ≥ λmin{P}‖e‖2 (25)

Given Assumption 3, from (24) and (25) it can be proved
that

‖e‖ ≤ kb ∀t ≥ 0 (26)

i.e. the trajectory tracking error will be constrained within
the user-defined safe set : e(t) ∈ Ωe ∀t ≥ 0.
Further, since x(t) = e(t) + xr(t) and the reference model
states and the trajectory tracking error is bounded, i.e.
‖xr(t)‖ ≤ α1, ‖e(t)‖ ≤ kb, it can be easily shown that
the proposed controller guarantees the plants states to be
bounded within the user defined safe set

‖x(t)‖ ≤ kb + α1 = β ∀t ≥ 0 (27)

Thus the state constraint gets satisfied, i.e. x(t) ∈ Ωx for all
t ≥ 0.

(ii) The control effort of the proposed controller
u(t) = [u1(t), . . . , um(t)]T and ‖u(t)‖ =√
u21(t) + u22(t) + . . .+ u2m(t). For constraining the

control input two cases have been considered.
Case 1: ‖vi(t)‖ ≤ umax√

m

For this case, ui(t) = vi(t) and ∆u(t) = 0. So, |ui| ≤ umax√
m

which implies ‖u‖ < umax

Case 2: ‖vi(t)‖ > umax√
m

For this case, ui(t) = umax√
m
sgn(vi(t)) which proves

‖u‖ < umax.

(iii) Since the closed loop tracking error as well as
the controller parameter estimation errors remain bounded
and Kx(t) and Kr(t) are constants, it can be concluded
that the estimated parameters are also bounded i.e.
K̂x(t), K̂r(t) ∈ L∞ followed by ensuring the plant state
x(t) and control input u(t) to be bounded for all time
instances. Thus the proposed controller guarantees all the
the closed loop signals to be bounded.

(iv) Since V (µ) > 0 and V̇ (µ) is negative semi-definite
(22), it can be shown that e, K̃x, K̃r, Kd, K1 ∈ L∞,
x(t) ∈ L∞, and K̂x, K̂r ∈ L∞. Further, from (22) it can
be shown that e(t) ∈ L2 and from (11) it can be inferred
that ė(t) ∈ L∞. Therefore, e(t) is uniformly continuous.
Consequently, using Barbalat’s Lemma [32], it can be proved
that e(t) converges to zero asymptotically as t→∞.

IV. SIMULATION RESULTS

To demonstrate the efficacy of the proposed algorithm, a
multivariable LTI plant and reference model are considered.

A=



−0.322 0.0640.0364−0.99170.0003 0.0008 0

0 0 1 0.0037 0 0 0

−30.6492 0 −3.67840.6646−0.73330.1315 0

8.5396 0 −0.0254−0.4764−0.0319−0.06200

0 30 0 10 20.2 0 0

−1 0 10 0 0 10.25 0

0 0 0 12.2958 0 0 −1


B=



0 0

0 0

0 0

0 0

10.1 0

0−4.25

0 0





Ar=



−0.322 0.0640.0364−0.99170.0003 0.0008 0

0 0 1 0.0037 0 0 0

−30.6492 0 −3.67840.6646−0.73330.1315 0

8.5396 0 −0.0254−0.4764−0.0319−0.06200

0 0 0 0 −20.2 0 0

0 0 0 0 0 −20.2 0

0 0 0 12.2958 0 0 −1


Br=



0 0

0 0

0 0

0 0

20.20

020.2

0 0



The reference signal is considered as: r(t) =
[exp(−t/10); exp(−t/20)]. The other parameters are

chosen as: Γx =

[
5 0
0 5

]
, Γr =

[
5 0
0 5

]
, Γ1 = In×n,

Γd = In×n, umax = 2.5, β = 2, α1 = 1.5 and kb = 0.5.
The desired controller must satisfy the input constraint
‖u‖ ≤ 2.5, while ensuring that plant states within
user-defined bound i.e. ‖x‖ ≤ 2. Given Assumption 1,
‖xr‖ ≤ 1.5, the state constraint is equivalent to satisfying
the constraint in the error i.e. ‖e‖ ≤ 0.5. It is assumed that
the initial plant states remain within the user-defined safe
set i.e. ‖x(0)‖ ≤ 2.
To gauge the safety and performance of the proposed control
law, we compare it with the classical MRAC controller
(in (5) and (8)). The reference signal is considered as:
r(t) = [exp(−t/10); exp(−t/20)]. The adaptation gains are

chosen as: Γx =

[
25 0
0 25

]
, Γr =

[
25 0
0 25

]
.

Note that, adaptation gains are tuned to achieve better
tracking performance for both proposed controller and
classical MRAC.

Fig. 1. Comparative analysis of trajectory tracking error using the proposed
control law (21) and classical MRAC law (8).

Fig.1 shows the trajectory tracking error using the pro-
posed method where the user-defined constraint is satisfied
while in conventional MRAC case, the norm of the trajectory
tracking error goes beyond the safe region. Furthermore, the
proposed controller ensures that the tracking error converges
to zero as time tends to infinity and the rate of convergence is
higher than the classical MRAC. The proposed control archi-
tecture bounds the control effort in user-defined constrained
region (Fig. 2) while for the conventional MRAC the bound
on the control input can not be known a-priori. Fig. 3 shows
the state trajectories of the plant and reference model.

Fig. 2. Control input using proposed controller (21) and classical MRAC
(8).

Fig. 3. Tracking performance of the plant using proposed controller (21)
and classical MRAC (8).

It is seen that increasing the adaptation gain leads to
better tracking performance, in general for both the classical
and the proposed controller, although the response becomes
more oscillatory. The improved tracking performance of the
classical MRAC is achieved at the cost of greater control
effort leading to violation of the input constraints. Further,
in the classical MRAC case, the high frequency oscillation in
the control input may even violate the actuation rate limits.
On the other hand, the state and the input constraints are
never violated in case of the proposed controller.

V. CONCLUSION

In this paper, a novel MRAC architecture is proposed
for multivariable LTI systems by strategically combining
BLF with a saturated controller which guarantees both the
plant state and the control input remain bounded within
user-defined safe sets. The proposed controller also ensures
that the trajectory tracking error asymptotically converges to
zero and the closed-loop signals remain bounded. Simulation
studies validate the efficacy of the proposed control law com-
paring to classical MRAC. Extending the work to uncertain
nonlinear systems and exploring robustness properties is an
important area of future research.
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