
One-Pass Learning via Bridging Orthogonal Gradient Descent and
Recursive Least-Squares

Youngjae Min, Kwangjun Ahn, and Navid Azizan

Abstract— While deep neural networks are capable of achiev-
ing state-of-the-art performance in various domains, their train-
ing typically requires iterating for many passes over the dataset.
However, due to computational and memory constraints and
potential privacy concerns, storing and accessing all the data is
impractical in many real-world scenarios where the data arrives
in a stream. In this paper, we investigate the problem of one-pass
learning, in which a model is trained on sequentially arriving
data without retraining on previous datapoints. Motivated by
the increasing use of overparameterized models, we develop
Orthogonal Recursive Fitting (ORFit), an algorithm for one-pass
learning which seeks to perfectly fit every new datapoint while
changing the parameters in a direction that causes the least
change to the predictions on previous datapoints. By doing so,
we bridge two seemingly distinct algorithms in adaptive filtering
and machine learning, namely the recursive least-squares (RLS)
algorithm and orthogonal gradient descent (OGD). Our algo-
rithm uses the memory efficiently by exploiting the structure
of the streaming data via an incremental principal component
analysis (IPCA). Further, we show that, for overparameterized
linear models, the parameter vector obtained by our algorithm
is what stochastic gradient descent (SGD) would converge to
in the standard multi-pass setting. Finally, we generalize the
results to the nonlinear setting for highly overparameterized
models, relevant for deep learning. Our experiments show the
effectiveness of the proposed method compared to the baselines.

I. INTRODUCTION

While deep neural networks have been successful in nu-
merous domains, their training is computationally demanding
and requires iterating over the entire dataset multiple times.
This hinders their deployment in many real-world settings
such as robot learning, autonomy, and online decision mak-
ing, where new datapoints are collected over time or become
available sequentially. In such settings, storing all the data-
points and retraining the model at every step on all the data
is extremely costly and often not feasible. In addition, in
certain applications, storing the data may be prohibited for
privacy reasons.

Thus, it is very desirable to come up with algorithms that
can learn incrementally or in an online fashion, rather than
by iterating over the entire data many times. However, it is
well-known that deep neural networks are prone to entirely
forgetting past information while learning new data, which
is an issue referred to as “catastrophic forgetting” [10]. This
begs the question:

“Can we learn streaming data efficiently without forgetting
or retraining on previous data?”

The authors are with the Laboratory for Information and Decision
Systems, Massachusetts Institute of Technology, Cambridge, MA 02139,
USA. {yjm,kjahn,azizan}@mit.edu

This is a setting often referred to as one-pass learning.
More specifically, one-pass learning concerns the setting
where the algorithm (i) makes an update for the current
datapoint without direct access to previous data; (ii) the new
updates do not significantly affect the predictions on the
previous data; moreover, (iii) the computational and memory
costs of each update must not grow with the iteration count.

There has been growing attention on one-pass learning
and its variants, and several works have attempted to ad-
dress them under various contexts. In particular, [8] studied
learning the ImageNet dataset in a single pass by revisiting
some “important” previous datapoints at each learning step,
and [19] investigated learning incremental ‘batches’ on a
large scale by correcting the classifier’s bias towards new
data. However, both methods train on previous data and are
not adequate for one-pass learning. On the other hand, [15]
proposed an effective one-pass learning method for support
vector machines. However, their method is tailored to the
specific setting of support vector machines. Further, [16]
proposed a one-pass deep learning algorithm, but it relies on
a specific network architecture and is vulnerable to forgetting
the previous data unless the data is consistently arriving from
the same distribution.

One-pass learning is also closely related to a classical
problem studied in the context of control/estimation theory.
More specifically, a classical algorithm known as recursive
least-squares (RLS) (see, e.g., [17]) tackles one-pass learning
for linear models (as elaborated in Section II-B). However,
there are two limitations of the standard RLS: (i) it suffers
from high computational and memory costs, and (ii) it is
not well-suited for the overparameterized setting where zero
training loss is desired. The main focus of this work is to
develop a method that overcomes these limitations. Related
to the overparameterized setting, a few works have recently
discussed utilizing RLS to train popular deep neural networks
such as FNN, CNN, RNN, and LSTM [20], [21]. However,
these works are empirical in nature and consider multi-
pass learning with mini-batches. Moreover, the theoretical
properties of RLS for one-pass learning are not studied in
those works.

A. Contributions

Our main contributions can be summarized as follows.
• We develop Orthogonal Recursive Fitting (ORFit), an

algorithm for one-pass learning in the overparame-
terized setting which fits new data on the fly while
updating the parameters in a direction that causes the
least change to the predictions on previous data. Our

ar
X

iv
:2

20
7.

13
85

3v
1

 [
cs

.L
G

]
 2

8
Ju

l 2
02

2

algorithm uses memory efficiently by exploiting the
structure of the streaming data via incremental principal
component analysis (IPCA) to extract the essential
information for the update. (§III)

• Through the proposed method, we establish an interest-
ing connection between two different algorithms from
adaptive filtering and machine learning, namely, the
recursive least-squares (RLS) algorithm and the orthog-
onal gradient descent (OGD). We further theoretically
characterize the behavior of the proposed method in the
linear overparameterized setting. (§IV)

• We demonstrate the practicality of our approach and
corroborate our theoretical findings through various
experiments. (§V)

• We discuss further extensions to overparameterized non-
linear models, relevant for deep learning. (§VI)

B. Connections to Related Notions

One-pass learning shares some similarities with other
settings that deal with streaming data such as online learning
and incremental learning. While these terms are often incon-
sistently defined in the literature, one may distinguish them
based on whether we learn a single datapoint or a batch
of data at a time [14]. Although both of these approaches
learn from streaming data, they typically assume that data
is arriving from the same distribution. Compared to these
settings, one-pass learning requires explicit efforts to not
alter the predictions on the previous data while learning new
data. Thus, it aims to preserve the predictions even when
the new data comes from a different distribution. Another
related setting is continual learning where batches of data
from different tasks are sequentially learned [6].

II. PRELIMINARIES

A. One-Pass Learning

Let f (x;w) ∈ R be a model that the agent is trying to
fit, where x ∈ X ⊂ Rd is the input and w ∈ Rp is the
parameter (weight) vector. Consider a sequentially arriving
stream of data {(xk,yk)}K

k=1 where xk ∈X and yk ∈Y ⊂R.
In overparameterized models, we have p ≥ K (and often
p� K). For a loss function `(·, ·), let fk(w) := f (xk;w) and
`k(w) := `(yk, fk(w)). Then, one-pass learning considers the
setting where, given an initial parameter w0 ∈Rp, it updates
the parameter wi ∈ Rp after the new data (xi,yi) arrived
without revisiting previous datapoints {(xk,yk)}i−1

k=1.
For concreteness, we first focus on a linear overparame-

terized model f (x;w) = w>x with p = d. We then discuss
the extension of the results to nonlinear models (e.g. over-
parameterized architectures in deep learning) in Section VI.

Before introducing our algorithm and the results, we
briefly review two related algorithms capable of one-pass
learning, proposed in two different literatures.

B. Recursive Least-Squares

First, we briefly review recursive least-squares (RLS) from
the control/estimation theory literature (refer to [17] for

details). At every step i, RLS aims to find a parameter vector
that solves the following regularized least-squares problem:

w(RLS)
i = argmin

w

i

∑
k=1

(yk−w>xk)
2 +‖w−w0‖2

Π, (1)

where ‖x‖Π :=
√

x>Πx for a p× p positive-definite ma-
trix Π and w0 is an initial parameter estimate. Note that
the system is underdetermined/overparameterized, and the
regularization term in (1) is necessary for the solution to
be uniquely defined. While there is a closed-form solution
for (1) given by w(RLS)

i = (Π+X>i Xi)
−1(X>i Yi +Πw0) with

Xi = [x1 x2 . . . xi]
> and Yi = [y1 y2 . . . yi]

>, computing the
solution directly requires storing all the previous data as
well as recomputing the inverse of the covariance matrix for
every new datapoint. RLS bypasses this issue by computing
the new solution w(RLS)

i of (1) recursively from w(RLS)
i−1 and

(xi,yi).
We elaborate the algorithm more formally for a general

version of RLS called exponentially-weighted recursive least-
squares (EW-RLS) [17]. Consider the following problem:

w(RLS)
i = argmin

w

i

∑
k=1

λ
i−k(yk−w>xk)

2 +λ
i‖w−w0‖2

Π, (2)

with a forgetting factor 0 < λ ≤ 1. Note that this reduces to
the problem of the vanilla RLS (1) when λ = 1. The exact
solution of it is recursively updated as follows:

w(RLS)
i = w(RLS)

i−1 +
Pi−1xi

λ i + x>i Pi−1xi
(yi− x>i w(RLS)

i−1) ,

Pi = Pi−1−
Pi−1xix>i Pi−1

λ i + x>i Pi−1xi
,

(3)

with w(RLS)
0 = w0 and P0 = Π−1. Here, Pi can be al-

ternatively written as Pi = [Π + X>i ΛiXi]
−1 where Λi =

diag(λ−1,λ−2, . . . ,λ−i).

C. Orthogonal Gradient Descent
An algorithm called orthogonal gradient descent

(OGD) [7] has been recently proposed in the context of
machine learning for a different but related problem. More
specifically, [7] considers a continual learning setting in
which tasks {T1,T2, . . .} arrive sequentially, and each task
consists of a set of datapoints. Continual learning can be
understood as a “batch” version of one-pass learning. At
a high level, when the i-th task Ti arrives, OGD updates
the parameter to fit new samples from Ti in a way that
causes minimal changes to the predictions for previous
tasks {Tk}i−1

k=1. The gradient of the model on a datapoint x j
with respect to the parameter, ∇w f (x j;w), is the direction
in the parameter space that causes the most change to
the prediction on that datapoint. Thus, moving orthogonal
to this direction, locally, keeps the prediction unchanged,
which is the main idea behind OGD. More formally, the
update direction is computed via projecting the current
gradient g of the loss onto the subspace orthogonal to
G := span{

⋃i−1
k=1{∇w f (x;wk)}(x,y)∈Tk

}:

g̃ = g−∑
v∈S

projv(g), (4)

where S is an orthogonal basis for G and projv(u) :=
(u>v/‖v‖2)v = (vv>/‖v‖2)u. The orthogonal basis S is in-
crementally updated through the Gram-Schmidt procedure.

III. ORTHOGONAL RECURSIVE FITTING

In this section, we propose a one-pass learning algorithm
called orthogonal recursive fitting (ORFit). The algorithm
consists of three main components: (i) orthogonal update of
the parameter motivated by OGD; (ii) interpolation (perfect
fitting) of new data in a single step; and (iii) efficient use of
memory via incremental summary. We describe the details of
each component below, starting from (i) and (ii). See Fig. 1
for an illustration.

A. Orthogonal Recursive Update

We start by considering OGD directly applied to the
one-pass learning setting. By treating each task Tk in the
continual learning setting as consisting of a single datapoint,
OGD will run multiple gradient descent steps on the single
datapoint. While perfect fitting/interpolation is desired in
often highly overparameterized models [4], [5], it will take
many iterations for OGD to perfectly fit the datapoint.
Instead, inspired by the recent trend in meta-learning, we
consider a one-step learning scheme that only runs a single
gradient step to interpolate the new datapoint. We first begin
with the following result that serves as a building block for
our algorithm design; see Appendix A for a proof.

Lemma 1. Consider a linear model f (x;w) = w>x, and let
g̃ be the projection defined by (4) of any vector g ∈ Rp.
Then, for any step size η ∈ R, the new parameter w′ = w−
η g̃ preserves the predictions on the previous datapoints, i.e.,
f (x;w′) = f (x;w) for all (x,y) ∈

⋃i−1
k=1 Tk.

The main takeaway of Lemma 1 is that the predictions for
the previous datapoints do not change when we update the
model along the direction g̃. Hence, we may choose η so that
the updated parameter w′ can perfectly fit the new datapoint,
say (x′,y′), as y′ = w′>x′ = (w− η g̃)>x′. Following this
principle, a straightforward calculation yields the following
update rule for i≥ 1:

g̃i−1 = ∇`i(wi−1)−∑v∈Si−1
projv(∇`i(wi−1)) ,

Si = Si−1
⋃
{∇ fi(wi−1)−∑v∈Si−1

projv(∇ fi(wi−1))} ,
wi = wi−1−ηi−1g̃i−1,

(5)
where S0 = φ , w0 is the initial weight vector, and the optimal
step size is chosen as

ηi−1 =
1

∇ fi(wi−1)>g̃i−1
(fi(wi−1)− yi). (6)

For intuition, we note that the optimal step size (6) is
typically small for highly overparameterized models; there
are many parameter vectors in the vicinity of the current
solution that perfectly fit the new datapoint [1], [2], [13].

Remark 1 (Computational overhead). It is important to note
that all the quantities appearing in (6) are typically available

IPCA

Fig. 1: An illustration of ORFit in the parameter space for a
linear model. The parameter wi−1 fits the previous datapoints
{(xk,yk)}i−1

k=1. The set S (which is updated incrementally)
consists of the directions moving towards which causes the
most change in the predictions on previous data, and thus,
moving orthogonal to S keeps the predictions intact. Given a
new datapoint (xi,yi), projecting its corresponding gradient
g to the orthogonal complement of the subspace spanned
by S yields the new update direction g̃. ORFit finds a new
parameter wi along the direction of −g̃ which fits the new
datapoint (xi,yi) within a single step, while still fitting the
previous data {(xk,yk)}i−1

k=1.

in the gradient-based optimization setting, and hence, there
is no computational overhead for computing the stepsize (6).
Remark 2 (Nonlinear models). Although the update rule (5)
is derived based on linear models, it can also be applied
to highly overparameterized nonlinear models such as deep
neural networks, as we will discuss in Section VI.

Another distinction between the update rule (5) and OGD
lies in the update of the orthogonal basis Si: OGD utilizes
“fresher” gradient at the updated parameter wi by Si =
Si−1

⋃
{∇ fi(wi)−∑v∈Si−1

projv(∇ fi(wi))}. Although the two
bases actually span the same subspace for linear models, it
turns out that ORFit in (5) leads to a natural generalization
for nonlinear models; see Section VI for details.

Although the update rule (5) does not access previous
datapoints, it still requires storing the orthogonal basis Si,
whose size grows linearly in the number of visited datapoints.
This is not desirable in practice when one needs to train the
model on a large dataset. We address this issue next.

B. Incremental Summary of Memory

In this section, we overcome the aforementioned memory
issue by utilizing the structure of the streaming dataset. The
main idea is to summarize the orthogonal basis S using an
incremental principal component analysis (IPCA) algorithm,
known as the sequential Karhunen–Loeve (SKL) algorithm
proposed in [12]. IPCA is a memory-efficient variant of PCA
that enables sequential update for streaming/large datasets.
Let us formally describe how IPCA incrementally summa-
rizes the orthogonal basis.

Consider the orthogonal basis S = {v1,v2, . . . ,vi} obtained
by (5). Let the singular value decomposition (SVD) of A =
[v1 v2 . . .vi] be A =UΣV>. Here, the crucial information of
the SVD is the left-singular vectors col(U) that forms an
orthonormal basis for span(S). This information can be used
to come up with a rank-m approximation of A by using the
components corresponding to the top m singular values.

Algorithm 1 Orthogonal Recursive Fitting (ORFit)

Input: Data sequence ((xk,yk))
K
k=1, memory limit m

Output: The optimal parameter w
1: Initialize U ← [], Σ← [], w← w0
2: for i = 1,2,3, . . . do
3: g← Stochastic Gradient for (xi,yi) at w
4: g̃← g−∑v∈col(U) projv(g)
5: v′← ∇ fi(w)−∑v∈col(U) projv(∇ fi(w))
6: if i≤ m then
7: U ← [U v′]
8: if i = m then
9: U,Σ← Compute SVD of U

10: end if
11: else
12: u← v′/‖v′‖

13: Ũ ,Σ← Compute SVD of
[

Σ 0
0 u>v′

]
14: U ← [U u]Ũ
15: U,Σ← top m singular vectors/values in U,Σ
16: end if
17: η ← (fi(w)− yi)/(∇ fi(w)>g̃)
18: w← w−η g̃
19: end for

Now suppose that the orthogonal basis S is augmented
with a newly projected gradient v′ as in (5). We want to
efficiently update U for the new basis. Letting u := v′/‖v′‖,
the new basis matrix can be represented as:

[
A v′

]
=
[
U u

][Σ 0
0 u>v′

][
V> 0
0 1

]
(7)

=
([

U u
]
Ũ
)

Σ̃

(
Ṽ>
[
V> 0
0 1

])
, (8)

where Ũ Σ̃Ṽ> is the SVD of
[

Σ 0
0 u>v′

]
. Then, (8) is the

SVD of the new basis matrix. Hence to update U , one
can directly use the information from the previous iteration,
namely U and Σ. The important aspect here is that the
update can be made without storing V and without having to
recompute the SVD of the new basis matrix. Finally, one
can store only the top m singular values in Σ and their
corresponding components in U . By repeatedly applying this
IPCA algorithm in addition to (5), we obtain orthogonal
recursive fitting (ORFit). See Algorithm 1 for the detailed
procedure.

The main advantage of ORFit is its computa-
tional/memory efficiency. By only storing the top m compo-
nents, we can reduce the memory size from O(ip) to O(mp).
Moverover, the additional computational overhead to perform
IPCA as well as the total time complexity of ORFit at each
step is O(m2(p+m)). Hence, ORFit can reduce both the
computation and the memory complexity by appropriately
choosing m.

IV. THEORETICAL RESULTS

In this section, we provide the theoretical properties of
the proposed method. We begin by discussing a formal
connection between the proposed method and RLS.

A. Connection to RLS

It turns out ORFit corresponds to an extreme case of
the well-known RLS method, as formally described in the
following result; see Appendix B for a proof.

Proposition 2. Consider a linear overparameterized (p≥K)
model. Let w0 be the initialization and m be the memory limit
for ORFit. Then, at each iteration i≤ m, the update rule of
ORFit results in the same parameter vector as the EW-RLS
update rule (3) does with λ = 0, Π = I, and initialization
w0. In this setting, Pi in (3) is the projection matrix onto the
subspace orthogonal to span{∇ fk(wk−1)}i

k=1.

Remark 3. The optimization problem of EW-RLS (2) is not
well-defined for λ = 0. That said, the update rule (3) can be
still computed for λ = 0, and ORFit finds the same solution
as the limiting case of EW-RLS.

Remark 4. ORFit in (5) has O(ip) time and memory com-
plexities, compared to those of O(p2) for the EW-RLS update
rule, where typically i� p in the overparameterized setting.

One notable aspect of ORFit is that it bridges the two
seemingly distinct algorithms OGD and RLS through Propo-
sition 2. The connection provides us new insights into
understanding the behavior of our proposed method, as we
discuss next.

B. Characterizing the Solution of ORFit

Before presenting our main result, we first provide some
intuitions. To understand the behavior of ORFit, let us first
recall that the EW-RLS update rule (3) is the solution to
the optimization problem (2). In light of Proposition 2, one
might be tempted to claim that ORFit in (5) solves (2) with
λ = 0 and Π = I. However, (2) is not well-defined for λ = 0.

Nevertheless, intuitively one can regard ORFit as solving
(2) in the limit of λ → 0+. Then, for sufficiently small λ > 0,
the first term in the objective of (2) outweighs the second
term, which suggests that, in the overparameterized case,
the solution should enforce yk ≈ w>xk for all k = 1,2, . . . , i,
while minimizing ‖w− w0‖2. In the following theorem,
we formalize this intuition and characterize the solution of
ORFit; see Appendix C for a proof.

Theorem 3. Consider a linear overparameterized (p ≥ K)
model. Let w0 be the initialization and m be the memory limit.
Then, at each iteration i≤m, the parameter vector obtained
by ORFit is the solution of the following optimization
problem:

wi = argmin
w
‖w−wo‖

s.t. yk = w>xk k = 1,2, . . . , i.
(9)

It is known that, for a linear overparameterized model,
in the standard multi-pass learning setting over the dataset

{(xk,yk)}i
k=1, as the number of iterations goes to infinity, the

iterates of stochastic gradient descent (SGD) initialized at w0
with a sufficiently small step size converge to the solution
of problem (9) (see, e.g., Proposition 1 in [3]). Thus, ORFit
with just an epoch of training finds the solution that SGD in
the limit of infinite number of iterations converges to.

Corollary 4. Consider a linear overparameterized (p≥ K)
model. Let w0 be the initialization and m be the memory limit.
The parameter vector obtained by ORFit at each iteration
i≤ m is equal to what SGD would converge to by iterating
over the dataset {(xk,yk)}i

k=1 with a sufficiently small step
size in the limit of infinite number of iterations.

V. EXPERIMENTS

In this section, we demonstrate the effectiveness of our
proposed methods in the one-pass learning setting and cor-
roborate the theoretical results presented in Section IV. We
performed experiments for linear models in the Rotated
MNIST setup described in [18]. In this setup, the inputs are
rotated MNIST images for digit ‘2’, whose size is 28×28.
Our goal is to estimate the rotated angles in [0,π]. For
the training dataset, the angles are uniformly sampled from
[0,π], and to introduce distribution shift, we order the dataset
so that an image rotated with a smaller angle arrives earlier.

A. Learning with Restrictions on Memory Size

In this experiment, we demonstrate the effectiveness of our
proposed method in the memory-restricted setting, in which
100 datapoints are sequentially learned while we are only
allowed to store up to 10 basis vectors. For comparison,
we consider the following baselines: (1) Greedy scheme:
outputs only the label of the most recently learned datapoint,
regardless of the input, as an extreme case of forgetting. (2)
One-Step SGD: employs the one-step learning scheme with
the step size in (6) but with empty orthogonal basis. (3)
ORFit-random: ORFit that keeps 10 randomly chosen basis
vectors after each iteration instead of performing IPCA. (4)
ORFit-latest: ORFit that keeps the latest 10 basis vectors
after each iteration instead of performing IPCA.

We first compared the test errors of the proposed method
and the baselines. The test errors are measured with the
test dataset that consists of 1032 images of digit ‘2’ in the
MNIST test set of which each is rotated with a random
angle in [0,π]. As shown in Fig. 2a, ORFit outperforms other
baselines after a sufficient number of training steps. Notably,
ORFit results in lower variances over the 10 independent
runs with different initialization.

Next, we compared the degrees of forgetting for the
proposed method and the baselines by keeping track of
the prediction errors of a training datapoint throughout the
training. As shown in Fig. 2b, ORFit successfully keeps the
prediction error low throughout the training. This is in stark
contrast with other methods for which the prediction error
quickly increases as other datapoints are learned.

20 40 60 80 100

Training Steps (samples)

0

20

40

60

80

100

120

R
M

S
E

(d
eg

)

greedy

One-Step SGD

ORFit-random

ORFit-latest

ORFit

(a) Test Error

20 40 60 80 100

Training Steps (samples)

0

25

50

75

100

125

R
M

S
E

(d
eg

)

(b) Sample Prediction Error

Fig. 2: Results for the memory-restricted setting (§V-A).
(a) shows the evolution of the test errors measured after
learning each datapoint, while (b) shows the evolution of the
prediction errors for a particular sample (the 16-th example)
after each iteration. The red dashed line indicates the step on
which the sample is trained. The shades indicate the standard
deviations over 10 independent runs

B. Learning without Memory Restriction

In this experiment, we follow the setup in Section V-
A except that this time, we do not impose any memory
restrictions. For comparison, we run vanilla SGD with a fixed
step size 10−5. Vanilla SGD makes multiple passes over the
entire dataset for 1000 epochs.

Reported in Fig. 3a are the training and test errors of
vanilla SGD, One-Step SGD, and ORFit. Note that both SGD
and ORFit learn the training dataset perfectly with almost
zero training error. Moreover, after the training is finished,
SGD and ORFit achieve similar test errors, corroborating
Theorem 3.

In addition, Fig. 3b shows the prediction error of the 11-
th training datapoint throughout the training (analogous to
Fig. 2b). Note that ORFit perfectly preserves the prediction
error of the sample, while One-Step SGD quickly deteri-
orates it. This result demonstrates the effectiveness of the
orthogonal update in ORFit for one-pass learning.

VI. EXTENSION TO DEEP LEARNING

In this section, we extend our discussion to nonlinear
models under the neural tangent kernel (NTK) regime [9],
[11]. The main idea behind the NTK regime is that when

100 101 102 103 104 105

Training Steps (samples)

0

25

50

75

100

125

R
M

S
E

(d
eg

)
test error

train error

(a) Test & Train Error

100 101 102 103 104 105

Training Steps (samples)

0

25

50

75

100

125

R
M

S
E

(d
eg

)

SGD

One-Step SGD

ORFit

(b) Sample Prediction Error

Fig. 3: Results for the setting without memory restriction
(§V-B). (a) shows the evolution of the test and train errors
measured after each training step, while (b) shows the
evolution of the prediction errors for a particular sample
(the 11-th example) after each iteration. The red dashed line
indicates the step on which the sample is trained. The shades
indicate the standard deviations over 10 independent runs.

the width of the neural network is chosen large enough, the
model is well-approximated by its first-order approximation
around the initialization:

fk(w)≈ fk(w0)+∇ fk(w0)
>(w−w0). (10)

In particular, Lee et al. [11] discussed sufficient conditions
(in terms of the width of the network) for which this
approximation is valid; see their Theorem 2.1 for details.
Under the linearized regime, we consider expanding the
model around the parameter learned at the previous step as

fk(w)≈ fk(wk−1)+∇ fk(wk−1)
>(w−wk−1) =: fk|k−1(w).

(11)
Throughout, we denote by fk|k−1(w) the RHS of (11).

A notable feature of ORFit is that it is applicable to
any differentiable nonlinear model f . This is in contrast
to the EW-RLS algorithm (3), which is only applicable to
linear models f (x;w) = w>x. Based on this observation, we
employ the step size calculated in (6) to fit the new data
for a nonlinear model under the NTK regime (11). More
specifically, we consider an analog of the EW-RLS (2) for
nonlinear models:

wi = argmin
w

i

∑
k=1

λ
i−k(yk− fk|k−1(w))

2 +λ
i‖w−w0‖2

Π, (12)

given a forgetting factor 0< λ ≤ 1 and Π� 0. Then similarly
as in (3), one can write out the solution of (12) in a
recursive manner, while treating (∇ fk(wk−1),yk− fk(wk−1)+
∇ fk(wk−1)

>wk−1) as the streamed data at the k-th step:
wi = wi−1 +

Pi−1∇ fi(wi−1)(yi− fi(wi−1))

λ i +∇ fi(wi−1)>Pi−1∇ fi(wi−1)
,

Pi = Pi−1−
Pi−1∇ fi(wi−1)∇ fi(wi−1)

>Pi−1

λ i +∇ fi(wi−1)>Pi−1∇ fi(wi−1)
,

(13)

with initialization w0 and P0 = Π−1. We call this generalized
update rule NTK-RLS. Following a similar argument as in
Section IV, we obtain the following result; see Appendix D
for a proof.

Theorem 5. Consider a (nonlinear) overparameterized
model with p≥ K. Let w0 be the initialization and m be the
memory limit for ORFit. Then, at each iteration i ≤ m, the
update rule of ORFit results in the same parameter vector
as the NTK-RLS update rule (13) does with λ = 0, Π = I,
and initialization w0. Moreover, at each iteration i≤ m, the
parameter vector obtained by ORFit is the solution of the
following optimization problem:

wi = argmin
w
‖w−wo‖

s.t. yk = fk|k−1(w) k = 1,2, . . . , i.
(14)

Note that, under the NTK regime, for an overparameter-
ized model, we have fk|k−1(w) ≈ f (xk;w), and the solution
obtained by ORFit in one pass is the same as that of SGD in
the standard multi-pass setting (as characterized in, e.g., [3]).
Compared to NTK-RLS (13), ORFit in (5) greatly reduces
both time and memory complexities from O(p2) to O(ip).
This is particularly important for p � i, common to the
overparameterized settings (for instance, p≈ 11M in ResNet-
18, commonly used for the CIFAR-10 dataset, consisting of
50K samples).

VII. CONCLUSION

In this paper, we proposed an algorithm called Orthog-
noal Recursive Fitting (ORFit) to tackle one-pass learning.
We discussed the connection between the proposed method
and orthogonal gradient descent (OGD), a practical algo-
rithm in continual learning, as well as the recursive least-
squares (RLS), a well-known method from adaptive filtering.
Through this connection, we explained the advantages of the
proposed method and theoretically characterized its behav-
ior. Our theoretical findings reveal that ORFit attains the
same solution as SGD, with much lower time and memory
complexities. We validated our method and its theoretical
properties through several experiments and discussed its
extensions to nonlinear settings, relevant for deep learning.

We conclude with several interesting future directions.
First, although ORFit exhibits outstanding performance in
the memory-limited setting, some forgetting is still happen-
ing. It is caused by the information loss from summarizing
the orthogonal basis via IPCA. Theoretically characterizing
how much ORFit forgets would be of great importance
to understand the practicality of the algorithm. Moreover,

one can also come up with other methods to summarize
the memory such as matrix sketching and compare them
with ORFit. Next, we remark that RLS is a special case of
the Kalman filter applied on a static system. Based on this
connection, another interesting avenue is to build on ORFit
and devise efficient learning/estimation methods for dynamic
systems. Lastly, exploring the practicality of ORFit in deep
learning based on a more comprehensive set of experiments
would be of great interest.

REFERENCES

[1] Z. Allen-Zhu, Y. Li, and Z. Song. A convergence theory for deep
learning via over-parameterization. In International Conference on
Machine Learning, pages 242–252. PMLR, 2019.

[2] N. Azizan and B. Hassibi. Stochastic gradient/mirror descent: Mini-
max optimality and implicit regularization. In International Confer-
ence on Learning Representations, 2018.

[3] N. Azizan, S. Lale, and B. Hassibi. Stochastic mirror descent on
overparameterized nonlinear models. IEEE Transactions on Neural
Networks and Learning Systems, 2021.

[4] P. L. Bartlett, P. M. Long, G. Lugosi, and A. Tsigler. Benign overfitting
in linear regression. Proceedings of the National Academy of Sciences,
117(48):30063–30070, 2020.

[5] M. Belkin, D. Hsu, S. Ma, and S. Mandal. Reconciling modern
machine-learning practice and the classical bias–variance trade-off.
Proceedings of the National Academy of Sciences, 116(32):15849–
15854, 2019.

[6] M. Delange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis,
G. Slabaugh, and T. Tuytelaars. A continual learning survey: Defying
forgetting in classification tasks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2021.

[7] M. Farajtabar, N. Azizan, A. Mott, and A. Li. Orthogonal gradient de-
scent for continual learning. In International Conference on Artificial
Intelligence and Statistics, pages 3762–3773. PMLR, 2020.

[8] H. Hu, A. Li, D. Calandriello, and D. Gorur. One pass ImageNet.
arXiv preprint arXiv:2111.01956, 2021.

[9] A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Con-
vergence and generalization in neural networks. Advances in neural
information processing systems, 31, 2018.

[10] R. Kemker, M. McClure, A. Abitino, T. Hayes, and C. Kanan.
Measuring catastrophic forgetting in neural networks. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

[11] J. Lee, L. Xiao, S. Schoenholz, Y. Bahri, R. Novak, J. Sohl-Dickstein,
and J. Pennington. Wide neural networks of any depth evolve as
linear models under gradient descent. Advances in neural information
processing systems, 32, 2019.

[12] A. Levey and M. Lindenbaum. Sequential Karhunen-Loeve basis
extraction and its application to images. IEEE Transactions on Image
Processing, 9(8):1371–1374, 2000.

[13] Y. Li and Y. Liang. Learning overparameterized neural networks via
stochastic gradient descent on structured data. Advances in Neural
Information Processing Systems, 31, 2018.

[14] D. Nallaperuma, R. Nawaratne, T. Bandaragoda, A. Adikari,
S. Nguyen, T. Kempitiya, D. De Silva, D. Alahakoon, and
D. Pothuhera. Online incremental machine learning platform for
big data-driven smart traffic management. IEEE Transactions on
Intelligent Transportation Systems, 20(12):4679–4690, 2019.

[15] P. Rai, H. Daumé, and S. Venkatasubramanian. Streamed learning:
one-pass svms. In Proceedings of the 21st International Joint Confer-
ence on Artificial Intelligence, pages 1211–1216, 2009.

[16] D. Sahoo, Q. Pham, J. Lu, and S. C. Hoi. Online deep learning:
learning deep neural networks on the fly. In Proceedings of the 27th
International Joint Conference on Artificial Intelligence, pages 2660–
2666, 2018.

[17] A. H. Sayed. Fundamentals of adaptive filtering. John Wiley & Sons,
2003.

[18] A. Sharma, N. Azizan, and M. Pavone. Sketching curvature for
efficient out-of-distribution detection for deep neural networks. In
Uncertainty in Artificial Intelligence, pages 1958–1967. PMLR, 2021.

[19] Y. Wu, Y. Chen, L. Wang, Y. Ye, Z. Liu, Y. Guo, and Y. Fu. Large scale
incremental learning. In 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 374–382. IEEE, 2019.

[20] T. Yu, C. Zhang, Y. Wang, M. Ma, and Q. Song. Recursive least
squares for training and pruning convolutional neural networks. arXiv
preprint arXiv:2201.04813, 2022.

[21] C. Zhang, Q. Song, H. Zhou, Y. Ou, H. Deng, and L. T. Yang.
Revisiting recursive least squares for training deep neural networks.
arXiv preprint arXiv:2109.03220, 2021.

APPENDIX

A. Proof of Lemma 1

Consider (x,y) ∈ Tk for any 1≤ k ≤ i−1.

f (x;w′) = x>w′ = x>(w−η g̃) = f (x;w)−ηx>g̃. (15)

Since the orthogonal basis S spans ∇w f (x;wk) = x, x can be
represented as x = ∑u∈S proju(x). Then,

x>g̃ = (∑
u∈S

proju(x))
>(g−∑

v∈S
projv(g)) (16)

= (∑
u∈S

uu>

‖u‖2 x)>(I−∑
v∈S

vv>

‖v‖2)g (17)

= x>(∑
u∈S

uu>

‖u‖2 −∑
u∈S

∑
v∈S

uu>vv>

‖u‖2‖v‖2)g (18)

= x>(∑
u∈S

uu>

‖u‖2 −∑
u∈S

uu>

‖u‖2)g = 0 (19)

as u>v = 0 if u 6= v. Thus, f (x;w′) = f (x;w).

B. Proof of Proposition 2

In the update rule of ORFit (5), the new basis vector can
be represented as

v′ = ∇ fi(wi−1)− ∑
v∈Si−1

projv(∇ fi(wi−1)) (20)

= (I− ∑
v∈Si−1

vv>

‖v‖2)∇ fi(wi−1) = Qi−1xi, (21)

where Qi−1 := I−∑v∈Si−1
vv>/‖v‖2. Similarly,

g̃i−1 = Qi−1∇`i(wi−1) = Qi−1`
′(yi, fi(wi−1))xi, (22)

where `′(·, ·) denotes the derivative of `(·, ·) w.r.t. its second
argument.

Putting (22) into the parameter update in (5),

wi = wi−1 +
Qi−1xi

x>i Qi−1xi
(yi− x>i wi−1). (23)

Also, note that Qi−1 is symmetric and satisfies Q2
i−1 = Qi−1,

and it corresponds to the projection matrix to the subspace
orthogonal to span{Si−1}= span{∇ fk(wk−1)}i−1

k=1. With these
properties, Qi can be expressed in a recursive form as

Qi = Qi−1−
v′v′>

‖v′‖2 = Qi−1−
Qi−1xix>i Q>i−1

x>i Qi−1xi
. (24)

Then, (23) and (24) are equivalent to the EW-RLS update
rule (3) with λ = 0, Π = I, and initialization w0, while Q0 =
I = P0.

C. Proof of Theorem 3

We prove (9) using KKT conditions. First, we transform
the RHS into an equivalent convex problem:

argmin
w

1
2
‖w−wo‖2 s.t. yk = w>xk k = 1, . . . , i. (25)

Let y := [y1 . . . yi]
> ∈Ri and X := [x1 . . . xi]

> ∈Ri×d . Then,
the Lagrangian of (25) is then represented as

L (w,λ) =
1
2
‖w−wo‖2 +λ

>(y−Xw). (26)

Since (25) is a convex problem, any primal and dual variables
of (26) satisfying KKT conditions are primal and dual
optimal. The KKT conditions for a pair of primal and dual
variables (w∗,λ ∗) are{

w∗−w0−X>λ ∗ = 0
y−Xw∗ = 0.

(27)

Now, we show that wi from the ORFit update rule (5)
satisfies (27) with some λi so that wi is the primal optimal
solution of (25) which shows (9). From (5), wi = w0 −
∑

i−1
k=0 ηkg̃k. Then for each k,

g̃k = ∇`k+1(wk)− ∑
v∈Sk

projv(∇`k+1(wk)) (28)

= `′(yk+1, fk+1(wk))xk+1−
k

∑
j=1

ck, jx j = X>dk, (29)

where dk := [−ck,1, . . . ,−ck,k, `
′(yk+1, fk+1(wk)),0, . . . ,0]> ∈

Ri. Such ck, j ∈ R exists since span{Sk} =
span{∇ f j(w j−1)}k

j=1 = span{x j}k
j=1. Then,

wi = w0−
i−1

∑
k=0

ηkX>dk = w0−X>
i−1

∑
k=0

ηkdk. (30)

By letting λi :=−∑
i−1
k=0 ηkdk, (wi,λi) satisfies the first KKT

condition. Also, with the choice of (6) with Lemma 1, wi
fits all the data {(xk,yk)}i

k=1, which implies the second KKT
condition. Thus, wi is the solution of (25) so that (9) holds.

D. Proof of Theorem 5

We first prove the connection between ORFit and NTK-
RLS. As in the proof of Prop. 2, the new basis vector and the
projected gradient of the loss in the update rule of ORFit (5)
can be represented as

v′ = Qi−1∇ fi(wi−1), (31)
g̃i−1 = Qi−1`

′(yi, fi(wi−1))∇ fi(wi−1), (32)

where Qi−1 := I −∑v∈Si−1
vv>/‖v‖2. Putting (32) into the

parameter update in (5),

wi = wi−1 +
Qi−1∇ fi(wi−1)(yi− fi(wi−1))

∇ fi(wi−1)>Qi−1∇ fi(wi−1)
. (33)

Since Qi−1 is symmetric and satisfies Q2
i−1 =Qi−1, with (31),

Qi can be expressed in a recursive form as

Qi = Qi−1−
Qi−1∇ fi(wi−1)∇ fi(wi−1)

>Q>i−1

∇ fi(wi−1)>Qi−1∇ fi(wi−1)
. (34)

Then, (33) and (34) are equivalent to the NTK-RLS update
rule (13) with λ = 0, Π = I, and initialization w0, while
Q0 = I = P0.

We then prove (14) using KKT conditions as in Thm. 3.
First, we transform the RHS into an equivalent convex
problem:

argmin
w

1
2
‖w−wo‖2 s.t. yk = fk|k−1(w) k = 1, . . . , i. (35)

Let ỹk := yk − fk(wk−1) + ∇ fk(wk−1)
>wk−1, ỹ :=

[ỹ1 . . . ỹi]
> ∈Ri, and X̃ := [∇ f1(w0) . . . ∇ fi(wi−1)]

> ∈Ri×d .
Then, the Lagrangian of (35) is then represented as

L (w,λ) =
1
2
‖w−wo‖2 +λ

>(ỹ− X̃w). (36)

Since (35) is a convex problem, any primal and dual variables
of (36) satisfying KKT conditions are primal and dual
optimal. The KKT conditions for a pair of primal and dual
variables (w∗,λ ∗) are{

w∗−w0− X̃>λ ∗ = 0
ỹ− X̃w∗ = 0 .

(37)

Now, we show that wi from the ORFit update rule (5)
satisfies (37) with some λi so that wi is the primal optimal
solution of (35) which in turn shows (14). From (5), wi =
w0−∑

i−1
k=0 ηkg̃k. Then for each k,

g̃k = ∇`k+1(wk)− ∑
v∈Sk

projv(∇`k+1(wk)) (38)

= `′(yk+1, fk+1(wk))∇ fk+1(wk)−
k

∑
j=1

ck, j∇ f j(w j−1) (39)

= X̃>dk, (40)

where dk := [−ck,1, . . . ,−ck,k, `
′(yk+1, fk+1(wk)),0, . . . ,0]> ∈

Ri. Such ck, j ∈ R exists since span{Sk} =
span{∇ f j(w j−1)}k

j=1. Then,

wi = w0−
i−1

∑
k=0

ηkX̃>dk = w0− X̃>
i−1

∑
k=0

ηkdk. (41)

By letting λi :=−∑
i−1
k=0 ηkdk, (wi,λi) satisfies the first KKT

condition.
For the second KKT condition, we observe that for k≤ i,

fk|k−1(wi) = fk(wk−1)+∇ fk(wk−1)
>(wi−wk−1) (42)

= fk(wk−1)−∇ fk(wk−1)
>

i−1

∑
j=k−1

η jg̃ j (43)

= fk(wk−1)−ηk−1∇ fk(wk−1)
>g̃k−1 (44)

= fk(wk−1)− (fk(wk−1)− yk) = yk, (45)

where (44) is satisfied as ∇ fk(wk−1) ⊥ g̃ j for j ≥ k, and
the step-size from (6) results in (45). Then, wi satisfies the
second KKT condition and hence is the solution of (35).

	I Introduction
	I-A Contributions
	I-B Connections to Related Notions

	II Preliminaries
	II-A One-Pass Learning
	II-B Recursive Least-Squares
	II-C Orthogonal Gradient Descent

	III Orthogonal Recursive Fitting
	III-A Orthogonal Recursive Update
	III-B Incremental Summary of Memory

	IV Theoretical Results
	IV-A Connection to RLS
	IV-B Characterizing the Solution of ORFit

	V Experiments
	V-A Learning with Restrictions on Memory Size
	V-B Learning without Memory Restriction

	VI Extension to Deep Learning
	VII Conclusion
	References
	Appendix
	A Proof of Lemma 1
	B Proof of Proposition 2
	C Proof of Theorem 3
	D Proof of Theorem 5

