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Abstract— Inverse reinforcement learning (IRL) deals with
estimating an agent’s utility function from its actions. In this
paper, we consider how an agent can hide its strategy and
mitigate an adversarial IRL attack; we call this inverse IRL
(I-IRL). How should the decision maker choose its response to
ensure a poor reconstruction of its strategy by an adversary
performing IRL to estimate the agent’s strategy? This paper
comprises four results: First, we present an adversarial IRL
algorithm that estimates the agent’s strategy while controlling
the agent’s utility function. Our second result for I-IRL result
spoofs the IRL algorithm used by the adversary. Our I-IRL
results are based on revealed preference theory in micro-
economics. The key idea is for the agent to deliberately choose
sub-optimal responses that sufficiently masks its true strategy.
Third, we give a sample complexity result for our main I-
IRL result when the agent has noisy estimates of the adversary
specified utility function. Finally, we illustrate our I-IRL scheme
in a radar problem where a meta-cognitive radar is trying to
mitigate an adversarial target.

I. INTRODUCTION

This paper studies the interaction between two entities - a
smart decision maker and an adversary that aims to estimate
the plan of the decision maker; see Fig. 1 for a schematic
representation. The adversary sends adversarial probes to
the decision maker and controls the decision maker’s utility
function. In turn, the decision maker’s response maximizes
its utility function subject to the decision maker’s budget
constraint. The adversary’s intent is to estimate the budget
constraints of the decision maker. If the decision maker
knows of the adversarial attack, how should the decision
maker tweak its responses to spoof the adversary?

We formulate this interaction between the decision maker
and adversary as an inverse-inverse reinforcement learning
problem. Reinforcement learning (RL) [1], [2] deals with
learning the optimal decision making strategy by observ-
ing the response to a control input. Inverse reinforcement
learning (IRL) [3], [4], [5] is the problem of reconstructing
the utility function of a decision maker by observing its
actions. Inverse IRL (I-IRL) is a natural extension of IRL: If
a decision maker knows that an adversary is using an IRL
algorithm to reconstruct its strategy by observing its utility
function, how should the decision maker deliberately tweak
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its response to mitigate the IRL algorithm?1

Outline and Main Results. This paper considers a revealed
preference based adversarial IRL scheme to estimate the
decision maker’s strategy. Sec. II covers the key results from
revealed preference theory in micro-economics. Revealed
preference studies non-parametric detection of constrained
utility maximization behavior. Theorem 1 in Sec. II presents a
feasible test for identifying constrained utility maximization
behavior, and generates a set-valued estimate of the decision
maker’s utility function. Before we address the problem
of I-IRL for hiding strategy, we state Theorem 2, an IRL
algorithm for estimating the strategy (budget constraint) of
a decision maker when its utility function is known to the
adversary. While Theorem 1 is well known in literature for
estimating a utility function, Theorem 2 is new. Next, in
Sec. III, we state our main result, Theorem 3. If the decision
maker knows an adversary is using Theorem 2 to reconstruct,
it deliberately chooses sub-optimal responses that minimally
violates its strategic constraints using the I-IRL scheme
of Theorem 3 to obfuscate the adversarial attack. Sec. III
also presents a finite sample complexity result, Theorem 4
that upper bounds the probability that the I-IRL scheme
of Theorem 3 fails when the decision maker has noisy
measurements of the adversary specified utility functions.
Finally, Sec. IV illustrate our I-IRL result for hiding strategy
in a radar problem, wherein a cognitive radar is trying to
mitigate an adversarial target.
Related Work. Our I-IRL result is based on adversarial
obfuscation in machine learning. [6] provide a comprehen-
sive list of adversarial attacks and robustness to adversarial
attacks in machine learning. Our recent work [7] presents
a cognition-masking scheme for a cognitive radar when the
adversary has accurate measurements of the radar’s response.
This paper generalizes [7] in two major ways: First, we de-
velop IRL results for estimating the decision maker’s strategy
followed by I-IRL result for masking strategy. Second, we
analyze the performance of our I-IRL result in noisy settings
via a finite sample complexity test.

This paper comprises a numerical example involving a
cognitive radar trying to mitigate an adversarial target. A
cognitive radar [8], [9], [10] uses the perception-action cycle
of cognition to sense the environment and learn from it
relevant information about the target and the environment.
I-IRL for a cognitive radar can be viewed as a form of
meta-cognition. Meta-cognition is a sophisticated form of

1Though not discussed in this paper, an immediate extension is to
formulate the decision maker-adversary interaction as a game, and is a topic
of current research.
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Fig. 1. Schematic of the I-IRL scheme for masking the strategy of a cognitive decision maker from adversarial IRL.
Naive response strategy (Left): The adversary sends a sequence of probe signals to the decision maker and records its responses. The probe signal
parameterizes the decision maker’s utility function. If the decision maker chooses the optimal (naive) response that maximizes its utility function subject
to its capability constraint, its capability can be estimated by the adversary using Theorem 2.
Adversarial inverse IRL strategy (Right): If the decision maker is aware that the adversary is trying to estimate its capability, the decision maker deliberately
chooses sub-optimal responses via Theorem 3 to mitigate the adversary. The key idea is to ensure a poor reconstruction of the decision maker’s constraint
by the adversary by minimally perturbing its naive responses.

electronic counter countermeasure (ECCM) to electronic
countermeasures (ECM) in electronic warfare. [11] provides
a comprehensive list of ECCM techniques. [12], [13] propose
waveform adaptation schemes to counter barrage jamming.
[14], [15], [16] exploit frequency diversity for radio stealth
in multi-target and moving target tracking. However, meta-
cognitive strategies involving deliberate violation of strategy
to confuse the adversary’s ECM have not been explored
previously.

II. BACKGROUND. REVEALED PREFERENCE FOR
ADVERSARIAL IRL

We start by briefly reviewing the key result in the area
of revealed preference in microeconomics theory. Revealed
preference studies non-parametric detection of utility maxi-
mization behavior. A utility maximizer is defined as:

Definition 1 ([17], [18]): An agent is a utility maximizer
if for every constraint gk(β) ≤ 0, the response βk ∈ Rm+
satisfies

βk ∈ argmaxu(β), gk(β) ≤ 0 (1)

where u(β) is a monotone utility function.
Definition 1 rationalizes consumer behavior in economics.

The constraint gk(β) ≤ 0 in (1) is the budget faced by the
consumer and βk is the consumer’s consumption vector. In
the special case when gk(β) is linear, that is, gk(β) = α′kβ−
1, αk can be interpreted as the price vector faced by the
consumer; then α′kβ ≤ 1 is a natural budget constraint for
a consumer with 1 dollar. Given a dataset of budget and
consumption vectors, the aim in revealed preference is to
determine if the consumer is a utility maximizer (rational)
that satisfies (1). Indeed, the budget constraint α′kβ ≤ 1 is
without loss of generality, and can be replaced by α′kβ ≤ c
for any positive constant c.

A. Adversarial IRL for Identifying Utility Function

The key result in revealed preference is Afriat’s theorem
[4], [19]. Afriat’s theorem assumes a linear budget and
specifies a set of linear inequalities that are both necessary
and sufficient for a time series of constraints and responses
to be consistent with utility maximization behavior (1). [18]
propose a utility maximization test that generalizes Afriat’s

Theorem to non-linear budgets and is the key IRL algorithm
used by the adversary in this paper:

Theorem 1 (Test for utility maximization [18]): Given a
sequence of constraints and responses D = {(gk(β) ≤
0, βk)}Kk=1. Suppose the constraint is active at βk, i.e. ,
gk(βk) = 0 ∀k. Then, the following statements are equiva-
lent:

1) There exists a monotone, continuous utility function that
satisfies (1).

2) There exist positive reals {ut, λt}Kt=1 such that the
following inequalities are feasible:

us − ut − λtgt(βs) ≤ 0 ∀t, s ∈ {1, . . . ,K}. (2)

The monotone utility function given by

u(β) = min
t∈{1,2,...,K}

{ut + λtgt(β)} (3)

constructed using feasible ut and λt (2) rationalizes D.
3) The data set D satisfies the Generalized Axiom of

Revealed Preference (GARP), namely, for any k ∈
{1, 2, . . . ,K}, the following implication holds:

gt(βt+1) ≤ gt(βt) ∀t ≤ k−1 =⇒ gk(β1) ≥ gk(βk).
(4)

Theorem 1 tests for economics-based rationality; its remark-
able property is that it gives a necessary and sufficient
condition for a agent to be a utility maximizer based on the
agent’s input-output response. The feasibility of the set of
inequalities (2) can be checked using a linear programming
solver; alternatively GARP can be checked using Warshall’s
algorithm with O(K3) computations [20], [21]. Theorem 1
can be viewed as set-valued system identification of an
argmax system; set-valued since (3) yields a set of utility
functions that rationalize the finite dataset D.

Key Idea for I-IRL: Manipulating the Goodness-of-fit of
revealed preference test (2). Theorem 1 also constructs a set-
valued estimate (3) of the utility function u using the solution
of the set of feasibility inequalities (2). The estimated utility
function (3) is ordinal since any positive monotone increasing
transformation of (3) also satisfies Theorem 1. We make two
observations here that are crucial for our I-IRL results in
Sec. III:



1. Since the feasibility of (2) is necessary for utility max-
imization, the scalars u(βk), λk satisfy the revealed prefer-
ence test of (2), where λk solves λk∇gk(βk) = ∇u(βk).
Due to the monotonicity of u, gk and the assumption that
the constraint is active (gk(βk) = 0 ∀k), λk is well-defined.
2. The reconstructed utility function (3) is a point-wise
minimum of monotone functions parameterized by positive
reals {uk, λk} that satisfy (2). Hence, one can at best recover
a lower envelope of the true utility function u that matches
the function value and gradient value at the points βk, k =
1, 2, . . . ,K using Theorem 1. In other words, the closest
approximation ubest to the decision maker’s utility u via the
reconstruction procedure of (3) is given by:

ubest(β) = min
k∈{1,2,...,K}

{u(βk) + λkgk(β)}, (5)

where λk∇gk(βk) = ∇u(βk).

Also, one can show that ubest (5) is the least squares estimate
of u:

{u(βk), λk} = argmin
λ̄k,uk≥0

∫
S

(
u(β)−min

t
{ut + λ̄tgt(β)}

)2

dβ,

(6)

for any compact set S ⊂ RK+ , where λk is defined in (5).
Our key idea for I-IRL is to perturb the response sequence

{βk} so that the closest IRL estimate (5) of the decision
maker’s system parameters passes the revealed preference
test of (2) by a low margin, where the margin is defined by:

ψu({βk, gk}) = max
j,k

u(βj)− u(βk)− λkgk(βj), (7)

where λk∇gk(βk) = ∇u(βk). The margin (7) is a measure
of goodness-of-fit [5] of the revealed preference inequalities
(2). Hence, a utility function that passes (2) with a large
margin is a high-confidence point utility estimate for the
adversary and vice versa.

Below, we present a revealed preference test, Theorem 2,
that tests for feasible budget constraints estimating the de-
cision maker’s budget constraint when its utility function
is known. The aim of our key I-IRL result of Theorem 3
in Sec. III is to ensure that the closest IRL estimate of
the decision maker’s constraint sequence {gk(·)} passes the
revealed preference test of Theorem 2 by a low margin (7).

B. Adversarial IRL for Identifying Strategy

Theorem 1 achieves IRL when an adversarial learner wants
to estimate the decision maker’s utility function and knows
the decision maker’s budget constraint sequence (strategy).
We now consider the scenario where the adversary’s probes
parametrize the decision maker’s utility, and the adversary’s
aim is to estimate the unknown budget constraint sequence
{gk(β) ≤ 0} (strategy) of the decision maker. Below,
we present Theorem 2, a revealed preference test for the
existence of feasible budget constraints when the utility
function and decision maker’s response is observed by the
adversary.

Theorem 2 (IRL for Identifying Strategy): Given a time
sequence of adversary controlled utility functions and de-
cision maker’s responses D = {(uk, βk)}Kk=1. Suppose
the decision maker faces a budget constraint of the form
g(β) − γk ≤ 0 for every k. Then, the following statements
are equivalent:

1) There exists a sequence of monotone continuous capa-
bility constraints {gk(β) ≤ 0} that satisfy (1):

βk = argmax uk(β), gk(β) ≤ 0 (8)

2) There exist positive reals {ḡk, λk}Kk=1 such that the
following inequalities are feasible:

ḡs − ḡt − λt (ut(βs)− ut(βt)) ≥ 0, ∀t, s. (9)

The sequence of monotone constraints {g(β)− ḡk ≤ 0}
rationalizes D (1), where budget g is given by:

g(β) = max
t∈{1,2,...,K}

{ḡt + λt (ut(β)− ut(βt))}. (10)

3) The data set {ut(βt)− ut(·), βt} satisfies GARP (4).
The proof of Theorem 2 is omitted for brevity; see [22] for a
more elaborate discussion. At first sight, Theorem 2 appears
to be a dual statement to the optimization in Theorem 1. In-
stead of testing for a rationalizing utility given a sequence of
known budget constraints, Theorem 2 tests for a rationalizing
sequence of budget constraints given the utility function and
does not use duality in the proof.

In complete analogy to Theorem 1, the feasibility in-
equality of (9) is necessary and sufficient for the existence
of a sequence of constraints that rationalizes the sequence
of utility functions and responses. In complete analogy to
(5), we now define gbest, the closest approximation (upper
envelope) to the true budget g reconstructed via (9):

gbest(β) = max
k∈{1,2,...,K}

{γk + λk(uk(β)− uk(βk))}, (11)

where λk∇gk(βk) = ∇u(βk). Analogous to (7), we define
the margin with which the true budget g passes the revealed
preference test (9) of Theorem 2:

ψg({βk, uk, γk}) =min
j,k

g(βj)− g(βk)− λk (uk(βj)− uk(βk)),

where λk∇uk(βk) = ∇g(βk). (12)

In our I-IRL results in the next section, our key objective
will be to minimally perturb the response sequence {βk} so
that ψg(·) lies below a pre-specified threshold.

Theorem 2 assumes the elements in the sequence of
constraints {g(β) − γk} differ only by a scalar shift. This
assumption can indeed be relaxed to allow any sequence of
budget constraints. But the reconstructed constraints (10) are
restricted to the space of monotone piece-wise linear convex
functions identical up to a constant. Hence, any constraint
that lies outside this space is non-identifiable.



III. INVERSE IRL (I-IRL) FOR MASKING DECISION
MAKER’S STRATEGY

Sec. II presents IRL algorithms that an adversary uses to
estimate the decision maker’s strategy. If the decision maker
is aware of the adversarial attack, how should it choose its
responses to mask the strategy from the adversary? Below,
we present our main I-IRL result, Theorem 3. In Sec. III-
B, we give a finite sample result for Theorem 3 that upper
bounds the probability the I-IRL scheme of Theorem 3 fails
when the decision maker’s utility function is corrupted by
additive noise.

A. Main Result. I-IRL for Adversarial IRL (Theorem 2)

Theorem 3 (I-IRL for Masking Strategy): Suppose
response β∗k maximizes the adversary controlled utility
function uk subject to budget constraint g(β) ≤ γk for
time k = 1, 2, . . . ,K. Also, suppose the adversary uses
Theorem 2 to reconstruct the decision maker’s budget g(·).
Then, the I-IRL response sequence {β̃∗k} of the decision
maker for masking its budget g(·) is given by:

β̃∗k = argmaxβ uk(β), gk(β) ≤ γ∗k , (13)

where the violated budget thresholds {γ∗k} solve the follow-
ing optimization problem:

{γ∗k} = argmin
γ̃1:K

K∑
k=1

‖γ̃k − γk‖22, (14)

ψg({β̃k, uk,γ̃k}) ≤ (1− η) ψg({β∗k , uk, γk}), (15)

β̃k = argmaxβ uk(β), g(β) ≤ γ̃k.

In (15), η ∈ [0, 1] is a pre-defined scalar that parameterizes
the extent of strategy masking for I-IRL.

Theorem 3 is the main I-IRL result of this paper. The
decision maker’s I-IRL response maximizes uk(·) subject to
a violated budget constraint g(β) ≤ γ∗k . The I-IRL scheme
of Theorem 3 optimally trades-off between minimizing
performance loss of the decision maker due to constraint
violation, and spoofing the IRL algorithm of the adversary
(by decreasing the margin of the IRL feasibility test (9)).

Discussion. Recall from Sec. II-B that ψg({β∗k , uk, γk}) (15)
is the margin with which the budget g(β) and the naive
response sequence {β∗k} pass the revealed preference test
of (9). Due to the necessity of (9) for utility maximization
behavior, the RHS in (15) is non-negative and 0 iff η = 0.
The LHS term in (15) is the margin with which the I-
IRL response sequence {β̃∗k} and violated budget constraints
pass (9). Hence, (14) computes the minimum violation that
reduces the margin with the I-IRL response pass the revealed
preference test of (9) by a factor of 1/(1− η).

It is straightforward to show the minimum violation of
constraints (14) is monotone in the parameter η. If η = 0,
the I-IRL response {β̃∗k} is identical to the naive response
{β∗k} and the minimum violation of budget is 0. On the other
extreme, setting η = 1 requires maximal violation of the
budget constraints {g(β) ≤ γk} since ψg({β̃k, uk, γ̃k}) ≤ 0

(15) implies the I-IRL response and decision maker’s budget
fail the revealed preference test of Theorem 2. We illustrate
the I-IRL result in the next section via a radar example; see
Fig. 2 for the simulation result. We show how the radar can
mitigate an adversarial target by deliberately choosing sub-
optimal waveform that mitigates its signal-to-interference-
plus-noise ratio (SINR), while ensuring a poor reconstruction
of its budget by the adversarial target.

B. Finite Sample Complexity for I-IRL (Theorem 3)

In the previous sections, we assumed both the adversary
and the decision maker had accurate measurements of the
response and the utility functions. In this section, we assume
the decision maker’s measurements of the utility function
is noisy, and the noise is modeled as a random linear
perturbation. The key question we address is:
Given a finite sequence of I-IRL responses to noisy utility
functions uk(β) + δ′kβ, what is probability that the decision
maker effectively masks its strategy from the adversary?
Let us now formalize the above question. Let ψtrue

g =
ψg({β∗k , uk, γk}) (12) denote the margin with which the
naive response sequence {β∗k} (1) passes the revealed pref-
erence test of Theorem 2. We want to bound the following
error probability for I-IRL in Theorem 3:

Perr = Pδ1:K
(
ψg({β̃∗k , uk(·) + δ′k(·), γ∗k}) ≥ (1− η) ψtrue

g

)
(16)

Recall from Theorem 3 that our I-IRL aim is to ensure
the margin of the revealed preference test (9) lies under
a threshold. In (16), Perr is the probability with which the
constraint (14) in Theorem 3 fails. In simple terms, Perr is
the probability of the event that the margin with which the
I-IRL response satisfies the inequalities (9) in Theorem 2
exceeds the margin threshold (1− η)ψtrue

g .
We assume the following for Theorem 4:

(A1) The adversary controlled utility function uk is mono-
tone, concave and Lipschitz continuous with Lipschitz
constant L.

(A2) The decision maker has a noisy estimate ûk = uk(β)+
δk(β) of the adversary controlled utility function uk(β).
The linear perturbation vector δk is a Gaussian zero
mean random vector with covariance Σ.

(A3) Let ∆(g, {βk, uk, γk}) denote the range with which
g, {βk, uk, γk} pass the revealed preference test of (9):

∆(g, {βk, uk, γk}) = max
j,k

εj,k −min
j,k

εj,k, where

εj,k = γj − γk − λk (uk(βj)− uk(βk)),

λk∇uk(βk) = ∇g(βk).

The random variable ∆(g, {β̂k, ûk, γ̂k}) ≤ ∆max a.s. ,
where β̂k and γ̂k are the decision maker’s I-IRL re-
sponse (13) and constraint threshold (14) due to noisy
utility function ûk measured by the decision maker.

(A4) The random variable maxk{||∇uk(β̂k)||22/||∇g(β̂k)||2}
minj,k{||∇uk(β̂k)−∇uk(β̂j)||22}

is
upper bounded almost surely by κ > 0.

We are now ready our finite sample complexity result for
I-IRL (Theorem 3).



Theorem 4 (Finite Sample Complexity for I-IRL):
Consider the decision maker choosing I-IRL responses
according to (13) in Theorem 3 in response to noisy
utility functions controlled by the adversary. Let β∗k denote
the naive response of the decision maker at time k that
maximizes the noise-less utility uk subject to budget
constraint g(β) ≤ γk. Suppose assumptions (A1)-(A4) hold.
Then:

Perr ≤ φK

(
2L∆maxκ√

Tr(Σ)

)
(17)

where Perr is the error probability for I-IRL (Theorem 3)
defined in (16) and φ(·) is the cdf of the standard normal
distribution.
The proof of Theorem 4 is in the appendix.

IV. EXAMPLE. I-IRL FOR META-COGNITIVE RADAR

Theorem 3 specified the procedure for a decision maker to
effectively mask its cognition from an adversary. Here, we
apply our I-IRL result to the problem of a cognitive radar
optimizing waveform based on the SINR of the adversarial
target measurement [23]. The adversary observes the radar
over k = 1, 2, . . . ,K time epochs. At the kth epoch,
the adversary probe the radar with an interference vector
αk ∈ RM . The radar responds with waveform βk ∈ RM+ ,
which maximizes its SINR while satisfying a linear budget
constraint p′β ≤ pk. The SINR of the radar given probe α
and response β is defined as

SINR(α, β) =
β

′
Qβ

β′P (α)β + ζ
. (18)

In (18), the radar’s signal power (numerator) and interference
power (first term in denominator) are assumed to be quadratic
forms of Q,P (α) respectively, where Q,P (α) ∈ RM×M are
positive definite matrices known to the adversary. The term
ζ > 0 is the noise power.

Having defined the SINR above in (18), we now formalize
the radar’s naive response βk given probe αk, k = 1, 2, . . .
as the solution of the following optimization problem.

βk ∈ argmaxβ SINR(αk, β)

s.t. p′β ≤ pk, (19)

In (19), p(i)β(i) is the cost of transmitting signal power
β(i) on the ith waveform. Clearly, the above setup falls under
the non-linear utility maximization setup in Definition 1. For
appropriately chosen matrices (see [23]), the utility in (19)
can be shown to be monotonically increasing in β.

In summary, we have justified how the radar should
employ Theorem 3 to deliberately choose sub-optimal wave-
forms so that the radar’s budget g reduces the margin that the
I-IRL response passes the revealed preference test in 9. We
illustrate our I-IRL result via a simple numerical example in
Fig. 2. For the example, we chose:
• Time horizon K = 100
• Response dimension m = 6
• Budget vector p = [p(1) p(2) . . . p(m)], p(i) ∼

Unif(1, 4)

Fig. 2. I-IRL for masking the strategy of a cognitive radar: Small
deliberate constraint violation of the radar (vertical axis) results in large
performance loss (extent of strategy masking η) of the adversarial IRL
algorithm (horizonal axis). η = 0 corresponds to zero strategy masking, and
η = 1 corresponds to complete strategy masking by the decision maker. As
expected, the optimal deliberate constraint violation by the decision maker
increases with η.

• Extent of strategy masking η was varied from 0.05 to
0.95 with step size 0.05 item Matrix Q = [Qi,j ], where
Qi,i = 5, Qi,j = 0 if j 6= i, and P (αk) = [Pi,j ], where
Pi,i ∼ Unif(1, 3) and Pi,j = −0.05 if j 6= i.

• Noise power ζ = 1.
The key observation is that the minimum violation of the
radar’s strategy increases with increasing extent of budget
constraint masking η.

V. CONCLUSION AND EXTENSIONS

This paper focuses on masking a decision maker’s strategy
when probed by an adversarial inverse reinforcement learner.
We term this problem inverse-inverse reinforcement learning
(I-IRL). If the decision maker knows an adversary is trying to
reconstruct its strategy, how should it tweak its responses to
hide its strategy? Our main I-IRL result is Theorem 3. The
key idea is for the decision maker to deliberately choose
sub-optimal responses that violates its strategic resource
constraints while ensuring the adversary does a poor recon-
struction of the decision maker’s strategy. Our finite sample
result, Theorem 4, upper bounds the probability that our I-
IRL result is ineffective in noisy settings; when the decision
maker has noisy estimates of the adversary controlled utility
functions.

Finally, a useful extension of this paper would be to
study more general game-theoretic settings where even the
adversary knows the radar is trying to mask its cognition.
Also, from a counter-counter adversarial perspective, how
to design purposeful utility functions that maximize the
probability with which the I-IRL result fails.

VI. APPENDIX

A. Proof of Theorem 2

Statement (1) =⇒ (2). Fix indices l, k. Suppose there
exist indices i1, i2, . . . , iL such that uk(βk) − uk(βi1) ≤
0, ui1(βi1) − ui1(βi2) ≤ 0, . . . , uiL(βiL) − uiL(βl) ≤ 0.



If (1) holds, then we must have g(βi1) ≥ g(βk), g(βi2) ≥
g(βi1), . . . , g(βl) ≥ g(βiL), which implies g(βk) ≤ g(βl).
Now, assume ul(βl)−ul(βk) < 0. By local non-satiatedness
of g and continuity of ul, there exists a consumption bundle
β such that ul(β) > ul(βl), g(β) < g(βk) ≤ g(βl) =⇒
g(β) < g(βl), which contradicts our assumption. and the
sequence {βk, uk(βk) − uk(β)}, k = 1, 2, . . . ,K satisfies
GARP (4).

Statement (2) =⇒ (3). From the proof of [18, Proposi-
tion 3] (see also [24, Sections 2 and 3]), if the sequence
{βk, uk(βk)− uk(β)} satisfies GARP, then there exist posi-
tive scalars ḡk, λk that satisfy the following inequality.

ḡl − ḡk + λk(uk(βk)− uk(βl)) ≤ 0 ∀ k, l. (20)

Define ĝk = M− ḡk, where M is an arbitrary positive scalar
that upper bounds ḡk for all k. By construction, ĝk > 0.
Eq. 20 can be further simplified in terms of the variable ḡk
as follows.

ḡl − ḡk + λk(uk(βk)− uk(βl)) ≤ 0

=⇒ − ḡl − (−ḡk)− λk(uk(βk)− uk(βl)) ≥ 0

=⇒ (M − ḡl)− (M − ḡk) + λk(uk(βl)− uk(βk)) ≥ 0

=⇒ ĝl − ĝk + λk(uk(βl)− uk(βk)) ≥ 0 ≡ (9) .

Consider the reconstructed cost g(β) = maxk{ḡk +
λk(uk(β)−uk(βk))}. The cost g is monotone and continuous
since it is a point-wise maximum of monotone continuous
functions. Using the fact that inequality (9) holds, we have
g(βk) = ĝk. Hence, the decision maker’s budget constraints
are given by {g(·)− ĝk ≤ 0}. To see that the above budget
constraint sequence rationalizes the sequence {uk, βk}, fix
index k and consider consumption bundle β such that g(β) ≤
ĝk. By definition, 0 ≥ g(β) − ĝk ≥ λk(uk(β) − uk(βk)),
which implies uk(β) ≤ uk(βk) since λk > 0. Hence, the
budget sequence {g(·)− ĝk ≤ 0} rationalizes the data.

Statement (3) =⇒ (1). The utility function uk is assumed
to be locally non-satiated for all k. Hence, every function in
the set {ḡk+λk(uk(β)−uk(βk)), k = 1, 2, . . . ,K} is locally
non-satiated. Since g(β) = maxk{ḡk+λk(uk(β)−uk(βk))}
(10) is a point-wise maximum of finitely many locally non-
satiated functions, g(·) is monotone, continuous and locally
non-satiated by construction. �

B. Proof of Theorem 4

We start by computing the margin with which the I-IRL
response of the decision maker passes the feasibility inequal-
ities (9) of Theorem 3. Let ûk(β) = uk(β) + δ′kβ denote
the noisy utility function estimate available to the decision
maker. Let {β̂k} and {γ̂k} denote the I-IRL responses and
perturbed constraint thresholds computed via (13) and (14),
respectively, in response to noisy utility functions {ûk}. The
margin ψg(β̂k, uk, γ̂k) is defined as:

ψg(β̂
∗
k , uk, γ̂k) = min

j,k
γ̂j − γ̂k − λk(uk(β̂j)− uk(β̂j))︸ ︷︷ ︸

=εj,k

,

(21)

where λk∇uk(β̂k) = ∇g(β̂k). If ûk were the true utility
function at time k generated by the adversary, the margin
definition in (21) changes to:

ψg(β̂k, ûk, γ̂k) = min
j,k

γ̂j − γ̂k − λ̂k(ûk(β̂j)− ûk(β̂j))︸ ︷︷ ︸
=ε̂j,k

,

(22)
where λ̂kûk(β̂k) = ∇g(β̂k). Observe that by definition (14),
ψg(β̂k, ûk, γ̂k) = (1 − η)ψtrue

g . Also, we observe that the
margin definitions in (21) and (22) differ only in the term
involving the utility functions. Our aim is to find necessary
conditions for which the event {ψg(β̂k, uk, γ̂k) ≥ (1 −
η)ψtrue

g } holds, or equivalently, the event {ψg(β̂k, ûk, γ̂k) ≤
ψg(β̂k, uk, γ̂k)} holds.

Due to assumption (A3), a necessary condition for the
event {ψg(β̂k, uk, γ̂k) ≥ (1 − η)ψtrue

g } to hold is {εj,k ≥
ε̂j,k −∆max, ∀j, k}. Fix indices j, k. We wish to bound the
term (ε̂j,k − εj,k):

ε̂j,k − εj,k
=λk(uk(β̂j)− uk(β̂j))− λ̂k(ûk(β̂j)− ûk(β̂j))

=λk(uk(β̂j)− uk(β̂j))− (λk + (λ̂k − λk))(uk(β̂j)

− uk(β̂j) + δ′k(β̂j − β̂k))

=− (λ̂k − λk)(uk(β̂j)− uk(β̂j))− λkδ′k(β̂j − β̂k)

− (λ̂k − λk)δ′k(β̂j − β̂k)

=− (λ̂k − λk)(uk(β̂j)− uk(β̂k)−∇uk(βk)′(β̂j − β̂k))

(since λk∇uk(β̂k) = λ̂k∇ûk(β̂k))

=(λ̂k − λk)(uk(β̂k) +∇uk(βk)′(β̂j − β̂k)− uk(β̂j)︸ ︷︷ ︸
≥0

)

(23)

Since uk is L-Lipschitz continuous, we have:

uk(β̂k)+∇uk(βk)′(β̂j−β̂k)−uk(β̂j) ≥
1

2L
||∇uk(β̂k)−∇uk(β̂j)||22

(24)
Since λk∇uk(β̂k) = λ̂k∇ûk(β̂k) from (21), (22), we have:

λ̂k − λk = λk
δ′k∇uk(β̂k)

||∇uk(β̂k)||22
=

δ′k∇g(β̂k)

||∇uk(β̂k)||22
(25)

Combining (23), (24) and (25), we have:

ε̂j,k − εj,k ≤ ∆max

=⇒ δ′k∇g(β̂k) ≤ 2L∆max||∇uk(β̂k)||22
minj,k{||∇uk(β̂k)−∇uk(β̂j)||22}

{δ′k∇g(β̂k)} is a sequence of independent zero mean Gaus-
sian random variables with variance {Tr(Σ)||∇g(β̂k)||22}
Also, notice how the LHS in the above inequality does not
depend on the index j. Thus, our error probability Perr can
be expressed as:

Perr =P(ε̂j,k − εj,k ≤ ∆max, ∀j, k)

≤P
(
δ′k∇g(β̂k) ≤ πk

)
=

K∏
k=1

P
(
δ′k∇g(β̂k) ≤ πk

)



=

K∏
k=1

φ

(
2L∆max||∇uk(β̂k)||22/||∇g(β̂k)||2√

Tr(Σ) minj,k{||∇uk(β̂k)−∇uk(β̂j)||22}

)

≤φK
(

2L∆max maxk{||∇uk(β̂k)||22/||∇g(β̂k)||2}√
Tr(Σ) minj,k{||∇uk(β̂k)−∇uk(β̂j)||22}

)

=φK

(
2L∆maxκ√

Tr(Σ)

)
(from (A4)) �
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