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Henrik Bengtsson1, John Bagterp Jørgensen2

Abstract— In type 2 diabetes (T2D) treatment, finding a
safe and effective basal insulin dose is a challenge. The dose-
response is highly individual and to ensure safety, people with
T2D “titrate” by slowly increasing the daily insulin dose to
meet treatment targets. This titration can take months. To
ease and accelerate the process, we use short-term artificial
pancreas (AP) treatment tailored for initial titration and apply
it as a diagnostic tool. Specifically, we present a method to
automatically estimate a personalized daily dose of basal insulin
from closed-loop data collected with an AP. Based on AP-data
from a stochastic simulation model, we employ the continuous-
discrete extended Kalman filter and a maximum likelihood
approach to estimate parameters in a simple dose-response
model for 100 virtual people. With the identified model, we
compute a daily dose of basal insulin to meet treatment targets
for each individual. We test the personalized dose and evaluate
the treatment outcomes against clinical reference values. In
the tested simulation setup, the proposed method is feasible.
However, more extensive tests will reveal whether it can be
deemed safe for clinical implementation.

I. INTRODUCTION

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.

Worldwide, one in eleven people live with diabetes,

whereof approximately 90% have type 2 diabetes (T2D). Left

untreated, people with T2D suffer from persistent high blood

glucose levels that eventually lead to complications in many

parts of the body. Fortunately, numerous treatment options

exist. As T2D progresses, daily injections of basal insulin

become necessary to lower the elevated blood glucose levels

[1]. However, basal insulin initiation, a process known as

titration, is challenging as the insulin response in the body

varies greatly between individuals. It is crucial to avoid over-

dosing as too much insulin can quickly cause life-threatening

low glucose levels. To obtain a safe and effective dose, the

amount of injected insulin is gradually increased in size, until

the desired fasting blood glucose level is reached. The insulin

dose is adjusted manually based on pre-breakfast finger-

prick blood glucose measurements. Typically, this titration is

performed at home and can take several months. For more

than half of the individuals initiating insulin treatment, the

task is so demanding that it leads to non-adherence and failed

insulin titration [2]. In the future, the burden of self-titration

may be overcome with automated titration solutions.
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Several automated solutions have been proposed in the

literature, ranging from model-free extremum seeking control

[3], to model predictive control [4], and iterative learning [5].

In simulation, these methods have shown to speed up the

titration process, improve safety and reduce the workload

compared to standard-of-care methods. A few methods have

been tested in clinical trials with promising results [6]–

[8]. Still, simple self-titration remains the standard-of-care

solution in clinics today [1].

Another way to automate insulin treatment is through

closed-loop control with an artificial pancreas (AP) system.

In recent years, this has become a viable treatment option

for people with type 1 diabetes [9]. In the coming years,

commercial AP systems are expected to become available

to people with T2D as well [10]. An AP system con-

sists of a control algorithm that, based on frequent sensor

measurements from a continuous glucose monitor (CGM),

automatically adjusts and infuses fast-acting insulin via an

insulin pump to achieve target glucose values. Although these

systems automate insulin dose selection and delivery, their

technical complexity may limit the uptake in an older T2D

population [11]. In light of this, the greater population’s

treatment needs may be met with simpler injection-based

solutions. However, the emergence of closed-loop treatment

for T2D can enable new forms of automated titration through

short-term AP-use [12]. We propose that pump-induced

system excitation can determine what basal insulin dose

will bring each individual to treatment targets on once-daily

injection-based treatment.

In this work, we present a method to estimate a per-

sonalized basal insulin dose from short-term closed-loop

data. Based on data from a stochastic simulation model,

we use maximum likelihood estimation (MLE) to identify

parameters in a simpler prediction model for 100 virtual

people. For a given set of parameters, we use the continuous-

discrete extended Kalman filter (CDEKF) to approximate the

likelihood function which is maximized in MLE. With the

identified model, we compute a personalized insulin dose to

meet treatment targets. Finally, we test the computed daily

dose of insulin in our simulation model and evaluate the

treatment outcomes.

This paper is organized as follows. In Section II, we

present the two physiological models for data generation

and parameter estimation. We briefly describe the parameter

estimation technique. Section III presents the results with the

proposed method for three different data-collection scenarios.

In Section IV, we evaluate and discuss the performance of

http://arxiv.org/abs/2211.14149v1


GA GT

Gp

Gsc

GC GE2 Pancreas

IE I

IEXO

S1,F S2,F

S1,L S2,L

d(t)

+
EGP

kGE2
CLG

CLGI

ycgm(t)

+

uF (t)

uL(t) kexo

+

kIE CLI

Fig. 1. Model Structure for the Simulation Model. Meals, d(t), fast-acting
insulin, uF (t), and long-acting insulin, uL(t), are the inputs. The continu-
ous glucose monitor (CGM) outputs the subcutaneous glucose concentration,
ycgm(t). The compartments denote the glucose absorption, GA, glucose
transport, GT , peripheral glucose, Gp, central glucose, GC , subcutaneous
glucose, Gsc, glucose effect on insulin secretion, GE2, plasma insulin, I ,
insulin effect, IE , and the exogenous insulin, IEXO. Exogenous fast-acting
insulin is absorbed via the compartments S1,F and S2,F , and exogenous
long-acting insulin is absorbed through S1,L and S2,L. The shown inputs
and outputs from compartments are endogenous glucose production, EGP ,
glucose-dependent clearance, CLG, insulin-dependent clearance, CLGI ,
endogenous insulin clearance, CLI , exogenous insulin clearance rate, kexo,
and the rate constants for effect delay, kIE and kGE2.

the tested control strategy. Section V concludes the paper

and presents ideas for future work.

II. METHODS

In this section, we introduce the simulation model used to

generate data for 100 virtual people on closed-loop treatment.

We use the data for parameter estimation in a simpler

prediction model, presented in Section II-B. We use the

CDEKF and MLE to identify model parameters. Section

II-D and II-E briefly describe the estimation technique. To

conclude, we present how an optimal basal insulin dose is

calculated from the estimated parameters.

A. Simulation Model

To simulate a cohort of 100 virtual people with T2D,

we employ a stochastic version of the integrated glucose-

insulin (IGI) model [12], [13]. The model consists of 14

differential equations that together describe how glucose and

insulin interact in the human body. We apply an extended

version where exogenous fast- and long-acting insulin can

be added as inputs and the subcutaneous blood glucose can

be measured. Fig. 1 shows the model structure and the model

equations are listed in [12].

The glucose-insulin dynamics are a continuous process

observed through discrete measurements,

dx(t) = f(t, x(t), u(t), d(t), θ)dt + σdω(t) (1a)

yk = h(tk, x(tk)) + vk (1b)

where x(t) is the state vector, u(t) is the input vector

containing both uF and uL, d(t) is the meal disturbance, and

θ constitutes the model parameters. The drift function, f , is

given by the IGI model. For the input, we assume a zero-

order hold parametrization, i.e. u(t) = uk for tk ≤ t < tk+1.

The process noise, {ω(t), t ≥ 0}, is a standard Wiener

process and its increment has covariance Idt. ω(t) is scaled

by a time-invariant diagonal matrix, σ, adding noise to the

central glucose compartment, Gc. The measurement noise on

ycgm is assumed normally distributed, vk ∼ Niid(0, Rk).

B. Prediction Model

We use the fasting blood glucose model by Aradóttir et al.

[14] to obtain a personalized dose-response model for each

virtual person. The authors designed the model such that

it allows for identification of glucose-insulin dynamics with

one input (insulin) and one output (fasting glucose) [14]. The

model consists of four differential equations,

dx1(t)

dt
=

1

p1
u(t)−

1

p1
x1(t) (2a)

dx2(t)

dt
=

1

p1
x1(t)−

1

p1
x2(t) (2b)

dx3(t)

dt
= p3(x2(t) + p7x4(t))− p3x3(t) (2c)

dx4(t)

dt
= −(p5 + p4x3(t)) · x4(t) + p6, (2d)

that represent the glucose-insulin dynamics in a human body.

The states x1 [U/min] and x2 [U/min] describe the body’s

absorption of insulin input, u [U/min]. The effect of the

insulin is represented by x3 [U/min] and the blood glucose

concentration is x4 [mmol/L]. The system outputs discrete

sensor measurements,

yk = x4(tk) + vk. (3)

As in the simulation model, the measurement noise is as-

sumed normally distributed, vk ∼ Niid(0, Rk).
We estimate the parameters, θ = [p4; p6; p7], as these are

known to be identifiable from sparse data [14] and therefore

may also be identified from our intense data capture. We

apply published population parameters for p1, p3 and p5. We

use the published population parameters as the initial guess

for p4, p6, and p7 in the parameter estimation. Parameter

descriptions and published values are found in Table I.

C. Data Generation

To simulate a cohort of a hundred virtual patients, we

draw parameters from the published distribution for the

insulin sensitivity and insulin production [13]. We select

body weights from the distribution in [16] and scale the

weight-dependent parameters accordingly. After parameter

selection, we screen the virtual people to ensure that their

insulin response is feasible for a T2D population. Before



TABLE I

POPULATION PARAMETERS FOR THE PREDICTION MODEL

Parameter Value Unit Description Reference

p1 60 [min] Time constant for fast-acting insulin absorption [15]
p3 0.011 [1/min] Delay in insulin action [14]
p4 0.44 [1/U] Insulin sensitivity [14]
p5 0.0023 [1/min] Insulin-independent glucose clearance [14]
p6 0.0672 [mmol/L·min] Endogenous glucose production [14]
p7 0.0018 [U·L/mmol·min] Endogenous insulin production [14]

insulin treatment, 95% of the individuals in [16] have a

fasting blood glucose level below 15 mmol/L. As the cohort

in [16] is a subset of the insulin-requiring T2D population

in the real world, we allow for higher fasting blood glucose

values in our simulated cohort. When no insulin is given,

the fasting blood glucose must lie within a 7.5-20 mmol/L

range. Additionally, the insulin dose required to reach a

glucose level of 5.8 mmol/L must not surpass 150 U. If the

constraints are violated, we re-sample the model parameters

until the constraints are met.

As a simplified AP system, we employ an integrator-based

control algorithm [12] that drives the blood glucose towards

the 5.8 mmol/L reference value. We simulate closed-loop

treatment in a fasting state with no meals, d(t) = 0, for

24 and 48 hours. The selected scenario does not represent

a realistic setup to apply in clinic. However, it facilitates an

undisturbed assessment of how the controller gain and the

duration of excitation influences the quality of a target dose

estimate for basal insulin.

To mimic the continuous-discrete nature of sensor mea-

surements from a physiological system, we simulate the IGI

model using an Euler-Maruyama scheme with a time step

size of one minute. Every five minutes, the CGM outputs

a noise-corrupted measurement, yk, of the subcutaneous

glucose concentration. When estimating parameters in the

prediction model, we use the CGM measurements from this

simulation as input to the CDEKF.

The simulation and parameter estimation was implemented

in Matlab R2020b.

D. Continuous-Discrete Extended Kalman Filter

We use the iterative framework of the CDEKF for pa-

rameter estimation. At every sample point, k, we update

the estimate of our system states, x̂k|k−1, and the state

covariance matrix, Pk|k−1, using the incoming measurement,

yk. For this update, we compute the innovation,

ek = yk − ŷk|k−1 (4)

as the difference between the measured value, yk, and the

model predicted output, ŷk|k−1 = Ckx̂k|k−1. The matrix Ck

is a linearization of the measurement equation, h(tk, x̂k|k−1),
at the current state estimate, x̂k|k−1,

Ck =
∂h

∂x
(tk, x̂k|k−1). (5)

Using the variance of the measurement noise, Rk, we can

obtain the covariance of the innovation signal, Re,k, and

compute the Kalman gain, Kk,

Re,k = CkPk|k−1C
T
k +Rk, (6a)

Kk = Pk|k−1C
T
k R

−1

e,k. (6b)

Finally, we update the estimate of the states and their

covariance,

x̂k|k = x̂k|k−1 +Kkek,

Pk|k = (I −KkCk)Pk|k−1(I −KkCk)
T

+KkRkK
T
k .

(7a)

To obtain the one-step prediction of the states and their

covariance, we solve a system of differential equations,

dx̂k(t)

dt
= f(t, x̂k(t), uk, dk, θ), (8a)

dPk(t)

dt
= Ak(t)Pk(t) + Pk(t)Ak(t)

T + σσT , (8b)

with the initial conditions

x̂k(tk) = x̂k|k, (9a)

Pk(tk) = Pk|k, (9b)

and where

Ak(t) = A(t, x̂k(t), uk, dk, θ)

=
∂f

∂x
(t, x̂k(t), uk, dk, θ)

(10)

is a linearization of the drift function f evaluated at x̂k(t)
with input uk, disturbance dk, and parameters θ.

E. Maximum Likelihood Estimation

From a discrete series of measurements,

YN = {y0, y1, ..., yN}, (11)

obtained from the simulation model, we estimate the param-

eter set, θ, that maximizes the conditional probability,

p(YN |θ) = p(yN , yN−1, ..., y0|θ). (12)

This is equivalent to minimizing the negative log-

likelihood as a function of θ, i.e.

θ̂ = argmin
θ

V (θ) (13)



where

V (θ) = − ln(p(YN |θ))

=
1

2
(N + 1)ny ln(2π)

+
1

2

N∑

k=0

ln[det(Re,k)] + eTkR
−1

e,kek.

(14)

Here, ek and Re,k are CDEKF outputs for a selected param-

eter set θ. ny denotes the number of system outputs.

F. Computing the Target Insulin Dose

Once we identify a set of parameters for a personalized

dose-response model, we calculate a daily insulin dose. With

the estimated parameter set, we solve for the insulin infusion

rate in (2),

utarget =
p6 − yref · p5

yref · p4
− p7 · yref (15)

that will bring the blood glucose concentration to the desired

reference value, yref = 5.8 mmol/L. The infusion rate,

utarget, is given in U/min. To get a daily dose, we calculate

the total insulin delivered over 24 hours,

ubasal = utarget [U/min] · 60 [min/h] · 24 [h/day] (16)

In our simulation model, we inject the daily dose of basal

insulin, ubasal, at 7:00 AM on the five consecutive days after

closed-loop treatment.

III. RESULTS

In the first simulation scenario, we collect closed-loop data

for 48 hours as shown in Fig. 2. Throughout the closed-

loop period, the controller gradually increases the infused

insulin and the glucose levels are steered towards the green

target area for the 100 virtual people. Based on the collected

data, we compute a basal insulin dose at the end of day 2

and implement it on day 3. After the switch to injection-

based treatment on day 3, the majority of the simulated

people have glucose levels within the 4.4-7.2 mmol/L target

area. For three virtual people, the calculated insulin dose

is too high and the glucose levels drop below 3.9 mmol/L.

This is dangerously low, and would not be accepted in a

clinical implementation. Note that the poor dose estimates

do not coincide with the outliers in the boxplot of basal

insulin doses. The three virtual people with poor insulin

dose estimates show a minimal reduction in glucose values

during the closed-loop period. We expect that a higher

system excitation for these individuals, e.g. a more aggressive

controller, can improve dose estimates.

Across the simulated cohort, the general performance is

good when 48 hours of data is used to estimate a personalized

basal insulin dose in a fasting scenario. We wish to determine

whether an equivalent performance can be reached with less

data. In Fig. 3, we see the outcomes for only 24 hours of

closed-loop data collection.

With 24 hours of data, 78% of the basal insulin doses

are overestimated, driving blood glucose concentrations far

below the 3.9 mmol/L threshold. In conclusion, the system

Fig. 2. 48 Hours of Closed-Loop Data for 100 Virtual People. In the closed-
loop period, glucose levels, G, are driven towards the 4.4 − 7.2 mmol/L
target range by fast-acting insulin infusion, uF . Based on the recorded
closed-loop data, a target insulin dose is computed and administered as a
daily injection of long-acting insulin, uL, in the five last simulation days.
In red, we plot the individual curves where the glucose level drops below
3.9 mmol/L.

excitation does not appear to be sufficient to capture essential

system dynamics. In an attempt to increase system excitation

and improve performance, we increase the controller gain by

a factor of three. The result is shown in Fig. 4.

With a tripled controller gain over a 24-hour period, we see

an improved performance compared to the nominal gain. Of

the 100 virtual people, only seven have overestimated doses.

As in the 48 hour simulation, the people with poor dose

estimates have a smaller gradient compared to the population

mean. This could indicate a lower degree of system excitation

with the chosen controller gain. The majority of simulated

people achieve target glucose values when treated with the

computed basal insulin dose. Still, the best performance is

seen in the scenario where closed-loop data is collected over

48 hours, suggesting that both data quantity and system

excitation are crucial if this method is to be applicable in

clinical practice.

IV. DISCUSSION

In this work, we investigate the feasibility of an automated

titration solution for people with T2D. We show how a

closed-loop system may be used for system excitation and

enable target dose estimation. Both the the magnitude of the

controller gain and the length of the closed-loop treatment

affect the efficacy and safety of the proposed method.



Fig. 3. 24 Hours of Closed-Loop Data for 100 Virtual People. For 24
hours, the control algorithm gradually increases fast-acting insulin, uF , to
steer the blood glucose, G, into the 4.4 − 7.2 mmol/L target range. After
the closed-loop data collection, we estimate a personalized, daily insulin
dose. We simulate the outcomes when the dose is administered as a daily
injection of long-acting insulin, uL. With the short data-collection period,
we overestimate the required daily dose of insulin for 78 people.

The controller gain applied in Fig. 2 and 3, results in a

total daily dose of less than 0.2 U/kg body weight after 24

hours. This is in accordance with standard-of-care titration

guidelines for basal insulin that recommend an initial daily

dose of 0.1-0.2 U/kg body weight. We have seen in Fig. 4 that

an increased controller gain excites the underlying system to

a greater extent, and consequently, the parameter estimates

improve. In a real-world setting, an increased controller

gain may not cause a direct risk of low blood glucose

levels, however, a sudden drop in glucose concentration

driven by the AP can be highly uncomfortable for the user.

Additionally, people with sustained high blood glucose levels

over long periods are at risk of nerve and eye damage when

blood glucose decreases rapidly [17].

Ideally, the AP system should be worn for several days

with a moderate gain to estimate a safe and effective basal

insulin dose. Modern patch pumps, i.e. tubeless insulin

pumps that are fixed to the skin with adhesives, have a wear-

time of 72 hours. These pumps could provide a user with a

convenient way to collect multiple days of data for system

identification. However, if the user is expected to refrain

from eating in the whole closed-loop period, the parameter

estimation must be made feasible within a shorter time frame,

e.g. 12 hours. This may not be possible. In simulation, we

can choose to disregard multiple disturbances from meals

Fig. 4. Tripled Controller Gain and 24 Hours of Closed-Loop Data. To
improve the system excitation, we triple the controller gain compared to
Fig. 3. As a result, the blood glucose, G, drops quicker towards the 4.4−7.2
mmol/L target range, and the pump infuses more fast-acting insulin, uF .
We see that the daily dose estimate of long-acting insulin, uL, is safer. Only
seven people experience blood glucose concentrations below 3.9 mmol/L.
In red, we show the seven individual curves with poor dose estimates.

and interday variations in insulin response. In reality, the

identification is more complicated. In an uncontrolled real-

world setting, the complexity of the model identification

process will increase as glucose excursions after, e.g. un-

documented meals interfere with the administered insulin

infusion rate. A way to circumvent this could be to introduce

controlled meal tests, i.e. known quantities of carbohydrates

consumed at fixed hours. The meal tests can be used for

additional system excitation and will additionally make the

identification process more comfortable for the user. To

improve system identification, the controller input and meal

tests could be tuned in an optimal design of experiment.

In a real-world setting, we may experience the unfortunate

situation that the model parameters cannot be estimated from

the collected data. If no more closed-loop data collection is

possible, we propose a unit-to-unit conversion from the pump

infusion rate to an injection-based dose of basal insulin,

followed by manual titration. In this way, the titration already

performed by the AP would not be lost.

In the case where dose estimates are found, clinicians can

be hesitant to deem them safe. To increase the safety margin

in a clinical implementation, a fraction of the predicted

dose may be used instead of the full dose, e.g. 75% of the

predicted dose. Alternatively, the daily injection size can be

increased in controlled steps until the predicted target dose is



reached. Compared to standard-of-care titration, these steps

would be larger and would allow us to reach treatment targets

faster. A step-wise increase in dose size may be safer and less

unpleasant for the user, as it will result in a more controlled

decrease in blood glucose. Another way to test the predicted

dose would be to continue the pump treatment and increase

the infusion rate. In this way, it remains possible to quickly

shut off insulin infusion if the predicted dose brings the blood

glucose into dangerously low values.

In this paper, we test the proposed method on a simple

simulated scenario. As a result, the implementation is, in the

current state, not ready for clinical use. However, this work

presents a new approach to insulin titration in T2D that may

hold clinical potential. For future work, a higher complexity

in the simulation scenario will allow evaluation in a setup

that closer resembles real-world cases.

V. CONCLUSION

In this work, we employ closed-loop data for system

identification in people with T2D. Based on 24-48 hours of

glucose-insulin data, we identify a personalized basal insulin

dose using the CDEKF and maximum likelihood estimation.

The proposed method is feasible in the chosen simulation

setup, however, the efficacy and safety of the dose estimates

heavily depend on the system excitation. We can affect

the system excitation by increasing the controller gain and

extending the data collection period. In future work, we aim

to instigate how meal tests can be included in using optimal

experiment design to make the implementation viable in a

real-world setting allowing people to eat.
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